linux-zen-server/drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c

2627 lines
67 KiB
C
Raw Permalink Normal View History

2023-08-30 17:53:23 +02:00
/*
* Copyright 2008 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
* Copyright 2009 Jerome Glisse.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
* Jerome Glisse
*/
#include <linux/dma-fence-array.h>
#include <linux/interval_tree_generic.h>
#include <linux/idr.h>
#include <linux/dma-buf.h>
#include <drm/amdgpu_drm.h>
#include <drm/drm_drv.h>
#include <drm/ttm/ttm_tt.h>
#include "amdgpu.h"
#include "amdgpu_trace.h"
#include "amdgpu_amdkfd.h"
#include "amdgpu_gmc.h"
#include "amdgpu_xgmi.h"
#include "amdgpu_dma_buf.h"
#include "amdgpu_res_cursor.h"
#include "kfd_svm.h"
/**
* DOC: GPUVM
*
* GPUVM is the MMU functionality provided on the GPU.
* GPUVM is similar to the legacy GART on older asics, however
* rather than there being a single global GART table
* for the entire GPU, there can be multiple GPUVM page tables active
* at any given time. The GPUVM page tables can contain a mix
* VRAM pages and system pages (both memory and MMIO) and system pages
* can be mapped as snooped (cached system pages) or unsnooped
* (uncached system pages).
*
* Each active GPUVM has an ID associated with it and there is a page table
* linked with each VMID. When executing a command buffer,
* the kernel tells the engine what VMID to use for that command
* buffer. VMIDs are allocated dynamically as commands are submitted.
* The userspace drivers maintain their own address space and the kernel
* sets up their pages tables accordingly when they submit their
* command buffers and a VMID is assigned.
* The hardware supports up to 16 active GPUVMs at any given time.
*
* Each GPUVM is represented by a 1-2 or 1-5 level page table, depending
* on the ASIC family. GPUVM supports RWX attributes on each page as well
* as other features such as encryption and caching attributes.
*
* VMID 0 is special. It is the GPUVM used for the kernel driver. In
* addition to an aperture managed by a page table, VMID 0 also has
* several other apertures. There is an aperture for direct access to VRAM
* and there is a legacy AGP aperture which just forwards accesses directly
* to the matching system physical addresses (or IOVAs when an IOMMU is
* present). These apertures provide direct access to these memories without
* incurring the overhead of a page table. VMID 0 is used by the kernel
* driver for tasks like memory management.
*
* GPU clients (i.e., engines on the GPU) use GPUVM VMIDs to access memory.
* For user applications, each application can have their own unique GPUVM
* address space. The application manages the address space and the kernel
* driver manages the GPUVM page tables for each process. If an GPU client
* accesses an invalid page, it will generate a GPU page fault, similar to
* accessing an invalid page on a CPU.
*/
#define START(node) ((node)->start)
#define LAST(node) ((node)->last)
INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
START, LAST, static, amdgpu_vm_it)
#undef START
#undef LAST
/**
* struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
*/
struct amdgpu_prt_cb {
/**
* @adev: amdgpu device
*/
struct amdgpu_device *adev;
/**
* @cb: callback
*/
struct dma_fence_cb cb;
};
/**
* struct amdgpu_vm_tlb_seq_cb - Helper to increment the TLB flush sequence
*/
struct amdgpu_vm_tlb_seq_cb {
/**
* @vm: pointer to the amdgpu_vm structure to set the fence sequence on
*/
struct amdgpu_vm *vm;
/**
* @cb: callback
*/
struct dma_fence_cb cb;
};
/**
* amdgpu_vm_set_pasid - manage pasid and vm ptr mapping
*
* @adev: amdgpu_device pointer
* @vm: amdgpu_vm pointer
* @pasid: the pasid the VM is using on this GPU
*
* Set the pasid this VM is using on this GPU, can also be used to remove the
* pasid by passing in zero.
*
*/
int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm,
u32 pasid)
{
int r;
if (vm->pasid == pasid)
return 0;
if (vm->pasid) {
r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid));
if (r < 0)
return r;
vm->pasid = 0;
}
if (pasid) {
r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm,
GFP_KERNEL));
if (r < 0)
return r;
vm->pasid = pasid;
}
return 0;
}
/**
* amdgpu_vm_bo_evicted - vm_bo is evicted
*
* @vm_bo: vm_bo which is evicted
*
* State for PDs/PTs and per VM BOs which are not at the location they should
* be.
