linux-zen-server/arch/x86/include/asm/set_memory.h

93 lines
3.8 KiB
C
Raw Permalink Normal View History

2023-08-30 17:53:23 +02:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_X86_SET_MEMORY_H
#define _ASM_X86_SET_MEMORY_H
#include <linux/mm.h>
#include <asm/page.h>
#include <asm-generic/set_memory.h>
#define set_memory_rox set_memory_rox
int set_memory_rox(unsigned long addr, int numpages);
/*
* The set_memory_* API can be used to change various attributes of a virtual
* address range. The attributes include:
* Cacheability : UnCached, WriteCombining, WriteThrough, WriteBack
* Executability : eXecutable, NoteXecutable
* Read/Write : ReadOnly, ReadWrite
* Presence : NotPresent
* Encryption : Encrypted, Decrypted
*
* Within a category, the attributes are mutually exclusive.
*
* The implementation of this API will take care of various aspects that
* are associated with changing such attributes, such as:
* - Flushing TLBs
* - Flushing CPU caches
* - Making sure aliases of the memory behind the mapping don't violate
* coherency rules as defined by the CPU in the system.
*
* What this API does not do:
* - Provide exclusion between various callers - including callers that
* operation on other mappings of the same physical page
* - Restore default attributes when a page is freed
* - Guarantee that mappings other than the requested one are
* in any state, other than that these do not violate rules for
* the CPU you have. Do not depend on any effects on other mappings,
* CPUs other than the one you have may have more relaxed rules.
* The caller is required to take care of these.
*/
int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot);
int _set_memory_uc(unsigned long addr, int numpages);
int _set_memory_wc(unsigned long addr, int numpages);
int _set_memory_wt(unsigned long addr, int numpages);
int _set_memory_wb(unsigned long addr, int numpages);
int set_memory_uc(unsigned long addr, int numpages);
int set_memory_wc(unsigned long addr, int numpages);
int set_memory_wb(unsigned long addr, int numpages);
int set_memory_np(unsigned long addr, int numpages);
int set_memory_4k(unsigned long addr, int numpages);
int set_memory_encrypted(unsigned long addr, int numpages);
int set_memory_decrypted(unsigned long addr, int numpages);
int set_memory_np_noalias(unsigned long addr, int numpages);
int set_memory_nonglobal(unsigned long addr, int numpages);
int set_memory_global(unsigned long addr, int numpages);
int set_pages_array_uc(struct page **pages, int addrinarray);
int set_pages_array_wc(struct page **pages, int addrinarray);
int set_pages_array_wb(struct page **pages, int addrinarray);
/*
* For legacy compatibility with the old APIs, a few functions
* are provided that work on a "struct page".
* These functions operate ONLY on the 1:1 kernel mapping of the
* memory that the struct page represents, and internally just
* call the set_memory_* function. See the description of the
* set_memory_* function for more details on conventions.
*
* These APIs should be considered *deprecated* and are likely going to
* be removed in the future.
* The reason for this is the implicit operation on the 1:1 mapping only,
* making this not a generally useful API.
*
* Specifically, many users of the old APIs had a virtual address,
* called virt_to_page() or vmalloc_to_page() on that address to
* get a struct page* that the old API required.
* To convert these cases, use set_memory_*() on the original
* virtual address, do not use these functions.
*/
int set_pages_uc(struct page *page, int numpages);
int set_pages_wb(struct page *page, int numpages);
int set_pages_ro(struct page *page, int numpages);
int set_pages_rw(struct page *page, int numpages);
int set_direct_map_invalid_noflush(struct page *page);
int set_direct_map_default_noflush(struct page *page);
bool kernel_page_present(struct page *page);
extern int kernel_set_to_readonly;
#endif /* _ASM_X86_SET_MEMORY_H */