555 lines
11 KiB
ArmAsm
555 lines
11 KiB
ArmAsm
|
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
||
|
/*
|
||
|
* This is a SIMD SHA-1 implementation. It requires the Intel(R) Supplemental
|
||
|
* SSE3 instruction set extensions introduced in Intel Core Microarchitecture
|
||
|
* processors. CPUs supporting Intel(R) AVX extensions will get an additional
|
||
|
* boost.
|
||
|
*
|
||
|
* This work was inspired by the vectorized implementation of Dean Gaudet.
|
||
|
* Additional information on it can be found at:
|
||
|
* http://www.arctic.org/~dean/crypto/sha1.html
|
||
|
*
|
||
|
* It was improved upon with more efficient vectorization of the message
|
||
|
* scheduling. This implementation has also been optimized for all current and
|
||
|
* several future generations of Intel CPUs.
|
||
|
*
|
||
|
* See this article for more information about the implementation details:
|
||
|
* http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/
|
||
|
*
|
||
|
* Copyright (C) 2010, Intel Corp.
|
||
|
* Authors: Maxim Locktyukhin <maxim.locktyukhin@intel.com>
|
||
|
* Ronen Zohar <ronen.zohar@intel.com>
|
||
|
*
|
||
|
* Converted to AT&T syntax and adapted for inclusion in the Linux kernel:
|
||
|
* Author: Mathias Krause <minipli@googlemail.com>
|
||
|
*/
|
||
|
|
||
|
#include <linux/linkage.h>
|
||
|
#include <linux/cfi_types.h>
|
||
|
|
||
|
#define CTX %rdi // arg1
|
||
|
#define BUF %rsi // arg2
|
||
|
#define CNT %rdx // arg3
|
||
|
|
||
|
#define REG_A %ecx
|
||
|
#define REG_B %esi
|
||
|
#define REG_C %edi
|
||
|
#define REG_D %r12d
|
||
|
#define REG_E %edx
|
||
|
|
||
|
#define REG_T1 %eax
|
||
|
#define REG_T2 %ebx
|
||
|
|
||
|
#define K_BASE %r8
|
||
|
#define HASH_PTR %r9
|
||
|
#define BUFFER_PTR %r10
|
||
|
#define BUFFER_END %r11
|
||
|
|
||
|
#define W_TMP1 %xmm0
|
||
|
#define W_TMP2 %xmm9
|
||
|
|
||
|
#define W0 %xmm1
|
||
|
#define W4 %xmm2
|
||
|
#define W8 %xmm3
|
||
|
#define W12 %xmm4
|
||
|
#define W16 %xmm5
|
||
|
#define W20 %xmm6
|
||
|
#define W24 %xmm7
|
||
|
#define W28 %xmm8
|
||
|
|
||
|
#define XMM_SHUFB_BSWAP %xmm10
|
||
|
|
||
|
/* we keep window of 64 w[i]+K pre-calculated values in a circular buffer */
|
||
|
#define WK(t) (((t) & 15) * 4)(%rsp)
|
||
|
#define W_PRECALC_AHEAD 16
|
||
|
|
||
|
/*
|
||
|
* This macro implements the SHA-1 function's body for single 64-byte block
|
||
|
* param: function's name
|
||
|
*/
|
||
|
.macro SHA1_VECTOR_ASM name
|
||
|
