695 lines
17 KiB
C
695 lines
17 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* Copyright (C) 1992 Krishna Balasubramanian and Linus Torvalds
|
||
|
* Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
|
||
|
* Copyright (C) 2002 Andi Kleen
|
||
|
*
|
||
|
* This handles calls from both 32bit and 64bit mode.
|
||
|
*
|
||
|
* Lock order:
|
||
|
* contex.ldt_usr_sem
|
||
|
* mmap_lock
|
||
|
* context.lock
|
||
|
*/
|
||
|
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/gfp.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/string.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/smp.h>
|
||
|
#include <linux/syscalls.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/vmalloc.h>
|
||
|
#include <linux/uaccess.h>
|
||
|
|
||
|
#include <asm/ldt.h>
|
||
|
#include <asm/tlb.h>
|
||
|
#include <asm/desc.h>
|
||
|
#include <asm/mmu_context.h>
|
||
|
#include <asm/pgtable_areas.h>
|
||
|
|
||
|
#include <xen/xen.h>
|
||
|
|
||
|
/* This is a multiple of PAGE_SIZE. */
|
||
|
#define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE)
|
||
|
|
||
|
static inline void *ldt_slot_va(int slot)
|
||
|
{
|
||
|
return (void *)(LDT_BASE_ADDR + LDT_SLOT_STRIDE * slot);
|
||
|
}
|
||
|
|
||
|
void load_mm_ldt(struct mm_struct *mm)
|
||
|
{
|
||
|
struct ldt_struct *ldt;
|
||
|
|
||
|
/* READ_ONCE synchronizes with smp_store_release */
|
||
|
ldt = READ_ONCE(mm->context.ldt);
|
||
|
|
||
|
/*
|
||
|
* Any change to mm->context.ldt is followed by an IPI to all
|
||
|
* CPUs with the mm active. The LDT will not be freed until
|
||
|
* after the IPI is handled by all such CPUs. This means that,
|
||
|
* if the ldt_struct changes before we return, the values we see
|
||
|
* will be safe, and the new values will be loaded before we run
|
||
|
* any user code.
|
||
|
*
|
||
|
* NB: don't try to convert this to use RCU without extreme care.
|
||
|
* We would still need IRQs off, because we don't want to change
|
||
|
* the local LDT after an IPI loaded a newer value than the one
|
||
|
* that we can see.
|
||
|
*/
|
||
|
|
||
|
if (unlikely(ldt)) {
|
||
|
if (static_cpu_has(X86_FEATURE_PTI)) {
|
||
|
if (WARN_ON_ONCE((unsigned long)ldt->slot > 1)) {
|
||
|
/*
|
||
|
* Whoops -- either the new LDT isn't mapped
|
||
|
* (if slot == -1) or is mapped into a bogus
|
||
|
* slot (if slot > 1).
|
||
|
*/
|
||
|
clear_LDT();
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If page table isolation is enabled, ldt->entries
|
||
|
* will not be mapped in the userspace pagetables.
|
||
|
* Tell the CPU to access the LDT through the alias
|
||
|
* at ldt_slot_va(ldt->slot).
|
||
|
*/
|
||
|
set_ldt(ldt_slot_va(ldt->slot), ldt->nr_entries);
|
||
|
} else {
|
||
|
set_ldt(ldt->entries, ldt->nr_entries);
|
||
|
}
|
||
|
} else {
|
||
|
clear_LDT();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
|
||
|
{
|
||
|
/*
|
||
|
* Load the LDT if either the old or new mm had an LDT.
|
||
|
*
|
||
|
* An mm will never go from having an LDT to not having an LDT. Two
|
||
|
* mms never share an LDT, so we don't gain anything by checking to
|
||
|
* see whether the LDT changed. There's also no guarantee that
|
||
|
* prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
|
||
|
* then prev->context.ldt will also be non-NULL.
