linux-zen-server/drivers/accel/habanalabs/common/habanalabs_ioctl.c

1203 lines
33 KiB
C
Raw Permalink Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2022 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#define pr_fmt(fmt) "habanalabs: " fmt
#include <uapi/drm/habanalabs_accel.h>
#include "habanalabs.h"
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>
static u32 hl_debug_struct_size[HL_DEBUG_OP_TIMESTAMP + 1] = {
[HL_DEBUG_OP_ETR] = sizeof(struct hl_debug_params_etr),
[HL_DEBUG_OP_ETF] = sizeof(struct hl_debug_params_etf),
[HL_DEBUG_OP_STM] = sizeof(struct hl_debug_params_stm),
[HL_DEBUG_OP_FUNNEL] = 0,
[HL_DEBUG_OP_BMON] = sizeof(struct hl_debug_params_bmon),
[HL_DEBUG_OP_SPMU] = sizeof(struct hl_debug_params_spmu),
[HL_DEBUG_OP_TIMESTAMP] = 0
};
static int device_status_info(struct hl_device *hdev, struct hl_info_args *args)
{
struct hl_info_device_status dev_stat = {0};
u32 size = args->return_size;
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
if ((!size) || (!out))
return -EINVAL;
dev_stat.status = hl_device_status(hdev);
return copy_to_user(out, &dev_stat,
min((size_t)size, sizeof(dev_stat))) ? -EFAULT : 0;
}
static int hw_ip_info(struct hl_device *hdev, struct hl_info_args *args)
{
struct hl_info_hw_ip_info hw_ip = {0};
u32 size = args->return_size;
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
struct asic_fixed_properties *prop = &hdev->asic_prop;
u64 sram_kmd_size, dram_kmd_size, dram_available_size;
if ((!size) || (!out))
return -EINVAL;
sram_kmd_size = (prop->sram_user_base_address -
prop->sram_base_address);
dram_kmd_size = (prop->dram_user_base_address -
prop->dram_base_address);
hw_ip.device_id = hdev->asic_funcs->get_pci_id(hdev);
hw_ip.sram_base_address = prop->sram_user_base_address;
hw_ip.dram_base_address =
hdev->mmu_enable && prop->dram_supports_virtual_memory ?
prop->dmmu.start_addr : prop->dram_user_base_address;
hw_ip.tpc_enabled_mask = prop->tpc_enabled_mask & 0xFF;
hw_ip.tpc_enabled_mask_ext = prop->tpc_enabled_mask;
hw_ip.sram_size = prop->sram_size - sram_kmd_size;
dram_available_size = prop->dram_size - dram_kmd_size;
if (hdev->mmu_enable == MMU_EN_ALL)
hw_ip.dram_size = DIV_ROUND_DOWN_ULL(dram_available_size,
prop->dram_page_size) * prop->dram_page_size;
else
hw_ip.dram_size = dram_available_size;
if (hw_ip.dram_size > PAGE_SIZE)
hw_ip.dram_enabled = 1;
hw_ip.dram_page_size = prop->dram_page_size;
hw_ip.device_mem_alloc_default_page_size = prop->device_mem_alloc_default_page_size;
hw_ip.num_of_events = prop->num_of_events;
memcpy(hw_ip.cpucp_version, prop->cpucp_info.cpucp_version,
min(VERSION_MAX_LEN, HL_INFO_VERSION_MAX_LEN));
memcpy(hw_ip.card_name, prop->cpucp_info.card_name,
min(CARD_NAME_MAX_LEN, HL_INFO_CARD_NAME_MAX_LEN));
hw_ip.cpld_version = le32_to_cpu(prop->cpucp_info.cpld_version);
hw_ip.module_id = le32_to_cpu(prop->cpucp_info.card_location);
hw_ip.psoc_pci_pll_nr = prop->psoc_pci_pll_nr;
hw_ip.psoc_pci_pll_nf = prop->psoc_pci_pll_nf;
hw_ip.psoc_pci_pll_od = prop->psoc_pci_pll_od;
hw_ip.psoc_pci_pll_div_factor = prop->psoc_pci_pll_div_factor;
hw_ip.decoder_enabled_mask = prop->decoder_enabled_mask;
hw_ip.mme_master_slave_mode = prop->mme_master_slave_mode;
hw_ip.first_available_interrupt_id = prop->first_available_user_interrupt;
hw_ip.number_of_user_interrupts = prop->user_interrupt_count;
hw_ip.edma_enabled_mask = prop->edma_enabled_mask;
hw_ip.server_type = prop->server_type;
hw_ip.security_enabled = prop->fw_security_enabled;
hw_ip.revision_id = hdev->pdev->revision;
return copy_to_user(out, &hw_ip,
min((size_t) size, sizeof(hw_ip))) ? -EFAULT : 0;
}
static int hw_events_info(struct hl_device *hdev, bool aggregate,
struct hl_info_args *args)
{
u32 size, max_size = args->return_size;
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
void *arr;
if ((!max_size) || (!out))
return -EINVAL;
arr = hdev->asic_funcs->get_events_stat(hdev, aggregate, &size);
if (!arr) {
dev_err(hdev->dev, "Events info not supported\n");
return -EOPNOTSUPP;
}
return copy_to_user(out, arr, min(max_size, size)) ? -EFAULT : 0;
}
static int events_info(struct hl_fpriv *hpriv, struct hl_info_args *args)
{
u32 max_size = args->return_size;
u64 events_mask;
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