*/
static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
{
struct amdgpu_vm *vm = vm_bo->vm;
struct amdgpu_bo *bo = vm_bo->bo;
vm_bo->moved = true;
spin_lock(&vm_bo->vm->status_lock);
if (bo->tbo.type == ttm_bo_type_kernel)
list_move(&vm_bo->vm_status, &vm->evicted);
else
list_move_tail(&vm_bo->vm_status, &vm->evicted);
spin_unlock(&vm_bo->vm->status_lock);
}
/**
* amdgpu_vm_bo_moved - vm_bo is moved
*
* @vm_bo: vm_bo which is moved
*
* State for per VM BOs which are moved, but that change is not yet reflected
* in the page tables.
*/
static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
{
spin_lock(&vm_bo->vm->status_lock);
list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
spin_unlock(&vm_bo->vm->status_lock);
}
/**
* amdgpu_vm_bo_idle - vm_bo is idle
*
* @vm_bo: vm_bo which is now idle
*
* State for PDs/PTs and per VM BOs which have gone through the state machine
* and are now idle.
*/
static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
{
spin_lock(&vm_bo->vm->status_lock);
list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
spin_unlock(&vm_bo->vm->status_lock);
vm_bo->moved = false;
}
/**
* amdgpu_vm_bo_invalidated - vm_bo is invalidated
*
* @vm_bo: vm_bo which is now invalidated
*
* State for normal BOs which are invalidated and that change not yet reflected
* in the PTs.
*/
static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
{
spin_lock(&vm_bo->vm->status_lock);
list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
spin_unlock(&vm_bo->vm->status_lock);
}
/**
* amdgpu_vm_bo_relocated - vm_bo is reloacted
*
* @vm_bo: vm_bo which is relocated
*
* State for PDs/PTs which needs to update their parent PD.
* For the root PD, just move to idle state.
*/
static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
{
if (vm_bo->bo->parent) {
spin_lock(&vm_bo->vm->status_lock);
list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
spin_unlock(&vm_bo->vm->status_lock);
} else {
amdgpu_vm_bo_idle(vm_bo);
}
}
/**
* amdgpu_vm_bo_done - vm_bo is done
*
* @vm_bo: vm_bo which is now done
*
* State for normal BOs which are invalidated and that change has been updated
* in the PTs.
*/
static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
{
spin_lock(&vm_bo->vm->status_lock);
list_move(&vm_bo->vm_status, &vm_bo->vm->done);
spin_unlock(&vm_bo->vm->status_lock);
}
/**
* amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
*
* @base: base structure for tracking BO usage in a VM
* @vm: vm to which bo is to be added
* @bo: amdgpu buffer object
*
* Initialize a bo_va_base structure and add it to the appropriate lists
*
*/
void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
struct amdgpu_vm *vm, struct amdgpu_bo *bo)
{
base->vm = vm;
base->bo = bo;
base->next = NULL;
INIT_LIST_HEAD(&base->vm_status);
if (!bo)
return;
base->next = bo->vm_bo;
bo->vm_bo = base;
if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv)
return;
dma_resv_assert_held(vm->root.bo->tbo.base.resv);
ttm_bo_set_bulk_move(&bo->tbo, &vm->lru_bulk_move);
if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
amdgpu_vm_bo_relocated(base);
else
amdgpu_vm_bo_idle(base);
if (bo->preferred_domains &
amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type))
return;
/*
* we checked all the prerequisites, but it looks like this per vm bo
* is currently evicted. add the bo to the evicted list to make sure it
* is validated on next vm use to avoid fault.
* */
amdgpu_vm_bo_evicted(base);
}
/**
* amdgpu_vm_get_pd_bo - add the VM PD to a validation list
*
* @vm: vm providing the BOs
* @validated: head of validation list
* @entry: entry to add
*
* Add the page directory to the list of BOs to
* validate for command submission.
*/
void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
struct list_head *validated,
struct amdgpu_bo_list_entry *entry)
{
entry->priority = 0;
entry->tv.bo = &vm->root.bo->tbo;
/* Two for VM updates, one for TTM and one for the CS job */
entry->tv.num_shared = 4;
entry->user_pages = NULL;
list_add(&entry->tv.head, validated);
}
/**
* amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
*
* @adev: amdgpu device pointer
* @vm: vm providing the BOs
*
* Move all BOs to the end of LRU and remember their positions to put them
* together.
*/
void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
struct amdgpu_vm *vm)
{
spin_lock(&adev->mman.bdev.lru_lock);
ttm_lru_bulk_move_tail(&vm->lru_bulk_move);
spin_unlock(&adev->mman.bdev.lru_lock);
}
/**
* amdgpu_vm_validate_pt_bos - validate the page table BOs
*
* @adev: amdgpu device pointer
* @vm: vm providing the BOs
* @validate: callback to do the validation
* @param: parameter for the validation callback
*
* Validate the page table BOs on command submission if neccessary.
