linux-zen-server/arch/x86/events/intel/lbr.c

1619 lines
41 KiB
C
Raw Permalink Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0
#include <linux/perf_event.h>
#include <linux/types.h>
#include <asm/perf_event.h>
#include <asm/msr.h>
#include "../perf_event.h"
/*
* Intel LBR_SELECT bits
* Intel Vol3a, April 2011, Section 16.7 Table 16-10
*
* Hardware branch filter (not available on all CPUs)
*/
#define LBR_KERNEL_BIT 0 /* do not capture at ring0 */
#define LBR_USER_BIT 1 /* do not capture at ring > 0 */
#define LBR_JCC_BIT 2 /* do not capture conditional branches */
#define LBR_REL_CALL_BIT 3 /* do not capture relative calls */
#define LBR_IND_CALL_BIT 4 /* do not capture indirect calls */
#define LBR_RETURN_BIT 5 /* do not capture near returns */
#define LBR_IND_JMP_BIT 6 /* do not capture indirect jumps */
#define LBR_REL_JMP_BIT 7 /* do not capture relative jumps */
#define LBR_FAR_BIT 8 /* do not capture far branches */
#define LBR_CALL_STACK_BIT 9 /* enable call stack */
/*
* Following bit only exists in Linux; we mask it out before writing it to
* the actual MSR. But it helps the constraint perf code to understand
* that this is a separate configuration.
*/
#define LBR_NO_INFO_BIT 63 /* don't read LBR_INFO. */
#define LBR_KERNEL (1 << LBR_KERNEL_BIT)
#define LBR_USER (1 << LBR_USER_BIT)
#define LBR_JCC (1 << LBR_JCC_BIT)
#define LBR_REL_CALL (1 << LBR_REL_CALL_BIT)
#define LBR_IND_CALL (1 << LBR_IND_CALL_BIT)
#define LBR_RETURN (1 << LBR_RETURN_BIT)
#define LBR_REL_JMP (1 << LBR_REL_JMP_BIT)
#define LBR_IND_JMP (1 << LBR_IND_JMP_BIT)
#define LBR_FAR (1 << LBR_FAR_BIT)
#define LBR_CALL_STACK (1 << LBR_CALL_STACK_BIT)
#define LBR_NO_INFO (1ULL << LBR_NO_INFO_BIT)
#define LBR_PLM (LBR_KERNEL | LBR_USER)
#define LBR_SEL_MASK 0x3ff /* valid bits in LBR_SELECT */
#define LBR_NOT_SUPP -1 /* LBR filter not supported */
#define LBR_IGN 0 /* ignored */
#define LBR_ANY \
(LBR_JCC |\
LBR_REL_CALL |\
LBR_IND_CALL |\
LBR_RETURN |\
LBR_REL_JMP |\
LBR_IND_JMP |\
LBR_FAR)
#define LBR_FROM_FLAG_MISPRED BIT_ULL(63)
#define LBR_FROM_FLAG_IN_TX BIT_ULL(62)
#define LBR_FROM_FLAG_ABORT BIT_ULL(61)
#define LBR_FROM_SIGNEXT_2MSB (BIT_ULL(60) | BIT_ULL(59))
/*
* Intel LBR_CTL bits
*
* Hardware branch filter for Arch LBR
*/
#define ARCH_LBR_KERNEL_BIT 1 /* capture at ring0 */
#define ARCH_LBR_USER_BIT 2 /* capture at ring > 0 */
#define ARCH_LBR_CALL_STACK_BIT 3 /* enable call stack */
#define ARCH_LBR_JCC_BIT 16 /* capture conditional branches */
#define ARCH_LBR_REL_JMP_BIT 17 /* capture relative jumps */
#define ARCH_LBR_IND_JMP_BIT 18 /* capture indirect jumps */
#define ARCH_LBR_REL_CALL_BIT 19 /* capture relative calls */
#define ARCH_LBR_IND_CALL_BIT 20 /* capture indirect calls */
#define ARCH_LBR_RETURN_BIT 21 /* capture near returns */
#define ARCH_LBR_OTHER_BRANCH_BIT 22 /* capture other branches */
#define ARCH_LBR_KERNEL (1ULL << ARCH_LBR_KERNEL_BIT)
#define ARCH_LBR_USER (1ULL << ARCH_LBR_USER_BIT)
#define ARCH_LBR_CALL_STACK (1ULL << ARCH_LBR_CALL_STACK_BIT)
#define ARCH_LBR_JCC (1ULL << ARCH_LBR_JCC_BIT)
#define ARCH_LBR_REL_JMP (1ULL << ARCH_LBR_REL_JMP_BIT)
#define ARCH_LBR_IND_JMP (1ULL << ARCH_LBR_IND_JMP_BIT)
#define ARCH_LBR_REL_CALL (1ULL << ARCH_LBR_REL_CALL_BIT)
#define ARCH_LBR_IND_CALL (1ULL << ARCH_LBR_IND_CALL_BIT)
#define ARCH_LBR_RETURN (1ULL << ARCH_LBR_RETURN_BIT)
#define ARCH_LBR_OTHER_BRANCH (1ULL << ARCH_LBR_OTHER_BRANCH_BIT)
#define ARCH_LBR_ANY \
(ARCH_LBR_JCC |\
ARCH_LBR_REL_JMP |\
ARCH_LBR_IND_JMP |\
ARCH_LBR_REL_CALL |\
ARCH_LBR_IND_CALL |\
ARCH_LBR_RETURN |\
ARCH_LBR_OTHER_BRANCH)
#define ARCH_LBR_CTL_MASK 0x7f000e
static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
static __always_inline bool is_lbr_call_stack_bit_set(u64 config)
{
if (static_cpu_has(X86_FEATURE_ARCH_LBR))
return !!(config & ARCH_LBR_CALL_STACK);
return !!(config & LBR_CALL_STACK);
}
/*
* We only support LBR implementations that have FREEZE_LBRS_ON_PMI
* otherwise it becomes near impossible to get a reliable stack.