|
||
|
*
|
||
|
* If we really cared, we could optimize the case where prev == next
|
||
|
* and we're exiting lazy mode. Most of the time, if this happens,
|
||
|
* we don't actually need to reload LDTR, but modify_ldt() is mostly
|
||
|
* used by legacy code and emulators where we don't need this level of
|
||
|
* performance.
|
||
|
*
|
||
|
* This uses | instead of || because it generates better code.
|
||
|
*/
|
||
|
if (unlikely((unsigned long)prev->context.ldt |
|
||
|
(unsigned long)next->context.ldt))
|
||
|
load_mm_ldt(next);
|
||
|
|
||
|
DEBUG_LOCKS_WARN_ON(preemptible());
|
||
|
}
|
||
|
|
||
|
static void refresh_ldt_segments(void)
|
||
|
{
|
||
|
#ifdef CONFIG_X86_64
|
||
|
unsigned short sel;
|
||
|
|
||
|
/*
|
||
|
* Make sure that the cached DS and ES descriptors match the updated
|
||
|
* LDT.
|
||
|
*/
|
||
|
savesegment(ds, sel);
|
||
|
if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT)
|
||
|
loadsegment(ds, sel);
|
||
|
|
||
|
savesegment(es, sel);
|
||
|
if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT)
|
||
|
loadsegment(es, sel);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/* context.lock is held by the task which issued the smp function call */
|
||
|
static void flush_ldt(void *__mm)
|
||
|
{
|
||
|
struct mm_struct *mm = __mm;
|
||
|
|
||
|
if (this_cpu_read(cpu_tlbstate.loaded_mm) != mm)
|
||
|
return;
|
||
|
|
||
|
load_mm_ldt(mm);
|
||
|
|
||
|
refresh_ldt_segments();
|
||
|
}
|
||
|
|
||
|
/* The caller must call finalize_ldt_struct on the result. LDT starts zeroed. */
|
||
|
static struct ldt_struct *alloc_ldt_struct(unsigned int num_entries)
|
||
|
{
|
||
|
struct ldt_struct *new_ldt;
|
||
|
unsigned int alloc_size;
|
||
|
|
||
|
if (num_entries > LDT_ENTRIES)
|
||
|
return NULL;
|
||
|
|
||
|
new_ldt = kmalloc(sizeof(struct ldt_struct), GFP_KERNEL_ACCOUNT);
|
||
|
if (!new_ldt)
|
||
|
return NULL;
|
||
|
|
||
|
BUILD_BUG_ON(LDT_ENTRY_SIZE != sizeof(struct desc_struct));
|
||
|
alloc_size = num_entries * LDT_ENTRY_SIZE;
|
||
|
|
||
|
/*
|
||
|
* Xen is very picky: it requires a page-aligned LDT that has no
|
||
|
* trailing nonzero bytes in any page that contains LDT descriptors.
|
||
|
* Keep it simple: zero the whole allocation and never allocate less
|
||
|
* than PAGE_SIZE.
|
||
|
*/
|
||
|
if (alloc_size > PAGE_SIZE)
|
||
|
new_ldt->entries = __vmalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
|
||
|
else
|
||
|
new_ldt->entries = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
|
||
|
|
||
|
if (!new_ldt->entries) {
|
||
|
kfree(new_ldt);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* The new LDT isn't aliased for PTI yet. */
|
||
|
new_ldt->slot = -1;
|
||
|
|
||
|
new_ldt->nr_entries = num_entries;
|
||
|
return new_ldt;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_PAGE_TABLE_ISOLATION
|
||
|
|
||
|
static void do_sanity_check(struct mm_struct *mm,
|
||
|
bool had_kernel_mapping,
|
||
|
bool had_user_mapping)
|
||
|
{
|
||
|
if (mm->context.ldt) {
|
||
|
/*
|
||
|
* We already had an LDT. The top-level entry should already
|
||
|
* have been allocated and synchronized with the usermode
|
||
|
* tables.
|
||
|
*/
|
||
|
WARN_ON(!had_kernel_mapping);
|
||
|
if (boot_cpu_has(X86_FEATURE_PTI))
|
||
|
WARN_ON(!had_user_mapping);
|
||
|
} else {
|
||
|
/*
|
||
|
* This is the first time we're mapping an LDT for this process.