*
* Returns:
* Validation result.
*/
int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
int (*validate)(void *p, struct amdgpu_bo *bo),
void *param)
{
struct amdgpu_vm_bo_base *bo_base;
struct amdgpu_bo *shadow;
struct amdgpu_bo *bo;
int r;
spin_lock(&vm->status_lock);
while (!list_empty(&vm->evicted)) {
bo_base = list_first_entry(&vm->evicted,
struct amdgpu_vm_bo_base,
vm_status);
spin_unlock(&vm->status_lock);
bo = bo_base->bo;
shadow = amdgpu_bo_shadowed(bo);
r = validate(param, bo);
if (r)
return r;
if (shadow) {
r = validate(param, shadow);
if (r)
return r;
}
if (bo->tbo.type != ttm_bo_type_kernel) {
amdgpu_vm_bo_moved(bo_base);
} else {
vm->update_funcs->map_table(to_amdgpu_bo_vm(bo));
amdgpu_vm_bo_relocated(bo_base);
}
spin_lock(&vm->status_lock);
}
spin_unlock(&vm->status_lock);
amdgpu_vm_eviction_lock(vm);
vm->evicting = false;
amdgpu_vm_eviction_unlock(vm);
return 0;
}
/**
* amdgpu_vm_ready - check VM is ready for updates
*
* @vm: VM to check
*
* Check if all VM PDs/PTs are ready for updates
*
* Returns:
* True if VM is not evicting.
*/
bool amdgpu_vm_ready(struct amdgpu_vm *vm)
{
bool empty;
bool ret;
amdgpu_vm_eviction_lock(vm);
ret = !vm->evicting;
amdgpu_vm_eviction_unlock(vm);
spin_lock(&vm->status_lock);
empty = list_empty(&vm->evicted);
spin_unlock(&vm->status_lock);
return ret && empty;
}
/**
* amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
*
* @adev: amdgpu_device pointer
*/
void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
{
const struct amdgpu_ip_block *ip_block;
bool has_compute_vm_bug;
struct amdgpu_ring *ring;
int i;
has_compute_vm_bug = false;
ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
if (ip_block) {
/* Compute has a VM bug for GFX version < 7.
Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
if (ip_block->version->major <= 7)
has_compute_vm_bug = true;
else if (ip_block->version->major == 8)
if (adev->gfx.mec_fw_version < 673)
has_compute_vm_bug = true;
}
for (i = 0; i < adev->num_rings; i++) {
ring = adev->rings[i];
if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
/* only compute rings */
ring->has_compute_vm_bug = has_compute_vm_bug;
else
ring->has_compute_vm_bug = false;
}
}
/**
* amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
*
* @ring: ring on which the job will be submitted
* @job: job to submit
*
* Returns:
* True if sync is needed.
*/
bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
struct amdgpu_job *job)
{
struct amdgpu_device *adev = ring->adev;
unsigned vmhub = ring->funcs->vmhub;
struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
if (job->vmid == 0)
return false;
if (job->vm_needs_flush || ring->has_compute_vm_bug)
return true;
if (ring->funcs->emit_gds_switch && job->gds_switch_needed)
return true;
if (amdgpu_vmid_had_gpu_reset(adev, &id_mgr->ids[job->vmid]))
return true;
return false;
}
/**
* amdgpu_vm_flush - hardware flush the vm
*
* @ring: ring to use for flush
* @job: related job
* @need_pipe_sync: is pipe sync needed
*
* Emit a VM flush when it is necessary.
*
* Returns:
* 0 on success, errno otherwise.