*/
static void __intel_pmu_lbr_enable(bool pmi)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
u64 debugctl, lbr_select = 0, orig_debugctl;
/*
* No need to unfreeze manually, as v4 can do that as part
* of the GLOBAL_STATUS ack.
*/
if (pmi && x86_pmu.version >= 4)
return;
/*
* No need to reprogram LBR_SELECT in a PMI, as it
* did not change.
*/
if (cpuc->lbr_sel)
lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && !pmi && cpuc->lbr_sel)
wrmsrl(MSR_LBR_SELECT, lbr_select);
rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
orig_debugctl = debugctl;
if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
debugctl |= DEBUGCTLMSR_LBR;
/*
* LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
* If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
* may cause superfluous increase/decrease of LBR_TOS.
*/
if (is_lbr_call_stack_bit_set(lbr_select))
debugctl &= ~DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
else
debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
if (orig_debugctl != debugctl)
wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
if (static_cpu_has(X86_FEATURE_ARCH_LBR))
wrmsrl(MSR_ARCH_LBR_CTL, lbr_select | ARCH_LBR_CTL_LBREN);
}
void intel_pmu_lbr_reset_32(void)
{
int i;
for (i = 0; i < x86_pmu.lbr_nr; i++)
wrmsrl(x86_pmu.lbr_from + i, 0);
}
void intel_pmu_lbr_reset_64(void)
{
int i;
for (i = 0; i < x86_pmu.lbr_nr; i++) {
wrmsrl(x86_pmu.lbr_from + i, 0);
wrmsrl(x86_pmu.lbr_to + i, 0);
if (x86_pmu.lbr_has_info)
wrmsrl(x86_pmu.lbr_info + i, 0);
}
}
static void intel_pmu_arch_lbr_reset(void)
{
/* Write to ARCH_LBR_DEPTH MSR, all LBR entries are reset to 0 */
wrmsrl(MSR_ARCH_LBR_DEPTH, x86_pmu.lbr_nr);
}
void intel_pmu_lbr_reset(void)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
if (!x86_pmu.lbr_nr)
return;
x86_pmu.lbr_reset();
cpuc->last_task_ctx = NULL;
cpuc->last_log_id = 0;
if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && cpuc->lbr_select)
wrmsrl(MSR_LBR_SELECT, 0);
}
/*
* TOS = most recently recorded branch
*/
static inline u64 intel_pmu_lbr_tos(void)
{
u64 tos;
rdmsrl(x86_pmu.lbr_tos, tos);
return tos;
}
enum {
LBR_NONE,
LBR_VALID,
};
/*
* For format LBR_FORMAT_EIP_FLAGS2, bits 61:62 in MSR_LAST_BRANCH_FROM_x
* are the TSX flags when TSX is supported, but when TSX is not supported
* they have no consistent behavior:
*
* - For wrmsr(), bits 61:62 are considered part of the sign extension.
* - For HW updates (branch captures) bits 61:62 are always OFF and are not
* part of the sign extension.
*
* Therefore, if:
*
* 1) LBR format LBR_FORMAT_EIP_FLAGS2
* 2) CPU has no TSX support enabled
*
* ... then any value passed to wrmsr() must be sign extended to 63 bits and any
* value from rdmsr() must be converted to have a 61 bits sign extension,
* ignoring the TSX flags.
*/
static inline bool lbr_from_signext_quirk_needed(void)
{
bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) ||
boot_cpu_has(X86_FEATURE_RTM);
return !tsx_support;
}
static DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key);
/* If quirk is enabled, ensure sign extension is 63 bits: */
inline u64 lbr_from_signext_quirk_wr(u64 val)
{
if (static_branch_unlikely(&lbr_from_quirk_key)) {
/*
* Sign extend into bits 61:62 while preserving bit 63.
*
* Quirk is enabled when TSX is disabled. Therefore TSX bits
* in val are always OFF and must be changed to be sign
* extension bits. Since bits 59:60 are guaranteed to be
* part of the sign extension bits, we can just copy them
* to 61:62.
*/
val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2;
}
return val;
}
/*
* If quirk is needed, ensure sign extension is 61 bits:
*/
static u64 lbr_from_signext_quirk_rd(u64 val)
{
if (static_branch_unlikely(&lbr_from_quirk_key)) {
/*
* Quirk is on when TSX is not enabled. Therefore TSX
* flags must be read as OFF.
*/
val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT);
}
return val;
}
static __always_inline void wrlbr_from(unsigned int idx, u64 val)
{
val = lbr_from_signext_quirk_wr(val);
wrmsrl(x86_pmu.lbr_from + idx, val);
}
static __always_inline void wrlbr_to(unsigned int idx, u64 val)
{
wrmsrl(x86_pmu.lbr_to + idx, val);
}
static __always_inline void wrlbr_info(unsigned int idx, u64 val)
{
wrmsrl(x86_pmu.lbr_info + idx, val);
}
static __always_inline u64 rdlbr_from(unsigned int idx, struct lbr_entry *lbr)
{
u64 val;
if (lbr)
return lbr->from;
rdmsrl(x86_pmu.lbr_from + idx, val);
return lbr_from_signext_quirk_rd(val);
}
static __always_inline u64 rdlbr_to(unsigned int idx, struct lbr_entry *lbr)
{
u64 val;
if (lbr)
return lbr->to;
rdmsrl(x86_pmu.lbr_to + idx, val);
return val;
}
static __always_inline u64 rdlbr_info(unsigned int idx, struct lbr_entry *lbr)
{
u64 val;
if (lbr)
return lbr->info;
rdmsrl(x86_pmu.lbr_info + idx, val);
return val;
}
static inline void
wrlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info)
{
wrlbr_from(idx, lbr->from);
wrlbr_to(idx, lbr->to);
if (need_info)
wrlbr_info(idx, lbr->info);
}
static inline bool
rdlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info)
{
u64 from = rdlbr_from(idx, NULL);
/* Don't read invalid entry */
if (!from)
return false;
lbr->from = from;
lbr->to = rdlbr_to(idx, NULL);
if (need_info)
lbr->info = rdlbr_info(idx, NULL);
return true;
}
void intel_pmu_lbr_restore(void *ctx)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
struct x86_perf_task_context *task_ctx = ctx;
bool need_info = x86_pmu.lbr_has_info;
u64 tos = task_ctx->tos;
unsigned lbr_idx, mask;
int i;
mask = x86_pmu.lbr_nr - 1;
for (i = 0; i < task_ctx->valid_lbrs; i++) {
lbr_idx = (tos - i) & mask;
wrlbr_all(&task_ctx->lbr[i], lbr_idx, need_info);
}
for (; i < x86_pmu.lbr_nr; i++) {
lbr_idx = (tos - i) & mask;
wrlbr_from(lbr_idx, 0);
wrlbr_to(lbr_idx, 0);
if (need_info)
wrlbr_info(lbr_idx, 0);
}
wrmsrl(x86_pmu.lbr_tos, tos);
if (cpuc->lbr_select)
wrmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel);
}
static void intel_pmu_arch_lbr_restore(void *ctx)
{
struct x86_perf_task_context_arch_lbr *task_ctx = ctx;
struct lbr_entry *entries = task_ctx->entries;
int i;
/* Fast reset the LBRs before restore if the call stack is not full. */
if (!entries[x86_pmu.lbr_nr - 1].from)
intel_pmu_arch_lbr_reset();
for (i = 0; i < x86_pmu.lbr_nr; i++) {
if (!entries[i].from)
break;
wrlbr_all(&entries[i], i, true);
}
}
/*
* Restore the Architecture LBR state from the xsave area in the perf
* context data for the task via the XRSTORS instruction.