SYM_TYPED_FUNC_START(\name)
|
||
|
|
||
|
push %rbx
|
||
|
push %r12
|
||
|
push %rbp
|
||
|
mov %rsp, %rbp
|
||
|
|
||
|
sub $64, %rsp # allocate workspace
|
||
|
and $~15, %rsp # align stack
|
||
|
|
||
|
mov CTX, HASH_PTR
|
||
|
mov BUF, BUFFER_PTR
|
||
|
|
||
|
shl $6, CNT # multiply by 64
|
||
|
add BUF, CNT
|
||
|
mov CNT, BUFFER_END
|
||
|
|
||
|
lea K_XMM_AR(%rip), K_BASE
|
||
|
xmm_mov BSWAP_SHUFB_CTL(%rip), XMM_SHUFB_BSWAP
|
||
|
|
||
|
SHA1_PIPELINED_MAIN_BODY
|
||
|
|
||
|
# cleanup workspace
|
||
|
mov $8, %ecx
|
||
|
mov %rsp, %rdi
|
||
|
xor %eax, %eax
|
||
|
rep stosq
|
||
|
|
||
|
mov %rbp, %rsp # deallocate workspace
|
||
|
pop %rbp
|
||
|
pop %r12
|
||
|
pop %rbx
|
||
|
RET
|
||
|
|
||
|
SYM_FUNC_END(\name)
|
||
|
.endm
|
||
|
|
||
|
/*
|
||
|
* This macro implements 80 rounds of SHA-1 for one 64-byte block
|
||
|
*/
|
||
|
.macro SHA1_PIPELINED_MAIN_BODY
|
||
|
INIT_REGALLOC
|
||
|
|
||
|
mov (HASH_PTR), A
|
||
|
mov 4(HASH_PTR), B
|
||
|
mov 8(HASH_PTR), C
|
||
|
mov 12(HASH_PTR), D
|
||
|
mov 16(HASH_PTR), E
|
||
|
|
||
|
.set i, 0
|
||
|
.rept W_PRECALC_AHEAD
|
||
|
W_PRECALC i
|
||
|
.set i, (i+1)
|
||
|
.endr
|
||
|
|
||
|
.align 4
|
||
|
1:
|
||
|
RR F1,A,B,C,D,E,0
|
||
|
RR F1,D,E,A,B,C,2
|
||
|
RR F1,B,C,D,E,A,4
|
||
|
RR F1,E,A,B,C,D,6
|
||
|
RR F1,C,D,E,A,B,8
|
||
|
|
||
|
RR F1,A,B,C,D,E,10
|
||
|
RR F1,D,E,A,B,C,12
|
||
|
RR F1,B,C,D,E,A,14
|
||
|
RR F1,E,A,B,C,D,16
|
||
|
RR F1,C,D,E,A,B,18
|
||
|
|
||
|
RR F2,A,B,C,D,E,20
|
||
|
RR F2,D,E,A,B,C,22
|
||
|
RR F2,B,C,D,E,A,24
|
||
|
RR F2,E,A,B,C,D,26
|
||
|
RR F2,C,D,E,A,B,28
|
||
|
|
||
|
RR F2,A,B,C,D,E,30
|
||
|
RR F2,D,E,A,B,C,32
|
||
|
RR F2,B,C,D,E,A,34
|
||
|
RR F2,E,A,B,C,D,36
|
||
|
RR F2,C,D,E,A,B,38
|
||
|
|
||
|
RR F3,A,B,C,D,E,40
|
||
|
RR F3,D,E,A,B,C,42
|
||
|
RR F3,B,C,D,E,A,44
|
||
|
RR F3,E,A,B,C,D,46
|
||
|
RR F3,C,D,E,A,B,48
|
||
|
|
||
|
RR F3,A,B,C,D,E,50
|
||
|
RR F3,D,E,A,B,C,52
|
||
|
RR F3,B,C,D,E,A,54
|
||
|
RR F3,E,A,B,C,D,56
|
||
|
RR F3,C,D,E,A,B,58
|
||
|
|
||
|
add $64, BUFFER_PTR # move to the next 64-byte block
|
||
|
cmp BUFFER_END, BUFFER_PTR # if the current is the last one use
|
||
|
cmovae K_BASE, BUFFER_PTR # dummy source to avoid buffer overrun
|
||
|
|
||
|
RR F4,A,B,C,D,E,60
|
||
|
RR F4,D,E,A,B,C,62
|
||
|
RR F4,B,C,D,E,A,64
|
||
|
RR F4,E,A,B,C,D,66
|
||
|
RR F4,C,D,E,A,B,68
|
||
|
|
||
|
RR F4,A,B,C,D,E,70
|
||
|
RR F4,D,E,A,B,C,72
|
||
|
RR F4,B,C,D,E,A,74
|
||
|
RR F4,E,A,B,C,D,76