*/
int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
bool need_pipe_sync)
{
struct amdgpu_device *adev = ring->adev;
unsigned vmhub = ring->funcs->vmhub;
struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
bool spm_update_needed = job->spm_update_needed;
bool gds_switch_needed = ring->funcs->emit_gds_switch &&
job->gds_switch_needed;
bool vm_flush_needed = job->vm_needs_flush;
struct dma_fence *fence = NULL;
bool pasid_mapping_needed = false;
unsigned patch_offset = 0;
int r;
if (amdgpu_vmid_had_gpu_reset(adev, id)) {
gds_switch_needed = true;
vm_flush_needed = true;
pasid_mapping_needed = true;
spm_update_needed = true;
}
mutex_lock(&id_mgr->lock);
if (id->pasid != job->pasid || !id->pasid_mapping ||
!dma_fence_is_signaled(id->pasid_mapping))
pasid_mapping_needed = true;
mutex_unlock(&id_mgr->lock);
gds_switch_needed &= !!ring->funcs->emit_gds_switch;
vm_flush_needed &= !!ring->funcs->emit_vm_flush &&
job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
ring->funcs->emit_wreg;
if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
return 0;
amdgpu_ring_ib_begin(ring);
if (ring->funcs->init_cond_exec)
patch_offset = amdgpu_ring_init_cond_exec(ring);
if (need_pipe_sync)
amdgpu_ring_emit_pipeline_sync(ring);
if (vm_flush_needed) {
trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
}
if (pasid_mapping_needed)
amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
if (spm_update_needed && adev->gfx.rlc.funcs->update_spm_vmid)
adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
if (!ring->is_mes_queue && ring->funcs->emit_gds_switch &&
gds_switch_needed) {
amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
job->gds_size, job->gws_base,
job->gws_size, job->oa_base,
job->oa_size);
}
if (vm_flush_needed || pasid_mapping_needed) {
r = amdgpu_fence_emit(ring, &fence, NULL, 0);
if (r)
return r;
}
if (vm_flush_needed) {
mutex_lock(&id_mgr->lock);
dma_fence_put(id->last_flush);
id->last_flush = dma_fence_get(fence);
id->current_gpu_reset_count =
atomic_read(&adev->gpu_reset_counter);
mutex_unlock(&id_mgr->lock);
}
if (pasid_mapping_needed) {
mutex_lock(&id_mgr->lock);
id->pasid = job->pasid;
dma_fence_put(id->pasid_mapping);
id->pasid_mapping = dma_fence_get(fence);
mutex_unlock(&id_mgr->lock);
}
dma_fence_put(fence);
if (ring->funcs->patch_cond_exec)
amdgpu_ring_patch_cond_exec(ring, patch_offset);
/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
if (ring->funcs->emit_switch_buffer) {
amdgpu_ring_emit_switch_buffer(ring);
amdgpu_ring_emit_switch_buffer(ring);
}
amdgpu_ring_ib_end(ring);
return 0;
}
/**
* amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
*
* @vm: requested vm
* @bo: requested buffer object
*
* Find @bo inside the requested vm.
* Search inside the @bos vm list for the requested vm
* Returns the found bo_va or NULL if none is found
*
* Object has to be reserved!
*
* Returns:
* Found bo_va or NULL.
*/
struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
struct amdgpu_bo *bo)
{
struct amdgpu_vm_bo_base *base;
for (base = bo->vm_bo; base; base = base->next) {
if (base->vm != vm)
continue;
return container_of(base, struct amdgpu_bo_va, base);
}
return NULL;
}
/**
* amdgpu_vm_map_gart - Resolve gart mapping of addr
*
* @pages_addr: optional DMA address to use for lookup
* @addr: the unmapped addr
*
* Look up the physical address of the page that the pte resolves
* to.
*
* Returns:
* The pointer for the page table entry.
*/
uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
{
uint64_t result;
/* page table offset */
result = pages_addr[addr >> PAGE_SHIFT];
/* in case cpu page size != gpu page size*/
result |= addr & (~PAGE_MASK);
result &= 0xFFFFFFFFFFFFF000ULL;
return result;
}
/**
* amdgpu_vm_update_pdes - make sure that all directories are valid
*
* @adev: amdgpu_device pointer
* @vm: requested vm
* @immediate: submit immediately to the paging queue
*
* Makes sure all directories are up to date.
*
* Returns:
* 0 for success, error for failure.
*/
int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
struct amdgpu_vm *vm, bool immediate)
{
struct amdgpu_vm_update_params params;
struct amdgpu_vm_bo_base *entry;
bool flush_tlb_needed = false;
LIST_HEAD(relocated);
int r, idx;
spin_lock(&vm->status_lock);
list_splice_init(&vm->relocated, &relocated);
spin_unlock(&vm->status_lock);
if (list_empty(&relocated))
return 0;
if (!drm_dev_enter(adev_to_drm(adev), &idx))
return -ENODEV;
memset(&params, 0, sizeof(params));
params.adev = adev;
params.vm = vm;
params.immediate = immediate;
r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
if (r)
goto error;
list_for_each_entry(entry, &relocated, vm_status) {
/* vm_flush_needed after updating moved PDEs */
flush_tlb_needed |= entry->moved;
r = amdgpu_vm_pde_update(&params, entry);
if (r)
goto error;
}
r = vm->update_funcs->commit(&params, &vm->last_update);
if (r)
goto error;
if (flush_tlb_needed)
atomic64_inc(&vm->tlb_seq);
while (!list_empty(&relocated)) {
entry = list_first_entry(&relocated, struct amdgpu_vm_bo_base,
vm_status);
amdgpu_vm_bo_idle(entry);
}
error:
drm_dev_exit(idx);
return r;
}
/**
* amdgpu_vm_tlb_seq_cb - make sure to increment tlb sequence
* @fence: unused
* @cb: the callback structure
*
* Increments the tlb sequence to make sure that future CS execute a VM flush.