*/
static void intel_pmu_arch_lbr_xrstors(void *ctx)
{
struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx;
xrstors(&task_ctx->xsave, XFEATURE_MASK_LBR);
}
static __always_inline bool lbr_is_reset_in_cstate(void *ctx)
{
if (static_cpu_has(X86_FEATURE_ARCH_LBR))
return x86_pmu.lbr_deep_c_reset && !rdlbr_from(0, NULL);
return !rdlbr_from(((struct x86_perf_task_context *)ctx)->tos, NULL);
}
static void __intel_pmu_lbr_restore(void *ctx)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
if (task_context_opt(ctx)->lbr_callstack_users == 0 ||
task_context_opt(ctx)->lbr_stack_state == LBR_NONE) {
intel_pmu_lbr_reset();
return;
}
/*
* Does not restore the LBR registers, if
* - No one else touched them, and
* - Was not cleared in Cstate
*/
if ((ctx == cpuc->last_task_ctx) &&
(task_context_opt(ctx)->log_id == cpuc->last_log_id) &&
!lbr_is_reset_in_cstate(ctx)) {
task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
return;
}
x86_pmu.lbr_restore(ctx);
task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
}
void intel_pmu_lbr_save(void *ctx)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
struct x86_perf_task_context *task_ctx = ctx;
bool need_info = x86_pmu.lbr_has_info;
unsigned lbr_idx, mask;
u64 tos;
int i;
mask = x86_pmu.lbr_nr - 1;
tos = intel_pmu_lbr_tos();
for (i = 0; i < x86_pmu.lbr_nr; i++) {
lbr_idx = (tos - i) & mask;
if (!rdlbr_all(&task_ctx->lbr[i], lbr_idx, need_info))
break;
}
task_ctx->valid_lbrs = i;
task_ctx->tos = tos;
if (cpuc->lbr_select)
rdmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel);
}
static void intel_pmu_arch_lbr_save(void *ctx)
{
struct x86_perf_task_context_arch_lbr *task_ctx = ctx;
struct lbr_entry *entries = task_ctx->entries;
int i;
for (i = 0; i < x86_pmu.lbr_nr; i++) {
if (!rdlbr_all(&entries[i], i, true))
break;
}
/* LBR call stack is not full. Reset is required in restore. */
if (i < x86_pmu.lbr_nr)
entries[x86_pmu.lbr_nr - 1].from = 0;
}
/*
* Save the Architecture LBR state to the xsave area in the perf
* context data for the task via the XSAVES instruction.
*/
static void intel_pmu_arch_lbr_xsaves(void *ctx)
{
struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx;
xsaves(&task_ctx->xsave, XFEATURE_MASK_LBR);
}
static void __intel_pmu_lbr_save(void *ctx)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
if (task_context_opt(ctx)->lbr_callstack_users == 0) {
task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
return;
}
x86_pmu.lbr_save(ctx);
task_context_opt(ctx)->lbr_stack_state = LBR_VALID;
cpuc->last_task_ctx = ctx;
cpuc->last_log_id = ++task_context_opt(ctx)->log_id;
}
void intel_pmu_lbr_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
struct perf_event_pmu_context *next_epc)
{
void *prev_ctx_data, *next_ctx_data;
swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
/*
* Architecture specific synchronization makes sense in case
* both prev_epc->task_ctx_data and next_epc->task_ctx_data
* pointers are allocated.
*/
prev_ctx_data = next_epc->task_ctx_data;
next_ctx_data = prev_epc->task_ctx_data;
if (!prev_ctx_data || !next_ctx_data)
return;
swap(task_context_opt(prev_ctx_data)->lbr_callstack_users,
task_context_opt(next_ctx_data)->lbr_callstack_users);
}
void intel_pmu_lbr_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
void *task_ctx;
if (!cpuc->lbr_users)
return;
/*
* If LBR callstack feature is enabled and the stack was saved when
* the task was scheduled out, restore the stack. Otherwise flush
* the LBR stack.
*/
task_ctx = pmu_ctx ? pmu_ctx->task_ctx_data : NULL;
if (task_ctx) {
if (sched_in)
__intel_pmu_lbr_restore(task_ctx);
else
__intel_pmu_lbr_save(task_ctx);
return;
}
/*
* Since a context switch can flip the address space and LBR entries
* are not tagged with an identifier, we need to wipe the LBR, even for
* per-cpu events. You simply cannot resolve the branches from the old
* address space.