|
||
|
RR F4,C,D,E,A,B,78
|
||
|
|
||
|
UPDATE_HASH (HASH_PTR), A
|
||
|
UPDATE_HASH 4(HASH_PTR), B
|
||
|
UPDATE_HASH 8(HASH_PTR), C
|
||
|
UPDATE_HASH 12(HASH_PTR), D
|
||
|
UPDATE_HASH 16(HASH_PTR), E
|
||
|
|
||
|
RESTORE_RENAMED_REGS
|
||
|
cmp K_BASE, BUFFER_PTR # K_BASE means, we reached the end
|
||
|
jne 1b
|
||
|
.endm
|
||
|
|
||
|
.macro INIT_REGALLOC
|
||
|
.set A, REG_A
|
||
|
.set B, REG_B
|
||
|
.set C, REG_C
|
||
|
.set D, REG_D
|
||
|
.set E, REG_E
|
||
|
.set T1, REG_T1
|
||
|
.set T2, REG_T2
|
||
|
.endm
|
||
|
|
||
|
.macro RESTORE_RENAMED_REGS
|
||
|
# order is important (REG_C is where it should be)
|
||
|
mov B, REG_B
|
||
|
mov D, REG_D
|
||
|
mov A, REG_A
|
||
|
mov E, REG_E
|
||
|
.endm
|
||
|
|
||
|
.macro SWAP_REG_NAMES a, b
|
||
|
.set _T, \a
|
||
|
.set \a, \b
|
||
|
.set \b, _T
|
||
|
.endm
|
||
|
|
||
|
.macro F1 b, c, d
|
||
|
mov \c, T1
|
||
|
SWAP_REG_NAMES \c, T1
|
||
|
xor \d, T1
|
||
|
and \b, T1
|
||
|
xor \d, T1
|
||
|
.endm
|
||
|
|
||
|
.macro F2 b, c, d
|
||
|
mov \d, T1
|
||
|
SWAP_REG_NAMES \d, T1
|
||
|
xor \c, T1
|
||
|
xor \b, T1
|
||
|
.endm
|
||
|
|
||
|
.macro F3 b, c ,d
|
||
|
mov \c, T1
|
||
|
SWAP_REG_NAMES \c, T1
|
||
|
mov \b, T2
|
||
|
or \b, T1
|
||
|
and \c, T2
|
||
|
and \d, T1
|
||
|
or T2, T1
|
||
|
.endm
|
||
|
|
||
|
.macro F4 b, c, d
|
||
|
F2 \b, \c, \d
|
||
|
.endm
|
||
|
|
||
|
.macro UPDATE_HASH hash, val
|
||
|
add \hash, \val
|
||
|
mov \val, \hash
|
||
|
.endm
|
||
|
|
||
|
/*
|
||
|
* RR does two rounds of SHA-1 back to back with W[] pre-calc
|
||
|
* t1 = F(b, c, d); e += w(i)
|
||
|
* e += t1; b <<= 30; d += w(i+1);
|
||
|
* t1 = F(a, b, c);
|
||
|
* d += t1; a <<= 5;
|
||
|
* e += a;
|
||
|
* t1 = e; a >>= 7;
|
||
|
* t1 <<= 5;
|
||
|
* d += t1;
|
||
|
*/
|
||
|
.macro RR F, a, b, c, d, e, round
|
||
|
add WK(\round), \e
|
||
|
\F \b, \c, \d # t1 = F(b, c, d);
|
||
|
W_PRECALC (\round + W_PRECALC_AHEAD)
|
||
|
rol $30, \b
|
||
|
add T1, \e
|
||
|
add WK(\round + 1), \d
|
||
|
|
||
|
\F \a, \b, \c
|
||
|
W_PRECALC (\round + W_PRECALC_AHEAD + 1)
|
||
|
rol $5, \a
|
||
|
add \a, \e
|
||
|
add T1, \d
|
||
|
ror $7, \a # (a <<r 5) >>r 7) => a <<r 30)
|
||
|
|
||
|
mov \e, T1
|
||
|
SWAP_REG_NAMES \e, T1
|
||
|
|
||
|
rol $5, T1
|
||
|
add T1, \d
|
||
|
|
||
|
# write: \a, \b
|
||
|
# rotate: \a<=\d, \b<=\e, \c<=\a, \d<=\b, \e<=\c
|
||
|
.endm
|
||
|
|
||
|
.macro W_PRECALC r
|
||
|
.set i, \r
|
||
|
|
||
|
.if (i < 20)
|