*/
static void amdgpu_vm_tlb_seq_cb(struct dma_fence *fence,
struct dma_fence_cb *cb)
{
struct amdgpu_vm_tlb_seq_cb *tlb_cb;
tlb_cb = container_of(cb, typeof(*tlb_cb), cb);
atomic64_inc(&tlb_cb->vm->tlb_seq);
kfree(tlb_cb);
}
/**
* amdgpu_vm_update_range - update a range in the vm page table
*
* @adev: amdgpu_device pointer to use for commands
* @vm: the VM to update the range
* @immediate: immediate submission in a page fault
* @unlocked: unlocked invalidation during MM callback
* @flush_tlb: trigger tlb invalidation after update completed
* @resv: fences we need to sync to
* @start: start of mapped range
* @last: last mapped entry
* @flags: flags for the entries
* @offset: offset into nodes and pages_addr
* @vram_base: base for vram mappings
* @res: ttm_resource to map
* @pages_addr: DMA addresses to use for mapping
* @fence: optional resulting fence
*
* Fill in the page table entries between @start and @last.
*
* Returns:
* 0 for success, negative erro code for failure.
*/
int amdgpu_vm_update_range(struct amdgpu_device *adev, struct amdgpu_vm *vm,
bool immediate, bool unlocked, bool flush_tlb,
struct dma_resv *resv, uint64_t start, uint64_t last,
uint64_t flags, uint64_t offset, uint64_t vram_base,
struct ttm_resource *res, dma_addr_t *pages_addr,
struct dma_fence **fence)
{
struct amdgpu_vm_update_params params;
struct amdgpu_vm_tlb_seq_cb *tlb_cb;
struct amdgpu_res_cursor cursor;
enum amdgpu_sync_mode sync_mode;
int r, idx;
if (!drm_dev_enter(adev_to_drm(adev), &idx))
return -ENODEV;
tlb_cb = kmalloc(sizeof(*tlb_cb), GFP_KERNEL);
if (!tlb_cb) {
r = -ENOMEM;
goto error_unlock;
}
/* Vega20+XGMI where PTEs get inadvertently cached in L2 texture cache,
* heavy-weight flush TLB unconditionally.
*/
flush_tlb |= adev->gmc.xgmi.num_physical_nodes &&
adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 0);
/*
* On GFX8 and older any 8 PTE block with a valid bit set enters the TLB
*/
flush_tlb |= adev->ip_versions[GC_HWIP][0] < IP_VERSION(9, 0, 0);
memset(&params, 0, sizeof(params));
params.adev = adev;
params.vm = vm;
params.immediate = immediate;
params.pages_addr = pages_addr;
params.unlocked = unlocked;
/* Implicitly sync to command submissions in the same VM before
* unmapping. Sync to moving fences before mapping.