|
||
|
* Sync the pgd to the usermode tables.
|
||
|
*/
|
||
|
WARN_ON(had_kernel_mapping);
|
||
|
if (boot_cpu_has(X86_FEATURE_PTI))
|
||
|
WARN_ON(had_user_mapping);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_X86_PAE
|
||
|
|
||
|
static pmd_t *pgd_to_pmd_walk(pgd_t *pgd, unsigned long va)
|
||
|
{
|
||
|
p4d_t *p4d;
|
||
|
pud_t *pud;
|
||
|
|
||
|
if (pgd->pgd == 0)
|
||
|
return NULL;
|
||
|
|
||
|
p4d = p4d_offset(pgd, va);
|
||
|
if (p4d_none(*p4d))
|
||
|
return NULL;
|
||
|
|
||
|
pud = pud_offset(p4d, va);
|
||
|
if (pud_none(*pud))
|
||
|
return NULL;
|
||
|
|
||
|
return pmd_offset(pud, va);
|
||
|
}
|
||
|
|
||
|
static void map_ldt_struct_to_user(struct mm_struct *mm)
|
||
|
{
|
||
|
pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR);
|
||
|
pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
|
||
|
pmd_t *k_pmd, *u_pmd;
|
||
|
|
||
|
k_pmd = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR);
|
||
|
u_pmd = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR);
|
||
|
|
||
|
if (boot_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt)
|
||
|
set_pmd(u_pmd, *k_pmd);
|
||
|
}
|
||
|
|
||
|
static void sanity_check_ldt_mapping(struct mm_struct *mm)
|
||
|
{
|
||
|
pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR);
|
||
|
pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
|
||
|
bool had_kernel, had_user;
|
||
|
pmd_t *k_pmd, *u_pmd;
|
||
|
|
||
|
k_pmd = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR);
|
||
|
u_pmd = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR);
|
||
|
had_kernel = (k_pmd->pmd != 0);
|
||
|
had_user = (u_pmd->pmd != 0);
|
||
|
|
||
|
do_sanity_check(mm, had_kernel, had_user);
|
||
|
}
|
||
|
|
||
|
#else /* !CONFIG_X86_PAE */
|
||
|
|
||
|
static void map_ldt_struct_to_user(struct mm_struct *mm)
|
||
|
{
|
||
|
pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR);
|
||
|
|
||
|
if (boot_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt)
|
||
|
set_pgd(kernel_to_user_pgdp(pgd), *pgd);
|
||
|
}
|
||
|
|
||
|
static void sanity_check_ldt_mapping(struct mm_struct *mm)
|
||
|
{
|
||
|
pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR);
|
||
|
bool had_kernel = (pgd->pgd != 0);
|
||
|
bool had_user = (kernel_to_user_pgdp(pgd)->pgd != 0);
|
||
|
|
||
|
do_sanity_check(mm, had_kernel, had_user);
|
||
|
}
|
||
|
|
||
|
#endif /* CONFIG_X86_PAE */
|
||
|
|
||
|
/*
|
||
|
* If PTI is enabled, this maps the LDT into the kernelmode and
|
||
|
* usermode tables for the given mm.
|
||
|
*/
|
||
|
static int
|
||
|
map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot)
|
||
|
{
|
||
|
unsigned long va;
|
||
|
bool is_vmalloc;
|
||
|
spinlock_t *ptl;
|
||
|
int i, nr_pages;
|
||
|
|
||
|
if (!boot_cpu_has(X86_FEATURE_PTI))
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* Any given ldt_struct should have map_ldt_struct() called at most
|
||
|
* once.