*/
if (sched_in)
intel_pmu_lbr_reset();
}
static inline bool branch_user_callstack(unsigned br_sel)
{
return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
}
void intel_pmu_lbr_add(struct perf_event *event)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
if (!x86_pmu.lbr_nr)
return;
if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT)
cpuc->lbr_select = 1;
cpuc->br_sel = event->hw.branch_reg.reg;
if (branch_user_callstack(cpuc->br_sel) && event->pmu_ctx->task_ctx_data)
task_context_opt(event->pmu_ctx->task_ctx_data)->lbr_callstack_users++;
/*
* Request pmu::sched_task() callback, which will fire inside the
* regular perf event scheduling, so that call will:
*
* - restore or wipe; when LBR-callstack,
* - wipe; otherwise,
*
* when this is from __perf_event_task_sched_in().
*
* However, if this is from perf_install_in_context(), no such callback
* will follow and we'll need to reset the LBR here if this is the
* first LBR event.
*
* The problem is, we cannot tell these cases apart... but we can
* exclude the biggest chunk of cases by looking at
* event->total_time_running. An event that has accrued runtime cannot
* be 'new'. Conversely, a new event can get installed through the
* context switch path for the first time.
*/
if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
cpuc->lbr_pebs_users++;
perf_sched_cb_inc(event->pmu);
if (!cpuc->lbr_users++ && !event->total_time_running)
intel_pmu_lbr_reset();
}
void release_lbr_buffers(void)
{
struct kmem_cache *kmem_cache;
struct cpu_hw_events *cpuc;
int cpu;
if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
return;
for_each_possible_cpu(cpu) {
cpuc = per_cpu_ptr(&cpu_hw_events, cpu);
kmem_cache = x86_get_pmu(cpu)->task_ctx_cache;
if (kmem_cache && cpuc->lbr_xsave) {
kmem_cache_free(kmem_cache, cpuc->lbr_xsave);
cpuc->lbr_xsave = NULL;
}
}
}
void reserve_lbr_buffers(void)
{
struct kmem_cache *kmem_cache;
struct cpu_hw_events *cpuc;
int cpu;
if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
return;
for_each_possible_cpu(cpu) {
cpuc = per_cpu_ptr(&cpu_hw_events, cpu);
kmem_cache = x86_get_pmu(cpu)->task_ctx_cache;
if (!kmem_cache || cpuc->lbr_xsave)
continue;
cpuc->lbr_xsave = kmem_cache_alloc_node(kmem_cache,
GFP_KERNEL | __GFP_ZERO,
cpu_to_node(cpu));
}
}
void intel_pmu_lbr_del(struct perf_event *event)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
if (!x86_pmu.lbr_nr)
return;
if (branch_user_callstack(cpuc->br_sel) &&
event->pmu_ctx->task_ctx_data)
task_context_opt(event->pmu_ctx->task_ctx_data)->lbr_callstack_users--;
if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT)
cpuc->lbr_select = 0;
if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
cpuc->lbr_pebs_users--;
cpuc->lbr_users--;
WARN_ON_ONCE(cpuc->lbr_users < 0);
WARN_ON_ONCE(cpuc->lbr_pebs_users < 0);
perf_sched_cb_dec(event->pmu);
}
static inline bool vlbr_exclude_host(void)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
return test_bit(INTEL_PMC_IDX_FIXED_VLBR,
(unsigned long *)&cpuc->intel_ctrl_guest_mask);
}
void intel_pmu_lbr_enable_all(bool pmi)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
if (cpuc->lbr_users && !vlbr_exclude_host())
__intel_pmu_lbr_enable(pmi);
}
void intel_pmu_lbr_disable_all(void)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
if (cpuc->lbr_users && !vlbr_exclude_host()) {
if (static_cpu_has(X86_FEATURE_ARCH_LBR))
return __intel_pmu_arch_lbr_disable();
__intel_pmu_lbr_disable();
}
}
void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
{
unsigned long mask = x86_pmu.lbr_nr - 1;
struct perf_branch_entry *br = cpuc->lbr_entries;
u64 tos = intel_pmu_lbr_tos();
int i;
for (i = 0; i < x86_pmu.lbr_nr; i++) {
unsigned long lbr_idx = (tos - i) & mask;
union {
struct {
u32 from;
u32 to;
};
u64 lbr;
} msr_lastbranch;
rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
perf_clear_branch_entry_bitfields(br);
br->from = msr_lastbranch.from;
br->to = msr_lastbranch.to;
br++;
}
cpuc->lbr_stack.nr = i;
cpuc->lbr_stack.hw_idx = tos;
}
/*
* Due to lack of segmentation in Linux the effective address (offset)
* is the same as the linear address, allowing us to merge the LIP and EIP
* LBR formats.
*/
void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
{
bool need_info = false, call_stack = false;
unsigned long mask = x86_pmu.lbr_nr - 1;
struct perf_branch_entry *br = cpuc->lbr_entries;
u64 tos = intel_pmu_lbr_tos();
int i;
int out = 0;
int num = x86_pmu.lbr_nr;
if (cpuc->lbr_sel) {
need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
if (cpuc->lbr_sel->config & LBR_CALL_STACK)
call_stack = true;
}
for (i = 0; i < num; i++) {
unsigned long lbr_idx = (tos - i) & mask;
u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
u16 cycles = 0;
from = rdlbr_from(lbr_idx, NULL);
to = rdlbr_to(lbr_idx, NULL);
/*
* Read LBR call stack entries
* until invalid entry (0s) is detected.
*/
if (call_stack && !from)
break;
if (x86_pmu.lbr_has_info) {
if (need_info) {
u64 info;
info = rdlbr_info(lbr_idx, NULL);
mis = !!(info & LBR_INFO_MISPRED);
pred = !mis;
cycles = (info & LBR_INFO_CYCLES);
if (x86_pmu.lbr_has_tsx) {
in_tx = !!(info & LBR_INFO_IN_TX);
abort = !!(info & LBR_INFO_ABORT);
}
}
} else {
int skip = 0;
if (x86_pmu.lbr_from_flags) {
mis = !!(from & LBR_FROM_FLAG_MISPRED);
pred = !mis;
skip = 1;
}
if (x86_pmu.lbr_has_tsx) {
in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
abort = !!(from & LBR_FROM_FLAG_ABORT);
skip = 3;
}
from = (u64)((((s64)from) << skip) >> skip);
if (x86_pmu.lbr_to_cycles) {
cycles = ((to >> 48) & LBR_INFO_CYCLES);
to = (u64)((((s64)to) << 16) >> 16);
}
}
/*
* Some CPUs report duplicated abort records,
* with the second entry not having an abort bit set.