*/
if (!(flags & AMDGPU_PTE_VALID))
sync_mode = AMDGPU_SYNC_EQ_OWNER;
else
sync_mode = AMDGPU_SYNC_EXPLICIT;
amdgpu_vm_eviction_lock(vm);
if (vm->evicting) {
r = -EBUSY;
goto error_free;
}
if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
struct dma_fence *tmp = dma_fence_get_stub();
amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true);
swap(vm->last_unlocked, tmp);
dma_fence_put(tmp);
}
r = vm->update_funcs->prepare(&params, resv, sync_mode);
if (r)
goto error_free;
amdgpu_res_first(pages_addr ? NULL : res, offset,
(last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor);
while (cursor.remaining) {
uint64_t tmp, num_entries, addr;
num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT;
if (pages_addr) {
bool contiguous = true;
if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) {
uint64_t pfn = cursor.start >> PAGE_SHIFT;
uint64_t count;
contiguous = pages_addr[pfn + 1] ==
pages_addr[pfn] + PAGE_SIZE;
tmp = num_entries /
AMDGPU_GPU_PAGES_IN_CPU_PAGE;
for (count = 2; count < tmp; ++count) {
uint64_t idx = pfn + count;
if (contiguous != (pages_addr[idx] ==
pages_addr[idx - 1] + PAGE_SIZE))
break;
}
num_entries = count *
AMDGPU_GPU_PAGES_IN_CPU_PAGE;
}
if (!contiguous) {
addr = cursor.start;
params.pages_addr = pages_addr;
} else {
addr = pages_addr[cursor.start >> PAGE_SHIFT];
params.pages_addr = NULL;
}
} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
addr = vram_base + cursor.start;
} else {
addr = 0;
}
tmp = start + num_entries;
r = amdgpu_vm_ptes_update(&params, start, tmp, addr, flags);
if (r)
goto error_free;
amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE);
start = tmp;
}
r = vm->update_funcs->commit(&params, fence);
if (flush_tlb || params.table_freed) {
tlb_cb->vm = vm;
if (fence && *fence &&
!dma_fence_add_callback(*fence, &tlb_cb->cb,
amdgpu_vm_tlb_seq_cb)) {
dma_fence_put(vm->last_tlb_flush);
vm->last_tlb_flush = dma_fence_get(*fence);
} else {
amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb);
}
tlb_cb = NULL;
}
error_free:
kfree(tlb_cb);
error_unlock:
amdgpu_vm_eviction_unlock(vm);
drm_dev_exit(idx);
return r;
}
void amdgpu_vm_get_memory(struct amdgpu_vm *vm, uint64_t *vram_mem,
uint64_t *gtt_mem, uint64_t *cpu_mem)
{
struct amdgpu_bo_va *bo_va, *tmp;
spin_lock(&vm->status_lock);
list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
if (!bo_va->base.bo)
continue;
amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
gtt_mem, cpu_mem);
}
list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
if (!bo_va->base.bo)
continue;
amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
gtt_mem, cpu_mem);
}
list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
if (!bo_va->base.bo)
continue;
amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
gtt_mem, cpu_mem);
}
list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
if (!bo_va->base.bo)
continue;
amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
gtt_mem, cpu_mem);
}
list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
if (!bo_va->base.bo)
continue;
amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
gtt_mem, cpu_mem);
}
list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
if (!bo_va->base.bo)
continue;
amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
gtt_mem, cpu_mem);
}
spin_unlock(&vm->status_lock);
}
/**
* amdgpu_vm_bo_update - update all BO mappings in the vm page table
*
* @adev: amdgpu_device pointer
* @bo_va: requested BO and VM object
* @clear: if true clear the entries
*
* Fill in the page table entries for @bo_va.
*
* Returns:
* 0 for success, -EINVAL for failure.
*/
int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
bool clear)
{
struct amdgpu_bo *bo = bo_va->base.bo;
struct amdgpu_vm *vm = bo_va->base.vm;
struct amdgpu_bo_va_mapping *mapping;
dma_addr_t *pages_addr = NULL;
struct ttm_resource *mem;
struct dma_fence **last_update;
bool flush_tlb = clear;
struct dma_resv *resv;
uint64_t vram_base;
uint64_t flags;
int r;
if (clear || !bo) {
mem = NULL;
resv = vm->root.bo->tbo.base.resv;
} else {
struct drm_gem_object *obj = &bo->tbo.base;
resv = bo->tbo.base.resv;
if (obj->import_attach && bo_va->is_xgmi) {
struct dma_buf *dma_buf = obj->import_attach->dmabuf;
struct drm_gem_object *gobj = dma_buf->priv;
struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
if (abo->tbo.resource->mem_type == TTM_PL_VRAM)
bo = gem_to_amdgpu_bo(gobj);
}
mem = bo->tbo.resource;
if (mem->mem_type == TTM_PL_TT ||
mem->mem_type == AMDGPU_PL_PREEMPT)
pages_addr = bo->tbo.ttm->dma_address;
}
if (bo) {
struct amdgpu_device *bo_adev;
flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
if (amdgpu_bo_encrypted(bo))
flags |= AMDGPU_PTE_TMZ;
bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
vram_base = bo_adev->vm_manager.vram_base_offset;
} else {
flags = 0x0;
vram_base = 0;
}
if (clear || (bo && bo->tbo.base.resv ==
vm->root.bo->tbo.base.resv))
last_update = &vm->last_update;
else
last_update = &bo_va->last_pt_update;
if (!clear && bo_va->base.moved) {
flush_tlb = true;
list_splice_init(&bo_va->valids, &bo_va->invalids);
} else if (bo_va->cleared != clear) {
list_splice_init(&bo_va->valids, &bo_va->invalids);
}
list_for_each_entry(mapping, &bo_va->invalids, list) {
uint64_t update_flags = flags;
/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
* but in case of something, we filter the flags in first place
*/
if (!(mapping->flags & AMDGPU_PTE_READABLE))
update_flags &= ~AMDGPU_PTE_READABLE;
if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
update_flags &= ~AMDGPU_PTE_WRITEABLE;
/* Apply ASIC specific mapping flags */
amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags);
trace_amdgpu_vm_bo_update(mapping);
r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb,
resv, mapping->start, mapping->last,
update_flags, mapping->offset,
vram_base, mem, pages_addr,
last_update);
if (r)
return r;
}
/* If the BO is not in its preferred location add it back to
* the evicted list so that it gets validated again on the
* next command submission.