||
|
.set K_XMM, 0
|
||
|
.elseif (i < 40)
|
||
|
.set K_XMM, 16
|
||
|
.elseif (i < 60)
|
||
|
.set K_XMM, 32
|
||
|
.elseif (i < 80)
|
||
|
.set K_XMM, 48
|
||
|
.endif
|
||
|
|
||
|
.if ((i < 16) || ((i >= 80) && (i < (80 + W_PRECALC_AHEAD))))
|
||
|
.set i, ((\r) % 80) # pre-compute for the next iteration
|
||
|
.if (i == 0)
|
||
|
W_PRECALC_RESET
|
||
|
.endif
|
||
|
W_PRECALC_00_15
|
||
|
.elseif (i<32)
|
||
|
W_PRECALC_16_31
|
||
|
.elseif (i < 80) // rounds 32-79
|
||
|
W_PRECALC_32_79
|
||
|
.endif
|
||
|
.endm
|
||
|
|
||
|
.macro W_PRECALC_RESET
|
||
|
.set W, W0
|
||
|
.set W_minus_04, W4
|
||
|
.set W_minus_08, W8
|
||
|
.set W_minus_12, W12
|
||
|
.set W_minus_16, W16
|
||
|
.set W_minus_20, W20
|
||
|
.set W_minus_24, W24
|
||
|
.set W_minus_28, W28
|
||
|
.set W_minus_32, W
|
||
|
.endm
|
||
|
|
||
|
.macro W_PRECALC_ROTATE
|
||
|
.set W_minus_32, W_minus_28
|
||
|
.set W_minus_28, W_minus_24
|
||
|
.set W_minus_24, W_minus_20
|
||
|
.set W_minus_20, W_minus_16
|
||
|
.set W_minus_16, W_minus_12
|
||
|
.set W_minus_12, W_minus_08
|
||
|
.set W_minus_08, W_minus_04
|
||
|
.set W_minus_04, W
|
||
|
.set W, W_minus_32
|
||
|
.endm
|
||
|
|
||
|
.macro W_PRECALC_SSSE3
|
||
|
|
||
|
.macro W_PRECALC_00_15
|
||
|
W_PRECALC_00_15_SSSE3
|
||
|
.endm
|
||
|
.macro W_PRECALC_16_31
|
||
|
W_PRECALC_16_31_SSSE3
|
||
|
.endm
|
||
|
.macro W_PRECALC_32_79
|
||
|
W_PRECALC_32_79_SSSE3
|
||
|
.endm
|
||
|
|
||
|
/* message scheduling pre-compute for rounds 0-15 */
|
||
|
.macro W_PRECALC_00_15_SSSE3
|
||
|
.if ((i & 3) == 0)
|
||
|
movdqu (i*4)(BUFFER_PTR), W_TMP1
|
||
|
.elseif ((i & 3) == 1)
|
||
|
pshufb XMM_SHUFB_BSWAP, W_TMP1
|
||
|
movdqa W_TMP1, W
|
||
|
.elseif ((i & 3) == 2)
|
||
|
paddd (K_BASE), W_TMP1
|
||
|
.elseif ((i & 3) == 3)
|
||
|
movdqa W_TMP1, WK(i&~3)
|
||
|
W_PRECALC_ROTATE
|
||
|
.endif
|
||
|
.endm
|
||
|
|
||
|
/* message scheduling pre-compute for rounds 16-31
|
||
|
*
|
||
|
* - calculating last 32 w[i] values in 8 XMM registers
|
||
|
* - pre-calculate K+w[i] values and store to mem, for later load by ALU add
|
||
|
* instruction
|
||
|
*
|
||
|
* some "heavy-lifting" vectorization for rounds 16-31 due to w[i]->w[i-3]
|
||
|
* dependency, but improves for 32-79
|
||
|
*/
|
||
|
.macro W_PRECALC_16_31_SSSE3
|
||
|
# blended scheduling of vector and scalar instruction streams, one 4-wide
|
||
|
# vector iteration / 4 scalar rounds
|
||
|
.if ((i & 3) == 0)
|
||
|
movdqa W_minus_12, W