if ((max_size < sizeof(u64)) || (!out))
return -EINVAL;
mutex_lock(&hpriv->notifier_event.lock);
events_mask = hpriv->notifier_event.events_mask;
hpriv->notifier_event.events_mask = 0;
mutex_unlock(&hpriv->notifier_event.lock);
return copy_to_user(out, &events_mask, sizeof(u64)) ? -EFAULT : 0;
}
static int dram_usage_info(struct hl_fpriv *hpriv, struct hl_info_args *args)
{
struct hl_device *hdev = hpriv->hdev;
struct hl_info_dram_usage dram_usage = {0};
u32 max_size = args->return_size;
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
struct asic_fixed_properties *prop = &hdev->asic_prop;
u64 dram_kmd_size;
if ((!max_size) || (!out))
return -EINVAL;
dram_kmd_size = (prop->dram_user_base_address -
prop->dram_base_address);
dram_usage.dram_free_mem = (prop->dram_size - dram_kmd_size) -
atomic64_read(&hdev->dram_used_mem);
if (hpriv->ctx)
dram_usage.ctx_dram_mem =
atomic64_read(&hpriv->ctx->dram_phys_mem);
return copy_to_user(out, &dram_usage,
min((size_t) max_size, sizeof(dram_usage))) ? -EFAULT : 0;
}
static int hw_idle(struct hl_device *hdev, struct hl_info_args *args)
{
struct hl_info_hw_idle hw_idle = {0};
u32 max_size = args->return_size;
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
if ((!max_size) || (!out))
return -EINVAL;
hw_idle.is_idle = hdev->asic_funcs->is_device_idle(hdev,
hw_idle.busy_engines_mask_ext,
HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL);
hw_idle.busy_engines_mask =
lower_32_bits(hw_idle.busy_engines_mask_ext[0]);
return copy_to_user(out, &hw_idle,
min((size_t) max_size, sizeof(hw_idle))) ? -EFAULT : 0;
}
static int debug_coresight(struct hl_device *hdev, struct hl_ctx *ctx, struct hl_debug_args *args)
{
struct hl_debug_params *params;
void *input = NULL, *output = NULL;
int rc;
params = kzalloc(sizeof(*params), GFP_KERNEL);
if (!params)
return -ENOMEM;
params->reg_idx = args->reg_idx;
params->enable = args->enable;
params->op = args->op;
if (args->input_ptr && args->input_size) {
input = kzalloc(hl_debug_struct_size[args->op], GFP_KERNEL);
if (!input) {
rc = -ENOMEM;
goto out;
}
if (copy_from_user(input, u64_to_user_ptr(args->input_ptr),
args->input_size)) {
rc = -EFAULT;
dev_err(hdev->dev, "failed to copy input debug data\n");
goto out;
}
params->input = input;
}
if (args->output_ptr && args->output_size) {
output = kzalloc(args->output_size, GFP_KERNEL);
if (!output) {
rc = -ENOMEM;
goto out;
}
params->output = output;
params->output_size = args->output_size;
}
rc = hdev->asic_funcs->debug_coresight(hdev, ctx, params);
if (rc) {
dev_err(hdev->dev,
"debug coresight operation failed %d\n", rc);
goto out;
}
if (output && copy_to_user((void __user *) (uintptr_t) args->output_ptr,
output, args->output_size)) {
dev_err(hdev->dev, "copy to user failed in debug ioctl\n");
rc = -EFAULT;
goto out;
}
out:
kfree(params);
kfree(output);
kfree(input);
return rc;
}
static int device_utilization(struct hl_device *hdev, struct hl_info_args *args)
{
struct hl_info_device_utilization device_util = {0};
u32 max_size = args->return_size;
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
int rc;
if ((!max_size) || (!out))
return -EINVAL;
rc = hl_device_utilization(hdev, &device_util.utilization);
if (rc)
return -EINVAL;
return copy_to_user(out, &device_util,
min((size_t) max_size, sizeof(device_util))) ? -EFAULT : 0;
}
static int get_clk_rate(struct hl_device *hdev, struct hl_info_args *args)
{
struct hl_info_clk_rate clk_rate = {0};
u32 max_size = args->return_size;
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
int rc;
if ((!max_size) || (!out))
return -EINVAL;
rc = hl_fw_get_clk_rate(hdev, &clk_rate.cur_clk_rate_mhz, &clk_rate.max_clk_rate_mhz);
if (rc)
return rc;
return copy_to_user(out, &clk_rate, min_t(size_t, max_size, sizeof(clk_rate)))
? -EFAULT : 0;
}
static int get_reset_count(struct hl_device *hdev, struct hl_info_args *args)
{
struct hl_info_reset_count reset_count = {0};
u32 max_size = args->return_size;
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
if ((!max_size) || (!out))
return -EINVAL;
reset_count.hard_reset_cnt = hdev->reset_info.hard_reset_cnt;
reset_count.soft_reset_cnt = hdev->reset_info.compute_reset_cnt;
return copy_to_user(out, &reset_count,
min((size_t) max_size, sizeof(reset_count))) ? -EFAULT : 0;