*/
if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
uint32_t mem_type = bo->tbo.resource->mem_type;
if (!(bo->preferred_domains &
amdgpu_mem_type_to_domain(mem_type)))
amdgpu_vm_bo_evicted(&bo_va->base);
else
amdgpu_vm_bo_idle(&bo_va->base);
} else {
amdgpu_vm_bo_done(&bo_va->base);
}
list_splice_init(&bo_va->invalids, &bo_va->valids);
bo_va->cleared = clear;
bo_va->base.moved = false;
if (trace_amdgpu_vm_bo_mapping_enabled()) {
list_for_each_entry(mapping, &bo_va->valids, list)
trace_amdgpu_vm_bo_mapping(mapping);
}
return 0;
}
/**
* amdgpu_vm_update_prt_state - update the global PRT state
*
* @adev: amdgpu_device pointer
*/
static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
{
unsigned long flags;
bool enable;
spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
enable = !!atomic_read(&adev->vm_manager.num_prt_users);
adev->gmc.gmc_funcs->set_prt(adev, enable);
spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
}
/**
* amdgpu_vm_prt_get - add a PRT user
*
* @adev: amdgpu_device pointer
*/
static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
{
if (!adev->gmc.gmc_funcs->set_prt)
return;
if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
amdgpu_vm_update_prt_state(adev);
}
/**
* amdgpu_vm_prt_put - drop a PRT user
*
* @adev: amdgpu_device pointer
*/
static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
{
if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
amdgpu_vm_update_prt_state(adev);
}
/**
* amdgpu_vm_prt_cb - callback for updating the PRT status
*
* @fence: fence for the callback
* @_cb: the callback function
*/
static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
{
struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
amdgpu_vm_prt_put(cb->adev);
kfree(cb);
}
/**
* amdgpu_vm_add_prt_cb - add callback for updating the PRT status
*
* @adev: amdgpu_device pointer
* @fence: fence for the callback
*/
static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
struct dma_fence *fence)
{
struct amdgpu_prt_cb *cb;
if (!adev->gmc.gmc_funcs->set_prt)
return;
cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
if (!cb) {
/* Last resort when we are OOM */
if (fence)
dma_fence_wait(fence, false);
amdgpu_vm_prt_put(adev);
} else {
cb->adev = adev;
if (!fence || dma_fence_add_callback(fence, &cb->cb,
amdgpu_vm_prt_cb))
amdgpu_vm_prt_cb(fence, &cb->cb);
}
}
/**
* amdgpu_vm_free_mapping - free a mapping
*
* @adev: amdgpu_device pointer
* @vm: requested vm
* @mapping: mapping to be freed
* @fence: fence of the unmap operation
*
* Free a mapping and make sure we decrease the PRT usage count if applicable.
*/
static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
struct amdgpu_bo_va_mapping *mapping,
struct dma_fence *fence)
{
if (mapping->flags & AMDGPU_PTE_PRT)
amdgpu_vm_add_prt_cb(adev, fence);
kfree(mapping);
}
/**
* amdgpu_vm_prt_fini - finish all prt mappings
*
* @adev: amdgpu_device pointer
* @vm: requested vm
*
* Register a cleanup callback to disable PRT support after VM dies.
*/
static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
{
struct dma_resv *resv = vm->root.bo->tbo.base.resv;
struct dma_resv_iter cursor;
struct dma_fence *fence;
dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) {
/* Add a callback for each fence in the reservation object */
amdgpu_vm_prt_get(adev);
amdgpu_vm_add_prt_cb(adev, fence);
}
}
/**
* amdgpu_vm_clear_freed - clear freed BOs in the PT
*
* @adev: amdgpu_device pointer
* @vm: requested vm
* @fence: optional resulting fence (unchanged if no work needed to be done
* or if an error occurred)
*
* Make sure all freed BOs are cleared in the PT.
* PTs have to be reserved and mutex must be locked!
*
* Returns:
* 0 for success.