|
||
|
palignr $8, W_minus_16, W # w[i-14]
|
||
|
movdqa W_minus_04, W_TMP1
|
||
|
psrldq $4, W_TMP1 # w[i-3]
|
||
|
pxor W_minus_08, W
|
||
|
.elseif ((i & 3) == 1)
|
||
|
pxor W_minus_16, W_TMP1
|
||
|
pxor W_TMP1, W
|
||
|
movdqa W, W_TMP2
|
||
|
movdqa W, W_TMP1
|
||
|
pslldq $12, W_TMP2
|
||
|
.elseif ((i & 3) == 2)
|
||
|
psrld $31, W
|
||
|
pslld $1, W_TMP1
|
||
|
por W, W_TMP1
|
||
|
movdqa W_TMP2, W
|
||
|
psrld $30, W_TMP2
|
||
|
pslld $2, W
|
||
|
.elseif ((i & 3) == 3)
|
||
|
pxor W, W_TMP1
|
||
|
pxor W_TMP2, W_TMP1
|
||
|
movdqa W_TMP1, W
|
||
|
paddd K_XMM(K_BASE), W_TMP1
|
||
|
movdqa W_TMP1, WK(i&~3)
|
||
|
W_PRECALC_ROTATE
|
||
|
.endif
|
||
|
.endm
|
||
|
|
||
|
/* message scheduling pre-compute for rounds 32-79
|
||
|
*
|
||
|
* in SHA-1 specification: w[i] = (w[i-3] ^ w[i-8] ^ w[i-14] ^ w[i-16]) rol 1
|
||
|
* instead we do equal: w[i] = (w[i-6] ^ w[i-16] ^ w[i-28] ^ w[i-32]) rol 2
|
||
|
* allows more efficient vectorization since w[i]=>w[i-3] dependency is broken
|
||
|
*/
|
||
|
.macro W_PRECALC_32_79_SSSE3
|
||
|
.if ((i & 3) == 0)
|
||
|
movdqa W_minus_04, W_TMP1
|
||
|
pxor W_minus_28, W # W is W_minus_32 before xor
|
||
|
palignr $8, W_minus_08, W_TMP1
|
||
|
.elseif ((i & 3) == 1)
|
||
|
pxor W_minus_16, W
|
||
|
pxor W_TMP1, W
|
||
|
movdqa W, W_TMP1
|
||
|
.elseif ((i & 3) == 2)
|
||
|
psrld $30, W
|
||
|
pslld $2, W_TMP1
|
||
|
por W, W_TMP1
|
||
|
.elseif ((i & 3) == 3)
|
||
|
movdqa W_TMP1, W
|
||
|
paddd K_XMM(K_BASE), W_TMP1
|
||
|
movdqa W_TMP1, WK(i&~3)
|
||
|
W_PRECALC_ROTATE
|
||
|
.endif
|
||
|
.endm
|
||
|
|
||
|
.endm // W_PRECALC_SSSE3
|
||
|
|
||
|
|
||
|
#define K1 0x5a827999
|
||
|
#define K2 0x6ed9eba1
|
||
|
#define K3 0x8f1bbcdc
|
||
|
#define K4 0xca62c1d6
|
||
|
|
||
|
.section .rodata
|
||
|
.align 16
|
||
|
|
||
|
K_XMM_AR:
|
||
|
.long K1, K1, K1, K1
|
||
|
.long K2, K2, K2, K2
|
||
|
.long K3, K3, K3, K3
|
||
|
.long K4, K4, K4, K4
|
||
|
|
||
|
BSWAP_SHUFB_CTL:
|
||
|
.long 0x00010203
|
||
|
.long 0x04050607
|
||
|
.long 0x08090a0b
|
||
|
.long 0x0c0d0e0f
|
||
|
|
||
|
|
||
|
.section .text
|
||
|
|
||
|
W_PRECALC_SSSE3
|
||
|
.macro xmm_mov a, b
|
||
|
movdqu \a,\b
|
||
|
.endm
|
||
|
|
||
|
/*
|
||
|
* SSSE3 optimized implementation:
|
||
|
*
|
||
|
* extern "C" void sha1_transform_ssse3(struct sha1_state *state,
|
||
|
* const u8 *data, int blocks);
|
||
|
*
|
||
|
* Note that struct sha1_state is assumed to begin with u32 state[5].