}
static int time_sync_info(struct hl_device *hdev, struct hl_info_args *args)
{
struct hl_info_time_sync time_sync = {0};
u32 max_size = args->return_size;
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
if ((!max_size) || (!out))
return -EINVAL;
time_sync.device_time = hdev->asic_funcs->get_device_time(hdev);
time_sync.host_time = ktime_get_raw_ns();
return copy_to_user(out, &time_sync,
min((size_t) max_size, sizeof(time_sync))) ? -EFAULT : 0;
}
static int pci_counters_info(struct hl_fpriv *hpriv, struct hl_info_args *args)
{
struct hl_device *hdev = hpriv->hdev;
struct hl_info_pci_counters pci_counters = {0};
u32 max_size = args->return_size;
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
int rc;
if ((!max_size) || (!out))
return -EINVAL;
rc = hl_fw_cpucp_pci_counters_get(hdev, &pci_counters);
if (rc)
return rc;
return copy_to_user(out, &pci_counters,
min((size_t) max_size, sizeof(pci_counters))) ? -EFAULT : 0;
}
static int clk_throttle_info(struct hl_fpriv *hpriv, struct hl_info_args *args)
{
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
struct hl_device *hdev = hpriv->hdev;
struct hl_info_clk_throttle clk_throttle = {0};
ktime_t end_time, zero_time = ktime_set(0, 0);
u32 max_size = args->return_size;
int i;
if ((!max_size) || (!out))
return -EINVAL;
mutex_lock(&hdev->clk_throttling.lock);
clk_throttle.clk_throttling_reason = hdev->clk_throttling.current_reason;
for (i = 0 ; i < HL_CLK_THROTTLE_TYPE_MAX ; i++) {
if (!(hdev->clk_throttling.aggregated_reason & BIT(i)))
continue;
clk_throttle.clk_throttling_timestamp_us[i] =
ktime_to_us(hdev->clk_throttling.timestamp[i].start);
if (ktime_compare(hdev->clk_throttling.timestamp[i].end, zero_time))
end_time = hdev->clk_throttling.timestamp[i].end;
else
end_time = ktime_get();
clk_throttle.clk_throttling_duration_ns[i] =
ktime_to_ns(ktime_sub(end_time,
hdev->clk_throttling.timestamp[i].start));
}
mutex_unlock(&hdev->clk_throttling.lock);
return copy_to_user(out, &clk_throttle,
min((size_t) max_size, sizeof(clk_throttle))) ? -EFAULT : 0;
}
static int cs_counters_info(struct hl_fpriv *hpriv, struct hl_info_args *args)
{
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
struct hl_info_cs_counters cs_counters = {0};
struct hl_device *hdev = hpriv->hdev;
struct hl_cs_counters_atomic *cntr;
u32 max_size = args->return_size;
cntr = &hdev->aggregated_cs_counters;
if ((!max_size) || (!out))
return -EINVAL;
cs_counters.total_out_of_mem_drop_cnt =
atomic64_read(&cntr->out_of_mem_drop_cnt);
cs_counters.total_parsing_drop_cnt =
atomic64_read(&cntr->parsing_drop_cnt);
cs_counters.total_queue_full_drop_cnt =
atomic64_read(&cntr->queue_full_drop_cnt);
cs_counters.total_device_in_reset_drop_cnt =
atomic64_read(&cntr->device_in_reset_drop_cnt);
cs_counters.total_max_cs_in_flight_drop_cnt =
atomic64_read(&cntr->max_cs_in_flight_drop_cnt);
cs_counters.total_validation_drop_cnt =
atomic64_read(&cntr->validation_drop_cnt);
if (hpriv->ctx) {
cs_counters.ctx_out_of_mem_drop_cnt =
atomic64_read(
&hpriv->ctx->cs_counters.out_of_mem_drop_cnt);
cs_counters.ctx_parsing_drop_cnt =
atomic64_read(
&hpriv->ctx->cs_counters.parsing_drop_cnt);
cs_counters.ctx_queue_full_drop_cnt =
atomic64_read(
&hpriv->ctx->cs_counters.queue_full_drop_cnt);
cs_counters.ctx_device_in_reset_drop_cnt =
atomic64_read(
&hpriv->ctx->cs_counters.device_in_reset_drop_cnt);
cs_counters.ctx_max_cs_in_flight_drop_cnt =
atomic64_read(
&hpriv->ctx->cs_counters.max_cs_in_flight_drop_cnt);
cs_counters.ctx_validation_drop_cnt =
atomic64_read(
&hpriv->ctx->cs_counters.validation_drop_cnt);
}
return copy_to_user(out, &cs_counters,
min((size_t) max_size, sizeof(cs_counters))) ? -EFAULT : 0;
}
static int sync_manager_info(struct hl_fpriv *hpriv, struct hl_info_args *args)
{
struct hl_device *hdev = hpriv->hdev;
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct hl_info_sync_manager sm_info = {0};
u32 max_size = args->return_size;
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
if ((!max_size) || (!out))
return -EINVAL;
if (args->dcore_id >= HL_MAX_DCORES)
return -EINVAL;
sm_info.first_available_sync_object =
prop->first_available_user_sob[args->dcore_id];
sm_info.first_available_monitor =
prop->first_available_user_mon[args->dcore_id];