|
||
|
*/
|
||
|
WARN_ON(ldt->slot != -1);
|
||
|
|
||
|
/* Check if the current mappings are sane */
|
||
|
sanity_check_ldt_mapping(mm);
|
||
|
|
||
|
is_vmalloc = is_vmalloc_addr(ldt->entries);
|
||
|
|
||
|
nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE);
|
||
|
|
||
|
for (i = 0; i < nr_pages; i++) {
|
||
|
unsigned long offset = i << PAGE_SHIFT;
|
||
|
const void *src = (char *)ldt->entries + offset;
|
||
|
unsigned long pfn;
|
||
|
pgprot_t pte_prot;
|
||
|
pte_t pte, *ptep;
|
||
|
|
||
|
va = (unsigned long)ldt_slot_va(slot) + offset;
|
||
|
pfn = is_vmalloc ? vmalloc_to_pfn(src) :
|
||
|
page_to_pfn(virt_to_page(src));
|
||
|
/*
|
||
|
* Treat the PTI LDT range as a *userspace* range.
|
||
|
* get_locked_pte() will allocate all needed pagetables
|
||
|
* and account for them in this mm.
|
||
|
*/
|
||
|
ptep = get_locked_pte(mm, va, &ptl);
|
||
|
if (!ptep)
|
||
|
return -ENOMEM;
|
||
|
/*
|
||
|
* Map it RO so the easy to find address is not a primary
|
||
|
* target via some kernel interface which misses a
|
||
|
* permission check.
|
||
|
*/
|
||
|
pte_prot = __pgprot(__PAGE_KERNEL_RO & ~_PAGE_GLOBAL);
|
||
|
/* Filter out unsuppored __PAGE_KERNEL* bits: */
|
||
|
pgprot_val(pte_prot) &= __supported_pte_mask;
|
||
|
pte = pfn_pte(pfn, pte_prot);
|
||
|
set_pte_at(mm, va, ptep, pte);
|
||
|
pte_unmap_unlock(ptep, ptl);
|
||
|
}
|
||
|
|
||
|
/* Propagate LDT mapping to the user page-table */
|
||
|
map_ldt_struct_to_user(mm);
|
||
|
|
||
|
ldt->slot = slot;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt)
|
||
|
{
|
||
|
unsigned long va;
|
||
|
int i, nr_pages;
|
||
|
|
||
|
if (!ldt)
|
||
|
return;
|
||
|
|
||
|
/* LDT map/unmap is only required for PTI */
|
||
|
if (!boot_cpu_has(X86_FEATURE_PTI))
|
||
|
return;
|
||
|
|
||
|
nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE);
|
||
|
|
||
|
for (i = 0; i < nr_pages; i++) {
|
||
|
unsigned long offset = i << PAGE_SHIFT;
|
||
|
spinlock_t *ptl;
|
||
|
pte_t *ptep;
|
||
|
|
||
|
va = (unsigned long)ldt_slot_va(ldt->slot) + offset;
|
||
|
ptep = get_locked_pte(mm, va, &ptl);
|
||
|
pte_clear(mm, va, ptep);
|
||
|
pte_unmap_unlock(ptep, ptl);
|
||
|
}
|
||
|
|
||
|
va = (unsigned long)ldt_slot_va(ldt->slot);
|
||
|
flush_tlb_mm_range(mm, va, va + nr_pages * PAGE_SIZE, PAGE_SHIFT, false);
|
||
|
}
|
||
|
|
||
|
#else /* !CONFIG_PAGE_TABLE_ISOLATION */
|
||
|
|
||
|
static int
|
||
|
map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt)
|
||
|
{
|
||
|
}
|
||
|
#endif /* CONFIG_PAGE_TABLE_ISOLATION */
|
||
|
|
||
|
static void free_ldt_pgtables(struct mm_struct *mm)
|
||
|
{
|
||
|
#ifdef CONFIG_PAGE_TABLE_ISOLATION
|
||
|
struct mmu_gather tlb;
|
||
|
unsigned long start = LDT_BASE_ADDR;
|
||
|
unsigned long end = LDT_END_ADDR;
|
||
|
|
||
|
if (!boot_cpu_has(X86_FEATURE_PTI))
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* Although free_pgd_range() is intended for freeing user
|
||
|
* page-tables, it also works out for kernel mappings on x86.