* Skip them here. This loop runs backwards,
* so we need to undo the previous record.
* If the abort just happened outside the window
* the extra entry cannot be removed.
*/
if (abort && x86_pmu.lbr_double_abort && out > 0)
out--;
perf_clear_branch_entry_bitfields(br+out);
br[out].from = from;
br[out].to = to;
br[out].mispred = mis;
br[out].predicted = pred;
br[out].in_tx = in_tx;
br[out].abort = abort;
br[out].cycles = cycles;
out++;
}
cpuc->lbr_stack.nr = out;
cpuc->lbr_stack.hw_idx = tos;
}
static DEFINE_STATIC_KEY_FALSE(x86_lbr_mispred);
static DEFINE_STATIC_KEY_FALSE(x86_lbr_cycles);
static DEFINE_STATIC_KEY_FALSE(x86_lbr_type);
static __always_inline int get_lbr_br_type(u64 info)
{
int type = 0;
if (static_branch_likely(&x86_lbr_type))
type = (info & LBR_INFO_BR_TYPE) >> LBR_INFO_BR_TYPE_OFFSET;
return type;
}
static __always_inline bool get_lbr_mispred(u64 info)
{
bool mispred = 0;
if (static_branch_likely(&x86_lbr_mispred))
mispred = !!(info & LBR_INFO_MISPRED);
return mispred;
}
static __always_inline u16 get_lbr_cycles(u64 info)
{
u16 cycles = info & LBR_INFO_CYCLES;
if (static_cpu_has(X86_FEATURE_ARCH_LBR) &&
(!static_branch_likely(&x86_lbr_cycles) ||
!(info & LBR_INFO_CYC_CNT_VALID)))
cycles = 0;
return cycles;
}
static void intel_pmu_store_lbr(struct cpu_hw_events *cpuc,
struct lbr_entry *entries)
{
struct perf_branch_entry *e;
struct lbr_entry *lbr;
u64 from, to, info;
int i;
for (i = 0; i < x86_pmu.lbr_nr; i++) {
lbr = entries ? &entries[i] : NULL;
e = &cpuc->lbr_entries[i];
from = rdlbr_from(i, lbr);
/*
* Read LBR entries until invalid entry (0s) is detected.
*/
if (!from)
break;
to = rdlbr_to(i, lbr);
info = rdlbr_info(i, lbr);
perf_clear_branch_entry_bitfields(e);
e->from = from;
e->to = to;
e->mispred = get_lbr_mispred(info);
e->predicted = !e->mispred;
e->in_tx = !!(info & LBR_INFO_IN_TX);
e->abort = !!(info & LBR_INFO_ABORT);
e->cycles = get_lbr_cycles(info);
e->type = get_lbr_br_type(info);
}
cpuc->lbr_stack.nr = i;
}
static void intel_pmu_arch_lbr_read(struct cpu_hw_events *cpuc)
{
intel_pmu_store_lbr(cpuc, NULL);
}
static void intel_pmu_arch_lbr_read_xsave(struct cpu_hw_events *cpuc)
{
struct x86_perf_task_context_arch_lbr_xsave *xsave = cpuc->lbr_xsave;
if (!xsave) {
intel_pmu_store_lbr(cpuc, NULL);
return;
}
xsaves(&xsave->xsave, XFEATURE_MASK_LBR);
intel_pmu_store_lbr(cpuc, xsave->lbr.entries);
}
void intel_pmu_lbr_read(void)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
/*
* Don't read when all LBRs users are using adaptive PEBS.
*
* This could be smarter and actually check the event,
* but this simple approach seems to work for now.
*/
if (!cpuc->lbr_users || vlbr_exclude_host() ||
cpuc->lbr_users == cpuc->lbr_pebs_users)
return;
x86_pmu.lbr_read(cpuc);
intel_pmu_lbr_filter(cpuc);
}
/*
* SW filter is used:
* - in case there is no HW filter
* - in case the HW filter has errata or limitations
*/
static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
{
u64 br_type = event->attr.branch_sample_type;
int mask = 0;
if (br_type & PERF_SAMPLE_BRANCH_USER)
mask |= X86_BR_USER;
if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
mask |= X86_BR_KERNEL;
/* we ignore BRANCH_HV here */
if (br_type & PERF_SAMPLE_BRANCH_ANY)
mask |= X86_BR_ANY;
if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
mask |= X86_BR_ANY_CALL;
if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
mask |= X86_BR_IND_CALL;
if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
mask |= X86_BR_ABORT;
if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
mask |= X86_BR_IN_TX;
if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
mask |= X86_BR_NO_TX;
if (br_type & PERF_SAMPLE_BRANCH_COND)
mask |= X86_BR_JCC;
if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
if (!x86_pmu_has_lbr_callstack())
return -EOPNOTSUPP;
if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
return -EINVAL;
mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
X86_BR_CALL_STACK;
}
if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
mask |= X86_BR_IND_JMP;
if (br_type & PERF_SAMPLE_BRANCH_CALL)
mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
if (br_type & PERF_SAMPLE_BRANCH_TYPE_SAVE)
mask |= X86_BR_TYPE_SAVE;
/*
* stash actual user request into reg, it may
* be used by fixup code for some CPU
*/
event->hw.branch_reg.reg = mask;
return 0;
}
/*
* setup the HW LBR filter
* Used only when available, may not be enough to disambiguate
* all branches, may need the help of the SW filter
*/
static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
{
struct hw_perf_event_extra *reg;
u64 br_type = event->attr.branch_sample_type;
u64 mask = 0, v;
int i;
for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
if (!(br_type & (1ULL << i)))
continue;
v = x86_pmu.lbr_sel_map[i];
if (v == LBR_NOT_SUPP)
return -EOPNOTSUPP;
if (v != LBR_IGN)
mask |= v;
}
reg = &event->hw.branch_reg;
reg->idx = EXTRA_REG_LBR;
if (static_cpu_has(X86_FEATURE_ARCH_LBR)) {
reg->config = mask;
/*
* The Arch LBR HW can retrieve the common branch types
* from the LBR_INFO. It doesn't require the high overhead
* SW disassemble.