sm_info.first_available_cq =
prop->first_available_cq[args->dcore_id];
return copy_to_user(out, &sm_info, min_t(size_t, (size_t) max_size,
sizeof(sm_info))) ? -EFAULT : 0;
}
static int total_energy_consumption_info(struct hl_fpriv *hpriv,
struct hl_info_args *args)
{
struct hl_device *hdev = hpriv->hdev;
struct hl_info_energy total_energy = {0};
u32 max_size = args->return_size;
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
int rc;
if ((!max_size) || (!out))
return -EINVAL;
rc = hl_fw_cpucp_total_energy_get(hdev,
&total_energy.total_energy_consumption);
if (rc)
return rc;
return copy_to_user(out, &total_energy,
min((size_t) max_size, sizeof(total_energy))) ? -EFAULT : 0;
}
static int pll_frequency_info(struct hl_fpriv *hpriv, struct hl_info_args *args)
{
struct hl_device *hdev = hpriv->hdev;
struct hl_pll_frequency_info freq_info = { {0} };
u32 max_size = args->return_size;
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
int rc;
if ((!max_size) || (!out))
return -EINVAL;
rc = hl_fw_cpucp_pll_info_get(hdev, args->pll_index, freq_info.output);
if (rc)
return rc;
return copy_to_user(out, &freq_info,
min((size_t) max_size, sizeof(freq_info))) ? -EFAULT : 0;
}
static int power_info(struct hl_fpriv *hpriv, struct hl_info_args *args)
{
struct hl_device *hdev = hpriv->hdev;
u32 max_size = args->return_size;
struct hl_power_info power_info = {0};
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
int rc;
if ((!max_size) || (!out))
return -EINVAL;
rc = hl_fw_cpucp_power_get(hdev, &power_info.power);
if (rc)
return rc;
return copy_to_user(out, &power_info,
min((size_t) max_size, sizeof(power_info))) ? -EFAULT : 0;
}
static int open_stats_info(struct hl_fpriv *hpriv, struct hl_info_args *args)
{
struct hl_device *hdev = hpriv->hdev;
u32 max_size = args->return_size;
struct hl_open_stats_info open_stats_info = {0};
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
if ((!max_size) || (!out))
return -EINVAL;
open_stats_info.last_open_period_ms = jiffies64_to_msecs(
hdev->last_open_session_duration_jif);
open_stats_info.open_counter = hdev->open_counter;
open_stats_info.is_compute_ctx_active = hdev->is_compute_ctx_active;
open_stats_info.compute_ctx_in_release = hdev->compute_ctx_in_release;
return copy_to_user(out, &open_stats_info,
min((size_t) max_size, sizeof(open_stats_info))) ? -EFAULT : 0;
}
static int dram_pending_rows_info(struct hl_fpriv *hpriv, struct hl_info_args *args)
{
struct hl_device *hdev = hpriv->hdev;
u32 max_size = args->return_size;
u32 pend_rows_num = 0;
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
int rc;
if ((!max_size) || (!out))
return -EINVAL;
rc = hl_fw_dram_pending_row_get(hdev, &pend_rows_num);
if (rc)
return rc;
return copy_to_user(out, &pend_rows_num,
min_t(size_t, max_size, sizeof(pend_rows_num))) ? -EFAULT : 0;
}
static int dram_replaced_rows_info(struct hl_fpriv *hpriv, struct hl_info_args *args)
{
struct hl_device *hdev = hpriv->hdev;
u32 max_size = args->return_size;
struct cpucp_hbm_row_info info = {0};
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
int rc;
if ((!max_size) || (!out))
return -EINVAL;
rc = hl_fw_dram_replaced_row_get(hdev, &info);
if (rc)
return rc;
return copy_to_user(out, &info, min_t(size_t, max_size, sizeof(info))) ? -EFAULT : 0;
}
static int last_err_open_dev_info(struct hl_fpriv *hpriv, struct hl_info_args *args)
{
struct hl_info_last_err_open_dev_time info = {0};
struct hl_device *hdev = hpriv->hdev;
u32 max_size = args->return_size;
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
if ((!max_size) || (!out))
return -EINVAL;
info.timestamp = ktime_to_ns(hdev->last_successful_open_ktime);
return copy_to_user(out, &info, min_t(size_t, max_size, sizeof(info))) ? -EFAULT : 0;
}
static int cs_timeout_info(struct hl_fpriv *hpriv, struct hl_info_args *args)
{
struct hl_info_cs_timeout_event info = {0};
struct hl_device *hdev = hpriv->hdev;
u32 max_size = args->return_size;
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
if ((!max_size) || (!out))
return -EINVAL;
info.seq = hdev->captured_err_info.cs_timeout.seq;
info.timestamp = ktime_to_ns(hdev->captured_err_info.cs_timeout.timestamp);
return copy_to_user(out, &info, min_t(size_t, max_size, sizeof(info))) ? -EFAULT : 0;