|
||
|
* We use tlb_gather_mmu_fullmm() to avoid confusing the
|
||
|
* range-tracking logic in __tlb_adjust_range().
|
||
|
*/
|
||
|
tlb_gather_mmu_fullmm(&tlb, mm);
|
||
|
free_pgd_range(&tlb, start, end, start, end);
|
||
|
tlb_finish_mmu(&tlb);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/* After calling this, the LDT is immutable. */
|
||
|
static void finalize_ldt_struct(struct ldt_struct *ldt)
|
||
|
{
|
||
|
paravirt_alloc_ldt(ldt->entries, ldt->nr_entries);
|
||
|
}
|
||
|
|
||
|
static void install_ldt(struct mm_struct *mm, struct ldt_struct *ldt)
|
||
|
{
|
||
|
mutex_lock(&mm->context.lock);
|
||
|
|
||
|
/* Synchronizes with READ_ONCE in load_mm_ldt. */
|
||
|
smp_store_release(&mm->context.ldt, ldt);
|
||
|
|
||
|
/* Activate the LDT for all CPUs using currents mm. */
|
||
|
on_each_cpu_mask(mm_cpumask(mm), flush_ldt, mm, true);
|
||
|
|
||
|
mutex_unlock(&mm->context.lock);
|
||
|
}
|
||
|
|
||
|
static void free_ldt_struct(struct ldt_struct *ldt)
|
||
|
{
|
||
|
if (likely(!ldt))
|
||
|
return;
|
||
|
|
||
|
paravirt_free_ldt(ldt->entries, ldt->nr_entries);
|
||
|
if (ldt->nr_entries * LDT_ENTRY_SIZE > PAGE_SIZE)
|
||
|
vfree_atomic(ldt->entries);
|
||
|
else
|
||
|
free_page((unsigned long)ldt->entries);
|
||
|
kfree(ldt);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Called on fork from arch_dup_mmap(). Just copy the current LDT state,
|
||
|
* the new task is not running, so nothing can be installed.
|
||
|
*/
|
||
|
int ldt_dup_context(struct mm_struct *old_mm, struct mm_struct *mm)
|
||
|
{
|
||
|
struct ldt_struct *new_ldt;
|
||
|
int retval = 0;
|
||
|
|
||
|
if (!old_mm)
|
||
|
return 0;
|
||
|
|
||
|
mutex_lock(&old_mm->context.lock);
|
||
|
if (!old_mm->context.ldt)
|
||
|
goto out_unlock;
|
||
|
|
||
|
new_ldt = alloc_ldt_struct(old_mm->context.ldt->nr_entries);
|
||
|
if (!new_ldt) {
|
||
|
retval = -ENOMEM;
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
|
||
|
memcpy(new_ldt->entries, old_mm->context.ldt->entries,
|
||
|
new_ldt->nr_entries * LDT_ENTRY_SIZE);
|
||
|
finalize_ldt_struct(new_ldt);
|
||
|
|
||
|
retval = map_ldt_struct(mm, new_ldt, 0);
|
||
|
if (retval) {
|
||
|
free_ldt_pgtables(mm);
|
||
|
free_ldt_struct(new_ldt);
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
mm->context.ldt = new_ldt;
|
||
|
|
||
|
out_unlock:
|
||
|
mutex_unlock(&old_mm->context.lock);
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* No need to lock the MM as we are the last user
|
||
|
*
|
||
|
* 64bit: Don't touch the LDT register - we're already in the next thread.