* Enable the branch type by default for the Arch LBR.
*/
reg->reg |= X86_BR_TYPE_SAVE;
return 0;
}
/*
* The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
* in suppress mode. So LBR_SELECT should be set to
* (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
* But the 10th bit LBR_CALL_STACK does not operate
* in suppress mode.
*/
reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
(br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
x86_pmu.lbr_has_info)
reg->config |= LBR_NO_INFO;
return 0;
}
int intel_pmu_setup_lbr_filter(struct perf_event *event)
{
int ret = 0;
/*
* no LBR on this PMU
*/
if (!x86_pmu.lbr_nr)
return -EOPNOTSUPP;
/*
* setup SW LBR filter
*/
ret = intel_pmu_setup_sw_lbr_filter(event);
if (ret)
return ret;
/*
* setup HW LBR filter, if any
*/
if (x86_pmu.lbr_sel_map)
ret = intel_pmu_setup_hw_lbr_filter(event);
return ret;
}
enum {
ARCH_LBR_BR_TYPE_JCC = 0,
ARCH_LBR_BR_TYPE_NEAR_IND_JMP = 1,
ARCH_LBR_BR_TYPE_NEAR_REL_JMP = 2,
ARCH_LBR_BR_TYPE_NEAR_IND_CALL = 3,
ARCH_LBR_BR_TYPE_NEAR_REL_CALL = 4,
ARCH_LBR_BR_TYPE_NEAR_RET = 5,
ARCH_LBR_BR_TYPE_KNOWN_MAX = ARCH_LBR_BR_TYPE_NEAR_RET,
ARCH_LBR_BR_TYPE_MAP_MAX = 16,
};
static const int arch_lbr_br_type_map[ARCH_LBR_BR_TYPE_MAP_MAX] = {
[ARCH_LBR_BR_TYPE_JCC] = X86_BR_JCC,
[ARCH_LBR_BR_TYPE_NEAR_IND_JMP] = X86_BR_IND_JMP,
[ARCH_LBR_BR_TYPE_NEAR_REL_JMP] = X86_BR_JMP,
[ARCH_LBR_BR_TYPE_NEAR_IND_CALL] = X86_BR_IND_CALL,
[ARCH_LBR_BR_TYPE_NEAR_REL_CALL] = X86_BR_CALL,
[ARCH_LBR_BR_TYPE_NEAR_RET] = X86_BR_RET,
};
/*
* implement actual branch filter based on user demand.
* Hardware may not exactly satisfy that request, thus
* we need to inspect opcodes. Mismatched branches are
* discarded. Therefore, the number of branches returned
* in PERF_SAMPLE_BRANCH_STACK sample may vary.
*/
static void
intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
{
u64 from, to;
int br_sel = cpuc->br_sel;
int i, j, type, to_plm;
bool compress = false;
/* if sampling all branches, then nothing to filter */
if (((br_sel & X86_BR_ALL) == X86_BR_ALL) &&
((br_sel & X86_BR_TYPE_SAVE) != X86_BR_TYPE_SAVE))
return;
for (i = 0; i < cpuc->lbr_stack.nr; i++) {
from = cpuc->lbr_entries[i].from;
to = cpuc->lbr_entries[i].to;
type = cpuc->lbr_entries[i].type;
/*
* Parse the branch type recorded in LBR_x_INFO MSR.
* Doesn't support OTHER_BRANCH decoding for now.
* OTHER_BRANCH branch type still rely on software decoding.
*/
if (static_cpu_has(X86_FEATURE_ARCH_LBR) &&
type <= ARCH_LBR_BR_TYPE_KNOWN_MAX) {
to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
type = arch_lbr_br_type_map[type] | to_plm;
} else
type = branch_type(from, to, cpuc->lbr_entries[i].abort);
if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
if (cpuc->lbr_entries[i].in_tx)
type |= X86_BR_IN_TX;
else
type |= X86_BR_NO_TX;
}
/* if type does not correspond, then discard */
if (type == X86_BR_NONE || (br_sel & type) != type) {
cpuc->lbr_entries[i].from = 0;
compress = true;
}
if ((br_sel & X86_BR_TYPE_SAVE) == X86_BR_TYPE_SAVE)
cpuc->lbr_entries[i].type = common_branch_type(type);
}
if (!compress)
return;
/* remove all entries with from=0 */
for (i = 0; i < cpuc->lbr_stack.nr; ) {
if (!cpuc->lbr_entries[i].from) {
j = i;
while (++j < cpuc->lbr_stack.nr)
cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
cpuc->lbr_stack.nr--;
if (!cpuc->lbr_entries[i].from)
continue;
}
i++;
}
}
void intel_pmu_store_pebs_lbrs(struct lbr_entry *lbr)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
/* Cannot get TOS for large PEBS and Arch LBR */
if (static_cpu_has(X86_FEATURE_ARCH_LBR) ||
(cpuc->n_pebs == cpuc->n_large_pebs))
cpuc->lbr_stack.hw_idx = -1ULL;
else
cpuc->lbr_stack.hw_idx = intel_pmu_lbr_tos();
intel_pmu_store_lbr(cpuc, lbr);
intel_pmu_lbr_filter(cpuc);
}
/*
* Map interface branch filters onto LBR filters
*/
static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
[PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_REL_JMP
| LBR_IND_JMP | LBR_FAR,
/*
* NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
*/
[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
/*
* NHM/WSM erratum: must include IND_JMP to capture IND_CALL
*/
[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
};
static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
[PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
| LBR_FAR,
[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
[PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
};
static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
[PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
| LBR_FAR,
[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
| LBR_RETURN | LBR_CALL_STACK,
[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
[PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
};
static int arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
[PERF_SAMPLE_BRANCH_ANY_SHIFT] = ARCH_LBR_ANY,
[PERF_SAMPLE_BRANCH_USER_SHIFT] = ARCH_LBR_USER,
[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = ARCH_LBR_KERNEL,
[PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = ARCH_LBR_RETURN |
ARCH_LBR_OTHER_BRANCH,
[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = ARCH_LBR_REL_CALL |
ARCH_LBR_IND_CALL |
ARCH_LBR_OTHER_BRANCH,
[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = ARCH_LBR_IND_CALL,
[PERF_SAMPLE_BRANCH_COND_SHIFT] = ARCH_LBR_JCC,
[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = ARCH_LBR_REL_CALL |
ARCH_LBR_IND_CALL |
ARCH_LBR_RETURN |
ARCH_LBR_CALL_STACK,
[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = ARCH_LBR_IND_JMP,
[PERF_SAMPLE_BRANCH_CALL_SHIFT] = ARCH_LBR_REL_CALL,
};
/* core */
void __init intel_pmu_lbr_init_core(void)
{
x86_pmu.lbr_nr = 4;
x86_pmu.lbr_tos = MSR_LBR_TOS;
x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
x86_pmu.lbr_to = MSR_LBR_CORE_TO;
/*
* SW branch filter usage:
* - compensate for lack of HW filter
*/
}
/* nehalem/westmere */
void __init intel_pmu_lbr_init_nhm(void)
{
x86_pmu.lbr_nr = 16;
x86_pmu.lbr_tos = MSR_LBR_TOS;
x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
x86_pmu.lbr_to = MSR_LBR_NHM_TO;
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
/*
* SW branch filter usage:
* - workaround LBR_SEL errata (see above)
* - support syscall, sysret capture.