}
static int razwi_info(struct hl_fpriv *hpriv, struct hl_info_args *args)
{
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
struct hl_device *hdev = hpriv->hdev;
u32 max_size = args->return_size;
struct razwi_info *razwi_info;
if ((!max_size) || (!out))
return -EINVAL;
razwi_info = &hdev->captured_err_info.razwi_info;
if (!razwi_info->razwi_info_available)
return 0;
return copy_to_user(out, &razwi_info->razwi,
min_t(size_t, max_size, sizeof(struct hl_info_razwi_event))) ? -EFAULT : 0;
}
static int undefined_opcode_info(struct hl_fpriv *hpriv, struct hl_info_args *args)
{
struct hl_device *hdev = hpriv->hdev;
u32 max_size = args->return_size;
struct hl_info_undefined_opcode_event info = {0};
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
if ((!max_size) || (!out))
return -EINVAL;
info.timestamp = ktime_to_ns(hdev->captured_err_info.undef_opcode.timestamp);
info.engine_id = hdev->captured_err_info.undef_opcode.engine_id;
info.cq_addr = hdev->captured_err_info.undef_opcode.cq_addr;
info.cq_size = hdev->captured_err_info.undef_opcode.cq_size;
info.stream_id = hdev->captured_err_info.undef_opcode.stream_id;
info.cb_addr_streams_len = hdev->captured_err_info.undef_opcode.cb_addr_streams_len;
memcpy(info.cb_addr_streams, hdev->captured_err_info.undef_opcode.cb_addr_streams,
sizeof(info.cb_addr_streams));
return copy_to_user(out, &info, min_t(size_t, max_size, sizeof(info))) ? -EFAULT : 0;
}
static int dev_mem_alloc_page_sizes_info(struct hl_fpriv *hpriv, struct hl_info_args *args)
{
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
struct hl_info_dev_memalloc_page_sizes info = {0};
struct hl_device *hdev = hpriv->hdev;
u32 max_size = args->return_size;
if ((!max_size) || (!out))
return -EINVAL;
/*
* Future ASICs that will support multiple DRAM page sizes will support only "powers of 2"
* pages (unlike some of the ASICs before supporting multiple page sizes).
* For this reason for all ASICs that not support multiple page size the function will
* return an empty bitmask indicating that multiple page sizes is not supported.
*/
info.page_order_bitmask = hdev->asic_prop.dmmu.supported_pages_mask;
return copy_to_user(out, &info, min_t(size_t, max_size, sizeof(info))) ? -EFAULT : 0;
}
static int sec_attest_info(struct hl_fpriv *hpriv, struct hl_info_args *args)
{
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
struct cpucp_sec_attest_info *sec_attest_info;
struct hl_info_sec_attest *info;
u32 max_size = args->return_size;
int rc;
if ((!max_size) || (!out))
return -EINVAL;
sec_attest_info = kmalloc(sizeof(*sec_attest_info), GFP_KERNEL);
if (!sec_attest_info)
return -ENOMEM;
info = kmalloc(sizeof(*info), GFP_KERNEL);
if (!info) {
rc = -ENOMEM;
goto free_sec_attest_info;
}
rc = hl_fw_get_sec_attest_info(hpriv->hdev, sec_attest_info, args->sec_attest_nonce);
if (rc)
goto free_info;
info->nonce = le32_to_cpu(sec_attest_info->nonce);
info->pcr_quote_len = le16_to_cpu(sec_attest_info->pcr_quote_len);
info->pub_data_len = le16_to_cpu(sec_attest_info->pub_data_len);
info->certificate_len = le16_to_cpu(sec_attest_info->certificate_len);
info->pcr_num_reg = sec_attest_info->pcr_num_reg;
info->pcr_reg_len = sec_attest_info->pcr_reg_len;
info->quote_sig_len = sec_attest_info->quote_sig_len;
memcpy(&info->pcr_data, &sec_attest_info->pcr_data, sizeof(info->pcr_data));
memcpy(&info->pcr_quote, &sec_attest_info->pcr_quote, sizeof(info->pcr_quote));
memcpy(&info->public_data, &sec_attest_info->public_data, sizeof(info->public_data));
memcpy(&info->certificate, &sec_attest_info->certificate, sizeof(info->certificate));
memcpy(&info->quote_sig, &sec_attest_info->quote_sig, sizeof(info->quote_sig));
rc = copy_to_user(out, info,
min_t(size_t, max_size, sizeof(*info))) ? -EFAULT : 0;
free_info:
kfree(info);
free_sec_attest_info:
kfree(sec_attest_info);
return rc;
}
static int eventfd_register(struct hl_fpriv *hpriv, struct hl_info_args *args)
{
int rc;
/* check if there is already a registered on that process */
mutex_lock(&hpriv->notifier_event.lock);
if (hpriv->notifier_event.eventfd) {
mutex_unlock(&hpriv->notifier_event.lock);
return -EINVAL;
}
hpriv->notifier_event.eventfd = eventfd_ctx_fdget(args->eventfd);
if (IS_ERR(hpriv->notifier_event.eventfd)) {