|
||
|
*/
|
||
|
SHA1_VECTOR_ASM sha1_transform_ssse3
|
||
|
|
||
|
.macro W_PRECALC_AVX
|
||
|
|
||
|
.purgem W_PRECALC_00_15
|
||
|
.macro W_PRECALC_00_15
|
||
|
W_PRECALC_00_15_AVX
|
||
|
.endm
|
||
|
.purgem W_PRECALC_16_31
|
||
|
.macro W_PRECALC_16_31
|
||
|
W_PRECALC_16_31_AVX
|
||
|
.endm
|
||
|
.purgem W_PRECALC_32_79
|
||
|
.macro W_PRECALC_32_79
|
||
|
W_PRECALC_32_79_AVX
|
||
|
.endm
|
||
|
|
||
|
.macro W_PRECALC_00_15_AVX
|
||
|
.if ((i & 3) == 0)
|
||
|
vmovdqu (i*4)(BUFFER_PTR), W_TMP1
|
||
|
.elseif ((i & 3) == 1)
|
||
|
vpshufb XMM_SHUFB_BSWAP, W_TMP1, W
|
||
|
.elseif ((i & 3) == 2)
|
||
|
vpaddd (K_BASE), W, W_TMP1
|
||
|
.elseif ((i & 3) == 3)
|
||
|
vmovdqa W_TMP1, WK(i&~3)
|
||
|
W_PRECALC_ROTATE
|
||
|
.endif
|
||
|
.endm
|
||
|
|
||
|
.macro W_PRECALC_16_31_AVX
|
||
|
.if ((i & 3) == 0)
|
||
|
vpalignr $8, W_minus_16, W_minus_12, W # w[i-14]
|
||
|
vpsrldq $4, W_minus_04, W_TMP1 # w[i-3]
|
||
|
vpxor W_minus_08, W, W
|
||
|
vpxor W_minus_16, W_TMP1, W_TMP1
|
||
|
.elseif ((i & 3) == 1)
|
||
|
vpxor W_TMP1, W, W
|
||
|
vpslldq $12, W, W_TMP2
|
||
|
vpslld $1, W, W_TMP1
|
||
|
.elseif ((i & 3) == 2)
|
||
|
vpsrld $31, W, W
|
||
|
vpor W, W_TMP1, W_TMP1
|
||
|
vpslld $2, W_TMP2, W
|
||
|
vpsrld $30, W_TMP2, W_TMP2
|
||
|
.elseif ((i & 3) == 3)
|
||
|
vpxor W, W_TMP1, W_TMP1
|
||
|
vpxor W_TMP2, W_TMP1, W
|
||
|
vpaddd K_XMM(K_BASE), W, W_TMP1
|
||
|
vmovdqu W_TMP1, WK(i&~3)
|
||
|
W_PRECALC_ROTATE
|
||
|
.endif
|
||
|
.endm
|
||
|
|
||
|
.macro W_PRECALC_32_79_AVX
|
||
|
.if ((i & 3) == 0)
|
||
|
vpalignr $8, W_minus_08, W_minus_04, W_TMP1
|
||
|
vpxor W_minus_28, W, W # W is W_minus_32 before xor
|
||
|
.elseif ((i & 3) == 1)
|
||
|
vpxor W_minus_16, W_TMP1, W_TMP1
|
||
|
vpxor W_TMP1, W, W
|
||
|
.elseif ((i & 3) == 2)
|
||
|
vpslld $2, W, W_TMP1
|
||
|
vpsrld $30, W, W
|
||
|
vpor W, W_TMP1, W
|
||
|
.elseif ((i & 3) == 3)
|
||
|
vpaddd K_XMM(K_BASE), W, W_TMP1
|
||
|
vmovdqu W_TMP1, WK(i&~3)
|
||
|
W_PRECALC_ROTATE
|
||
|
.endif
|
||
|
.endm
|
||
|
|
||
|
.endm // W_PRECALC_AVX
|
||
|
|
||
|
W_PRECALC_AVX
|
||
|
.purgem xmm_mov
|
||
|
.macro xmm_mov a, b
|
||
|
vmovdqu \a,\b
|
||
|
.endm
|
||
|
|
||
|
|
||
|
/* AVX optimized implementation:
|
||
|
* extern "C" void sha1_transform_avx(struct sha1_state *state,
|
||
|
* const u8 *data, int blocks);
|
||
|
*/
|
||
|
SHA1_VECTOR_ASM sha1_transform_avx
|