* That requires LBR_FAR but that means far
* jmp need to be filtered out
*/
}
/* sandy bridge */
void __init intel_pmu_lbr_init_snb(void)
{
x86_pmu.lbr_nr = 16;
x86_pmu.lbr_tos = MSR_LBR_TOS;
x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
x86_pmu.lbr_to = MSR_LBR_NHM_TO;
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
x86_pmu.lbr_sel_map = snb_lbr_sel_map;
/*
* SW branch filter usage:
* - support syscall, sysret capture.
* That requires LBR_FAR but that means far
* jmp need to be filtered out
*/
}
static inline struct kmem_cache *
create_lbr_kmem_cache(size_t size, size_t align)
{
return kmem_cache_create("x86_lbr", size, align, 0, NULL);
}
/* haswell */
void intel_pmu_lbr_init_hsw(void)
{
size_t size = sizeof(struct x86_perf_task_context);
x86_pmu.lbr_nr = 16;
x86_pmu.lbr_tos = MSR_LBR_TOS;
x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
x86_pmu.lbr_to = MSR_LBR_NHM_TO;
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
x86_get_pmu(smp_processor_id())->task_ctx_cache = create_lbr_kmem_cache(size, 0);
}
/* skylake */
__init void intel_pmu_lbr_init_skl(void)
{
size_t size = sizeof(struct x86_perf_task_context);
x86_pmu.lbr_nr = 32;
x86_pmu.lbr_tos = MSR_LBR_TOS;
x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
x86_pmu.lbr_to = MSR_LBR_NHM_TO;
x86_pmu.lbr_info = MSR_LBR_INFO_0;
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
x86_get_pmu(smp_processor_id())->task_ctx_cache = create_lbr_kmem_cache(size, 0);
/*
* SW branch filter usage:
* - support syscall, sysret capture.
* That requires LBR_FAR but that means far
* jmp need to be filtered out
*/
}
/* atom */
void __init intel_pmu_lbr_init_atom(void)
{
/*
* only models starting at stepping 10 seems
* to have an operational LBR which can freeze
* on PMU interrupt
*/
if (boot_cpu_data.x86_model == 28
&& boot_cpu_data.x86_stepping < 10) {
pr_cont("LBR disabled due to erratum");
return;
}
x86_pmu.lbr_nr = 8;
x86_pmu.lbr_tos = MSR_LBR_TOS;
x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
x86_pmu.lbr_to = MSR_LBR_CORE_TO;
/*
* SW branch filter usage:
* - compensate for lack of HW filter
*/
}
/* slm */
void __init intel_pmu_lbr_init_slm(void)
{
x86_pmu.lbr_nr = 8;
x86_pmu.lbr_tos = MSR_LBR_TOS;
x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
x86_pmu.lbr_to = MSR_LBR_CORE_TO;
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
/*
* SW branch filter usage:
* - compensate for lack of HW filter
*/
pr_cont("8-deep LBR, ");
}
/* Knights Landing */
void intel_pmu_lbr_init_knl(void)
{
x86_pmu.lbr_nr = 8;
x86_pmu.lbr_tos = MSR_LBR_TOS;
x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
x86_pmu.lbr_to = MSR_LBR_NHM_TO;
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
x86_pmu.lbr_sel_map = snb_lbr_sel_map;
/* Knights Landing does have MISPREDICT bit */
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_LIP)
x86_pmu.intel_cap.lbr_format = LBR_FORMAT_EIP_FLAGS;
}
void intel_pmu_lbr_init(void)
{
switch (x86_pmu.intel_cap.lbr_format) {
case LBR_FORMAT_EIP_FLAGS2:
x86_pmu.lbr_has_tsx = 1;
x86_pmu.lbr_from_flags = 1;
if (lbr_from_signext_quirk_needed())
static_branch_enable(&lbr_from_quirk_key);
break;
case LBR_FORMAT_EIP_FLAGS:
x86_pmu.lbr_from_flags = 1;
break;
case LBR_FORMAT_INFO:
x86_pmu.lbr_has_tsx = 1;
fallthrough;
case LBR_FORMAT_INFO2:
x86_pmu.lbr_has_info = 1;
break;
case LBR_FORMAT_TIME:
x86_pmu.lbr_from_flags = 1;
x86_pmu.lbr_to_cycles = 1;
break;
}
if (x86_pmu.lbr_has_info) {
/*
* Only used in combination with baseline pebs.
*/
static_branch_enable(&x86_lbr_mispred);
static_branch_enable(&x86_lbr_cycles);
}
}
/*
* LBR state size is variable based on the max number of registers.