rc = PTR_ERR(hpriv->notifier_event.eventfd);
hpriv->notifier_event.eventfd = NULL;
mutex_unlock(&hpriv->notifier_event.lock);
return rc;
}
mutex_unlock(&hpriv->notifier_event.lock);
return 0;
}
static int eventfd_unregister(struct hl_fpriv *hpriv, struct hl_info_args *args)
{
mutex_lock(&hpriv->notifier_event.lock);
if (!hpriv->notifier_event.eventfd) {
mutex_unlock(&hpriv->notifier_event.lock);
return -EINVAL;
}
eventfd_ctx_put(hpriv->notifier_event.eventfd);
hpriv->notifier_event.eventfd = NULL;
mutex_unlock(&hpriv->notifier_event.lock);
return 0;
}
static int engine_status_info(struct hl_fpriv *hpriv, struct hl_info_args *args)
{
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
u32 status_buf_size = args->return_size;
struct hl_device *hdev = hpriv->hdev;
struct engines_data eng_data;
int rc;
if ((status_buf_size < SZ_1K) || (status_buf_size > HL_ENGINES_DATA_MAX_SIZE) || (!out))
return -EINVAL;
eng_data.actual_size = 0;
eng_data.allocated_buf_size = status_buf_size;
eng_data.buf = vmalloc(status_buf_size);
if (!eng_data.buf)
return -ENOMEM;
hdev->asic_funcs->is_device_idle(hdev, NULL, 0, &eng_data);
if (eng_data.actual_size > eng_data.allocated_buf_size) {
dev_err(hdev->dev,
"Engines data size (%d Bytes) is bigger than allocated size (%u Bytes)\n",
eng_data.actual_size, status_buf_size);
vfree(eng_data.buf);
return -ENOMEM;
}
args->user_buffer_actual_size = eng_data.actual_size;
rc = copy_to_user(out, eng_data.buf, min_t(size_t, status_buf_size, eng_data.actual_size)) ?
-EFAULT : 0;
vfree(eng_data.buf);
return rc;
}
static int page_fault_info(struct hl_fpriv *hpriv, struct hl_info_args *args)
{
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
struct hl_device *hdev = hpriv->hdev;
u32 max_size = args->return_size;
struct page_fault_info *pgf_info;
if ((!max_size) || (!out))
return -EINVAL;
pgf_info = &hdev->captured_err_info.page_fault_info;
if (!pgf_info->page_fault_info_available)
return 0;
return copy_to_user(out, &pgf_info->page_fault,
min_t(size_t, max_size, sizeof(struct hl_page_fault_info))) ? -EFAULT : 0;
}
static int user_mappings_info(struct hl_fpriv *hpriv, struct hl_info_args *args)
{
void __user *out = (void __user *) (uintptr_t) args->return_pointer;
u32 user_buf_size = args->return_size;
struct hl_device *hdev = hpriv->hdev;
struct page_fault_info *pgf_info;
u64 actual_size;
if (!out)
return -EINVAL;
pgf_info = &hdev->captured_err_info.page_fault_info;
if (!pgf_info->page_fault_info_available)
return 0;
args->array_size = pgf_info->num_of_user_mappings;
actual_size = pgf_info->num_of_user_mappings * sizeof(struct hl_user_mapping);
if (user_buf_size < actual_size)
return -ENOMEM;
return copy_to_user(out, pgf_info->user_mappings, actual_size) ? -EFAULT : 0;
}
static int send_fw_generic_request(struct hl_device *hdev, struct hl_info_args *info_args)
{
void __user *buff = (void __user *) (uintptr_t) info_args->return_pointer;
u32 size = info_args->return_size;
dma_addr_t dma_handle;
bool need_input_buff;
void *fw_buff;
int rc = 0;
switch (info_args->fw_sub_opcode) {
case HL_PASSTHROUGH_VERSIONS:
need_input_buff = false;
break;
default:
return -EINVAL;
}
if (size > SZ_1M) {
dev_err(hdev->dev, "buffer size cannot exceed 1MB\n");
return -EINVAL;
}
fw_buff = hl_cpu_accessible_dma_pool_alloc(hdev, size, &dma_handle);
if (!fw_buff)
return -ENOMEM;
if (need_input_buff && copy_from_user(fw_buff, buff, size)) {
dev_dbg(hdev->dev, "Failed to copy from user FW buff\n");
rc = -EFAULT;
goto free_buff;
}
rc = hl_fw_send_generic_request(hdev, info_args->fw_sub_opcode, dma_handle, &size);
if (rc)
goto free_buff;
if (copy_to_user(buff, fw_buff, min(size, info_args->return_size))) {
dev_dbg(hdev->dev, "Failed to copy to user FW generic req output\n");
rc = -EFAULT;
}
free_buff:
hl_cpu_accessible_dma_pool_free(hdev, info_args->return_size, fw_buff);
return rc;
}
static int _hl_info_ioctl(struct hl_fpriv *hpriv, void *data,
struct device *dev)
{
enum hl_device_status status;
struct hl_info_args *args = data;
struct hl_device *hdev = hpriv->hdev;
int rc;
if (args->pad) {
dev_dbg(hdev->dev, "Padding bytes must be 0\n");
return -EINVAL;
}
/*
* Information is returned for the following opcodes even if the device
* is disabled or in reset.