|
||
|
*/
|
||
|
void destroy_context_ldt(struct mm_struct *mm)
|
||
|
{
|
||
|
free_ldt_struct(mm->context.ldt);
|
||
|
mm->context.ldt = NULL;
|
||
|
}
|
||
|
|
||
|
void ldt_arch_exit_mmap(struct mm_struct *mm)
|
||
|
{
|
||
|
free_ldt_pgtables(mm);
|
||
|
}
|
||
|
|
||
|
static int read_ldt(void __user *ptr, unsigned long bytecount)
|
||
|
{
|
||
|
struct mm_struct *mm = current->mm;
|
||
|
unsigned long entries_size;
|
||
|
int retval;
|
||
|
|
||
|
down_read(&mm->context.ldt_usr_sem);
|
||
|
|
||
|
if (!mm->context.ldt) {
|
||
|
retval = 0;
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
|
||
|
if (bytecount > LDT_ENTRY_SIZE * LDT_ENTRIES)
|
||
|
bytecount = LDT_ENTRY_SIZE * LDT_ENTRIES;
|
||
|
|
||
|
entries_size = mm->context.ldt->nr_entries * LDT_ENTRY_SIZE;
|
||
|
if (entries_size > bytecount)
|
||
|
entries_size = bytecount;
|
||
|
|
||
|
if (copy_to_user(ptr, mm->context.ldt->entries, entries_size)) {
|
||
|
retval = -EFAULT;
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
|
||
|
if (entries_size != bytecount) {
|
||
|
/* Zero-fill the rest and pretend we read bytecount bytes. */
|
||
|
if (clear_user(ptr + entries_size, bytecount - entries_size)) {
|
||
|
retval = -EFAULT;
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
}
|
||
|
retval = bytecount;
|
||
|
|
||
|
out_unlock:
|
||
|
up_read(&mm->context.ldt_usr_sem);
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
static int read_default_ldt(void __user *ptr, unsigned long bytecount)
|
||
|
{
|
||
|
/* CHECKME: Can we use _one_ random number ? */
|
||
|
#ifdef CONFIG_X86_32
|
||
|
unsigned long size = 5 * sizeof(struct desc_struct);
|
||
|
#else
|
||
|
unsigned long size = 128;
|
||
|
#endif
|
||
|
if (bytecount > size)
|
||
|
bytecount = size;
|
||
|
if (clear_user(ptr, bytecount))
|
||
|
return -EFAULT;
|
||
|
return bytecount;
|
||
|
}
|
||
|
|
||
|
static bool allow_16bit_segments(void)
|
||
|
{
|
||
|
if (!IS_ENABLED(CONFIG_X86_16BIT))
|
||
|
return false;
|
||
|
|
||
|
#ifdef CONFIG_XEN_PV
|
||
|
/*
|
||
|
* Xen PV does not implement ESPFIX64, which means that 16-bit
|
||
|
* segments will not work correctly. Until either Xen PV implements
|
||
|
* ESPFIX64 and can signal this fact to the guest or unless someone
|
||
|
* provides compelling evidence that allowing broken 16-bit segments
|
||
|
* is worthwhile, disallow 16-bit segments under Xen PV.
|
||
|
*/
|
||
|
if (xen_pv_domain()) {
|
||
|
pr_info_once("Warning: 16-bit segments do not work correctly in a Xen PV guest\n");
|
||
|
return false;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static int write_ldt(void __user *ptr, unsigned long bytecount, int oldmode)
|
||
|
{
|
||
|
struct mm_struct *mm = current->mm;
|
||
|
struct ldt_struct *new_ldt, *old_ldt;
|
||
|
unsigned int old_nr_entries, new_nr_entries;
|
||
|
struct user_desc ldt_info;
|
||
|
struct desc_struct ldt;
|
||
|
int error;
|
||
|
|
||
|
error = -EINVAL;
|
||
|
if (bytecount != sizeof(ldt_info))
|
||
|
goto out;
|
||
|
error = -EFAULT;
|
||
|
if (copy_from_user(&ldt_info, ptr, sizeof(ldt_info)))
|
||
|
goto out;
|
||
|
|
||
|
error = -EINVAL;
|
||
|