* This calculates the expected state size, which should match
* what the hardware enumerates for the size of XFEATURE_LBR.
*/
static inline unsigned int get_lbr_state_size(void)
{
return sizeof(struct arch_lbr_state) +
x86_pmu.lbr_nr * sizeof(struct lbr_entry);
}
static bool is_arch_lbr_xsave_available(void)
{
if (!boot_cpu_has(X86_FEATURE_XSAVES))
return false;
/*
* Check the LBR state with the corresponding software structure.
* Disable LBR XSAVES support if the size doesn't match.
*/
if (xfeature_size(XFEATURE_LBR) == 0)
return false;
if (WARN_ON(xfeature_size(XFEATURE_LBR) != get_lbr_state_size()))
return false;
return true;
}
void __init intel_pmu_arch_lbr_init(void)
{
struct pmu *pmu = x86_get_pmu(smp_processor_id());
union cpuid28_eax eax;
union cpuid28_ebx ebx;
union cpuid28_ecx ecx;
unsigned int unused_edx;
bool arch_lbr_xsave;
size_t size;
u64 lbr_nr;
/* Arch LBR Capabilities */
cpuid(28, &eax.full, &ebx.full, &ecx.full, &unused_edx);
lbr_nr = fls(eax.split.lbr_depth_mask) * 8;
if (!lbr_nr)
goto clear_arch_lbr;
/* Apply the max depth of Arch LBR */
if (wrmsrl_safe(MSR_ARCH_LBR_DEPTH, lbr_nr))
goto clear_arch_lbr;
x86_pmu.lbr_depth_mask = eax.split.lbr_depth_mask;
x86_pmu.lbr_deep_c_reset = eax.split.lbr_deep_c_reset;
x86_pmu.lbr_lip = eax.split.lbr_lip;
x86_pmu.lbr_cpl = ebx.split.lbr_cpl;
x86_pmu.lbr_filter = ebx.split.lbr_filter;
x86_pmu.lbr_call_stack = ebx.split.lbr_call_stack;
x86_pmu.lbr_mispred = ecx.split.lbr_mispred;
x86_pmu.lbr_timed_lbr = ecx.split.lbr_timed_lbr;
x86_pmu.lbr_br_type = ecx.split.lbr_br_type;
x86_pmu.lbr_nr = lbr_nr;
if (x86_pmu.lbr_mispred)
static_branch_enable(&x86_lbr_mispred);
if (x86_pmu.lbr_timed_lbr)
static_branch_enable(&x86_lbr_cycles);
if (x86_pmu.lbr_br_type)
static_branch_enable(&x86_lbr_type);
arch_lbr_xsave = is_arch_lbr_xsave_available();
if (arch_lbr_xsave) {
size = sizeof(struct x86_perf_task_context_arch_lbr_xsave) +
get_lbr_state_size();
pmu->task_ctx_cache = create_lbr_kmem_cache(size,
XSAVE_ALIGNMENT);
}
if (!pmu->task_ctx_cache) {
arch_lbr_xsave = false;
size = sizeof(struct x86_perf_task_context_arch_lbr) +
lbr_nr * sizeof(struct lbr_entry);
pmu->task_ctx_cache = create_lbr_kmem_cache(size, 0);
}
x86_pmu.lbr_from = MSR_ARCH_LBR_FROM_0;
x86_pmu.lbr_to = MSR_ARCH_LBR_TO_0;
x86_pmu.lbr_info = MSR_ARCH_LBR_INFO_0;
/* LBR callstack requires both CPL and Branch Filtering support */
if (!x86_pmu.lbr_cpl ||
!x86_pmu.lbr_filter ||
!x86_pmu.lbr_call_stack)
arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_NOT_SUPP;
if (!x86_pmu.lbr_cpl) {
arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_NOT_SUPP;
arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_NOT_SUPP;
} else if (!x86_pmu.lbr_filter) {
arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_NOT_SUPP;
arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_NOT_SUPP;
arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_NOT_SUPP;
arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_NOT_SUPP;
arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_NOT_SUPP;
arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_NOT_SUPP;
arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_NOT_SUPP;
}
x86_pmu.lbr_ctl_mask = ARCH_LBR_CTL_MASK;
x86_pmu.lbr_ctl_map = arch_lbr_ctl_map;
if (!x86_pmu.lbr_cpl && !x86_pmu.lbr_filter)
x86_pmu.lbr_ctl_map = NULL;
x86_pmu.lbr_reset = intel_pmu_arch_lbr_reset;
if (arch_lbr_xsave) {
x86_pmu.lbr_save = intel_pmu_arch_lbr_xsaves;
x86_pmu.lbr_restore = intel_pmu_arch_lbr_xrstors;
x86_pmu.lbr_read = intel_pmu_arch_lbr_read_xsave;
pr_cont("XSAVE ");
} else {
x86_pmu.lbr_save = intel_pmu_arch_lbr_save;
x86_pmu.lbr_restore = intel_pmu_arch_lbr_restore;
x86_pmu.lbr_read = intel_pmu_arch_lbr_read;
}
pr_cont("Architectural LBR, ");
return;
clear_arch_lbr:
setup_clear_cpu_cap(X86_FEATURE_ARCH_LBR);
}
/**
* x86_perf_get_lbr - get the LBR records information
*
* @lbr: the caller's memory to store the LBR records information
*/
void x86_perf_get_lbr(struct x86_pmu_lbr *lbr)
{
lbr->nr = x86_pmu.lbr_nr;
lbr->from = x86_pmu.lbr_from;
lbr->to = x86_pmu.lbr_to;
lbr->info = x86_pmu.lbr_info;
}
EXPORT_SYMBOL_GPL(x86_perf_get_lbr);
struct event_constraint vlbr_constraint =
__EVENT_CONSTRAINT(INTEL_FIXED_VLBR_EVENT, (1ULL << INTEL_PMC_IDX_FIXED_VLBR),
FIXED_EVENT_FLAGS, 1, 0, PERF_X86_EVENT_LBR_SELECT);