*/
switch (args->op) {
case HL_INFO_HW_IP_INFO:
return hw_ip_info(hdev, args);
case HL_INFO_DEVICE_STATUS:
return device_status_info(hdev, args);
case HL_INFO_RESET_COUNT:
return get_reset_count(hdev, args);
case HL_INFO_HW_EVENTS:
return hw_events_info(hdev, false, args);
case HL_INFO_HW_EVENTS_AGGREGATE:
return hw_events_info(hdev, true, args);
case HL_INFO_CS_COUNTERS:
return cs_counters_info(hpriv, args);
case HL_INFO_CLK_THROTTLE_REASON:
return clk_throttle_info(hpriv, args);
case HL_INFO_SYNC_MANAGER:
return sync_manager_info(hpriv, args);
case HL_INFO_OPEN_STATS:
return open_stats_info(hpriv, args);
case HL_INFO_LAST_ERR_OPEN_DEV_TIME:
return last_err_open_dev_info(hpriv, args);
case HL_INFO_CS_TIMEOUT_EVENT:
return cs_timeout_info(hpriv, args);
case HL_INFO_RAZWI_EVENT:
return razwi_info(hpriv, args);
case HL_INFO_UNDEFINED_OPCODE_EVENT:
return undefined_opcode_info(hpriv, args);
case HL_INFO_DEV_MEM_ALLOC_PAGE_SIZES:
return dev_mem_alloc_page_sizes_info(hpriv, args);
case HL_INFO_GET_EVENTS:
return events_info(hpriv, args);
case HL_INFO_PAGE_FAULT_EVENT:
return page_fault_info(hpriv, args);
case HL_INFO_USER_MAPPINGS:
return user_mappings_info(hpriv, args);
case HL_INFO_UNREGISTER_EVENTFD:
return eventfd_unregister(hpriv, args);
default:
break;
}
if (!hl_device_operational(hdev, &status)) {
dev_dbg_ratelimited(dev,
"Device is %s. Can't execute INFO IOCTL\n",
hdev->status[status]);
return -EBUSY;
}
switch (args->op) {
case HL_INFO_DRAM_USAGE:
rc = dram_usage_info(hpriv, args);
break;
case HL_INFO_HW_IDLE:
rc = hw_idle(hdev, args);
break;
case HL_INFO_DEVICE_UTILIZATION:
rc = device_utilization(hdev, args);
break;
case HL_INFO_CLK_RATE:
rc = get_clk_rate(hdev, args);
break;
case HL_INFO_TIME_SYNC:
return time_sync_info(hdev, args);
case HL_INFO_PCI_COUNTERS:
return pci_counters_info(hpriv, args);
case HL_INFO_TOTAL_ENERGY:
return total_energy_consumption_info(hpriv, args);
case HL_INFO_PLL_FREQUENCY:
return pll_frequency_info(hpriv, args);
case HL_INFO_POWER:
return power_info(hpriv, args);
case HL_INFO_DRAM_REPLACED_ROWS:
return dram_replaced_rows_info(hpriv, args);
case HL_INFO_DRAM_PENDING_ROWS:
return dram_pending_rows_info(hpriv, args);
case HL_INFO_SECURED_ATTESTATION:
return sec_attest_info(hpriv, args);
case HL_INFO_REGISTER_EVENTFD:
return eventfd_register(hpriv, args);
case HL_INFO_ENGINE_STATUS:
return engine_status_info(hpriv, args);
case HL_INFO_FW_GENERIC_REQ:
return send_fw_generic_request(hdev, args);
default:
dev_err(dev, "Invalid request %d\n", args->op);
rc = -EINVAL;
break;
}
return rc;
}
static int hl_info_ioctl(struct hl_fpriv *hpriv, void *data)
{
return _hl_info_ioctl(hpriv, data, hpriv->hdev->dev);
}
static int hl_info_ioctl_control(struct hl_fpriv *hpriv, void *data)
{
return _hl_info_ioctl(hpriv, data, hpriv->hdev->dev_ctrl);
}
static int hl_debug_ioctl(struct hl_fpriv *hpriv, void *data)
{
struct hl_debug_args *args = data;
struct hl_device *hdev = hpriv->hdev;
enum hl_device_status status;
int rc = 0;
if (!hl_device_operational(hdev, &status)) {
dev_dbg_ratelimited(hdev->dev,
"Device is %s. Can't execute DEBUG IOCTL\n",
hdev->status[status]);
return -EBUSY;
}
switch (args->op) {
case HL_DEBUG_OP_ETR:
case HL_DEBUG_OP_ETF:
case HL_DEBUG_OP_STM:
case HL_DEBUG_OP_FUNNEL:
case HL_DEBUG_OP_BMON:
case HL_DEBUG_OP_SPMU:
case HL_DEBUG_OP_TIMESTAMP:
if (!hdev->in_debug) {