if (ldt_info.entry_number >= LDT_ENTRIES)
|
||
|
goto out;
|
||
|
if (ldt_info.contents == 3) {
|
||
|
if (oldmode)
|
||
|
goto out;
|
||
|
if (ldt_info.seg_not_present == 0)
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if ((oldmode && !ldt_info.base_addr && !ldt_info.limit) ||
|
||
|
LDT_empty(&ldt_info)) {
|
||
|
/* The user wants to clear the entry. */
|
||
|
memset(&ldt, 0, sizeof(ldt));
|
||
|
} else {
|
||
|
if (!ldt_info.seg_32bit && !allow_16bit_segments()) {
|
||
|
error = -EINVAL;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
fill_ldt(&ldt, &ldt_info);
|
||
|
if (oldmode)
|
||
|
ldt.avl = 0;
|
||
|
}
|
||
|
|
||
|
if (down_write_killable(&mm->context.ldt_usr_sem))
|
||
|
return -EINTR;
|
||
|
|
||
|
old_ldt = mm->context.ldt;
|
||
|
old_nr_entries = old_ldt ? old_ldt->nr_entries : 0;
|
||
|
new_nr_entries = max(ldt_info.entry_number + 1, old_nr_entries);
|
||
|
|
||
|
error = -ENOMEM;
|
||
|
new_ldt = alloc_ldt_struct(new_nr_entries);
|
||
|
if (!new_ldt)
|
||
|
goto out_unlock;
|
||
|
|
||
|
if (old_ldt)
|
||
|
memcpy(new_ldt->entries, old_ldt->entries, old_nr_entries * LDT_ENTRY_SIZE);
|
||
|
|
||
|
new_ldt->entries[ldt_info.entry_number] = ldt;
|
||
|
finalize_ldt_struct(new_ldt);
|
||
|
|
||
|
/*
|
||
|
* If we are using PTI, map the new LDT into the userspace pagetables.
|
||
|
* If there is already an LDT, use the other slot so that other CPUs
|
||
|
* will continue to use the old LDT until install_ldt() switches
|
||
|
* them over to the new LDT.
|
||
|
*/
|
||
|
error = map_ldt_struct(mm, new_ldt, old_ldt ? !old_ldt->slot : 0);
|
||
|
if (error) {
|
||
|
/*
|
||
|
* This only can fail for the first LDT setup. If an LDT is
|
||
|
* already installed then the PTE page is already
|
||
|
* populated. Mop up a half populated page table.
|
||
|
*/
|
||
|
if (!WARN_ON_ONCE(old_ldt))
|
||
|
free_ldt_pgtables(mm);
|
||
|
free_ldt_struct(new_ldt);
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
|
||
|
install_ldt(mm, new_ldt);
|
||
|
unmap_ldt_struct(mm, old_ldt);
|
||
|
free_ldt_struct(old_ldt);
|
||
|
error = 0;
|
||
|
|
||
|
out_unlock:
|
||
|
up_write(&mm->context.ldt_usr_sem);
|
||
|
out:
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
SYSCALL_DEFINE3(modify_ldt, int , func , void __user * , ptr ,
|
||
|
unsigned long , bytecount)
|
||
|
{
|
||
|
int ret = -ENOSYS;
|
||
|
|
||
|
switch (func) {
|
||
|
case 0:
|
||
|
ret = read_ldt(ptr, bytecount);
|
||
|
break;
|
||
|
case 1:
|
||
|
ret = write_ldt(ptr, bytecount, 1);
|
||
|
break;
|
||
|
case 2:
|
||
|
ret = read_default_ldt(ptr, bytecount);
|
||
|
break;
|
||
|
case 0x11:
|
||
|
ret = write_ldt(ptr, bytecount, 0);
|
||
|
break;
|
||
|
}
|
||
|
/*
|
||
|
* The SYSCALL_DEFINE() macros give us an 'unsigned long'
|
||
|
* return type, but tht ABI for sys_modify_ldt() expects
|
||
|
* 'int'. This cast gives us an int-sized value in %rax
|
||
|
* for the return code. The 'unsigned' is necessary so
|
||
|
* the compiler does not try to sign-extend the negative
|
||
|
* return codes into the high half of the register when
|
||
|
* taking the value from int->long.
|
||
|
*/
|
||
|
return (unsigned int)ret;
|
||
|
}
|