dev_err_ratelimited(hdev->dev,
"Rejecting debug configuration request because device not in debug mode\n");
return -EFAULT;
}
args->input_size = min(args->input_size, hl_debug_struct_size[args->op]);
rc = debug_coresight(hdev, hpriv->ctx, args);
break;
case HL_DEBUG_OP_SET_MODE:
rc = hl_device_set_debug_mode(hdev, hpriv->ctx, (bool) args->enable);
break;
default:
dev_err(hdev->dev, "Invalid request %d\n", args->op);
rc = -EINVAL;
break;
}
return rc;
}
#define HL_IOCTL_DEF(ioctl, _func) \
[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func}
static const struct hl_ioctl_desc hl_ioctls[] = {
HL_IOCTL_DEF(HL_IOCTL_INFO, hl_info_ioctl),
HL_IOCTL_DEF(HL_IOCTL_CB, hl_cb_ioctl),
HL_IOCTL_DEF(HL_IOCTL_CS, hl_cs_ioctl),
HL_IOCTL_DEF(HL_IOCTL_WAIT_CS, hl_wait_ioctl),
HL_IOCTL_DEF(HL_IOCTL_MEMORY, hl_mem_ioctl),
HL_IOCTL_DEF(HL_IOCTL_DEBUG, hl_debug_ioctl)
};
static const struct hl_ioctl_desc hl_ioctls_control[] = {
HL_IOCTL_DEF(HL_IOCTL_INFO, hl_info_ioctl_control)
};
static long _hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg,
const struct hl_ioctl_desc *ioctl, struct device *dev)
{
struct hl_fpriv *hpriv = filep->private_data;
unsigned int nr = _IOC_NR(cmd);
char stack_kdata[128] = {0};
char *kdata = NULL;
unsigned int usize, asize;
hl_ioctl_t *func;
u32 hl_size;
int retcode;
/* Do not trust userspace, use our own definition */
func = ioctl->func;
if (unlikely(!func)) {
dev_dbg(dev, "no function\n");
retcode = -ENOTTY;
goto out_err;
}
hl_size = _IOC_SIZE(ioctl->cmd);
usize = asize = _IOC_SIZE(cmd);
if (hl_size > asize)
asize = hl_size;
cmd = ioctl->cmd;
if (cmd & (IOC_IN | IOC_OUT)) {
if (asize <= sizeof(stack_kdata)) {
kdata = stack_kdata;
} else {
kdata = kzalloc(asize, GFP_KERNEL);
if (!kdata) {
retcode = -ENOMEM;
goto out_err;
}
}
}
if (cmd & IOC_IN) {
if (copy_from_user(kdata, (void __user *)arg, usize)) {
retcode = -EFAULT;
goto out_err;
}
}
retcode = func(hpriv, kdata);
if ((cmd & IOC_OUT) && copy_to_user((void __user *)arg, kdata, usize))
retcode = -EFAULT;
out_err:
if (retcode)
dev_dbg(dev, "error in ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
task_pid_nr(current), cmd, nr);
if (kdata != stack_kdata)
kfree(kdata);
return retcode;
}
long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
{
struct hl_fpriv *hpriv = filep->private_data;
struct hl_device *hdev = hpriv->hdev;
const struct hl_ioctl_desc *ioctl = NULL;
unsigned int nr = _IOC_NR(cmd);
if (!hdev) {
pr_err_ratelimited("Sending ioctl after device was removed! Please close FD\n");
return -ENODEV;
}
if ((nr >= HL_COMMAND_START) && (nr < HL_COMMAND_END)) {
ioctl = &hl_ioctls[nr];
} else {
dev_err(hdev->dev, "invalid ioctl: pid=%d, nr=0x%02x\n",
task_pid_nr(current), nr);
return -ENOTTY;
}
return _hl_ioctl(filep, cmd, arg, ioctl, hdev->dev);
}
long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg)
{
struct hl_fpriv *hpriv = filep->private_data;
struct hl_device *hdev = hpriv->hdev;
const struct hl_ioctl_desc *ioctl = NULL;
unsigned int nr = _IOC_NR(cmd);
if (!hdev) {
pr_err_ratelimited("Sending ioctl after device was removed! Please close FD\n");
return -ENODEV;
}
if (nr == _IOC_NR(HL_IOCTL_INFO)) {
ioctl = &hl_ioctls_control[nr];
} else {
dev_err(hdev->dev_ctrl, "invalid ioctl: pid=%d, nr=0x%02x\n",
task_pid_nr(current), nr);
return -ENOTTY;
}
return _hl_ioctl(filep, cmd, arg, ioctl, hdev->dev_ctrl);
}