*
*/
int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
struct dma_fence **fence)
{
struct dma_resv *resv = vm->root.bo->tbo.base.resv;
struct amdgpu_bo_va_mapping *mapping;
uint64_t init_pte_value = 0;
struct dma_fence *f = NULL;
int r;
while (!list_empty(&vm->freed)) {
mapping = list_first_entry(&vm->freed,
struct amdgpu_bo_va_mapping, list);
list_del(&mapping->list);
if (vm->pte_support_ats &&
mapping->start < AMDGPU_GMC_HOLE_START)
init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
r = amdgpu_vm_update_range(adev, vm, false, false, true, resv,
mapping->start, mapping->last,
init_pte_value, 0, 0, NULL, NULL,
&f);
amdgpu_vm_free_mapping(adev, vm, mapping, f);
if (r) {
dma_fence_put(f);
return r;
}
}
if (fence && f) {
dma_fence_put(*fence);
*fence = f;
} else {
dma_fence_put(f);
}
return 0;
}
/**
* amdgpu_vm_handle_moved - handle moved BOs in the PT
*
* @adev: amdgpu_device pointer
* @vm: requested vm
*
* Make sure all BOs which are moved are updated in the PTs.
*
* Returns:
* 0 for success.
*
* PTs have to be reserved!
*/
int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
struct amdgpu_vm *vm)
{
struct amdgpu_bo_va *bo_va;
struct dma_resv *resv;
bool clear;
int r;
spin_lock(&vm->status_lock);
while (!list_empty(&vm->moved)) {
bo_va = list_first_entry(&vm->moved, struct amdgpu_bo_va,
base.vm_status);
spin_unlock(&vm->status_lock);
/* Per VM BOs never need to bo cleared in the page tables */
r = amdgpu_vm_bo_update(adev, bo_va, false);
if (r)
return r;
spin_lock(&vm->status_lock);
}
while (!list_empty(&vm->invalidated)) {
bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
base.vm_status);
resv = bo_va->base.bo->tbo.base.resv;
spin_unlock(&vm->status_lock);
/* Try to reserve the BO to avoid clearing its ptes */
if (!amdgpu_vm_debug && dma_resv_trylock(resv))
clear = false;
/* Somebody else is using the BO right now */
else
clear = true;
r = amdgpu_vm_bo_update(adev, bo_va, clear);
if (r)
return r;
if (!clear)
dma_resv_unlock(resv);
spin_lock(&vm->status_lock);
}
spin_unlock(&vm->status_lock);
return 0;
}
/**
* amdgpu_vm_bo_add - add a bo to a specific vm
*
* @adev: amdgpu_device pointer
* @vm: requested vm
* @bo: amdgpu buffer object
*
* Add @bo into the requested vm.
* Add @bo to the list of bos associated with the vm
*
* Returns:
* Newly added bo_va or NULL for failure
*
* Object has to be reserved!
*/
struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
struct amdgpu_bo *bo)
{
struct amdgpu_bo_va *bo_va;
bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
if (bo_va == NULL) {
return NULL;
}
amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
bo_va->ref_count = 1;
INIT_LIST_HEAD(&bo_va->valids);
INIT_LIST_HEAD(&bo_va->invalids);
if (!bo)
return bo_va;
dma_resv_assert_held(bo->tbo.base.resv);
if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
bo_va->is_xgmi = true;
/* Power up XGMI if it can be potentially used */
amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
}
return bo_va;
}
/**
* amdgpu_vm_bo_insert_map - insert a new mapping
*
* @adev: amdgpu_device pointer
* @bo_va: bo_va to store the address
* @mapping: the mapping to insert
*
* Insert a new mapping into all structures.
*/
static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
struct amdgpu_bo_va *bo_va,
struct amdgpu_bo_va_mapping *mapping)
{
struct amdgpu_vm *vm = bo_va->base.vm;
struct amdgpu_bo *bo = bo_va->base.bo;
mapping->bo_va = bo_va;
list_add(&mapping->list, &bo_va->invalids);
amdgpu_vm_it_insert(mapping, &vm->va);
if (mapping->flags & AMDGPU_PTE_PRT)
amdgpu_vm_prt_get(adev);
if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv &&
!bo_va->base.moved) {
amdgpu_vm_bo_moved(&bo_va->base);
}
trace_amdgpu_vm_bo_map(bo_va, mapping);
}
/**
* amdgpu_vm_bo_map - map bo inside a vm
*
* @adev: amdgpu_device pointer
* @bo_va: bo_va to store the address
* @saddr: where to map the BO
* @offset: requested offset in the BO
* @size: BO size in bytes
* @flags: attributes of pages (read/write/valid/etc.)
*
* Add a mapping of the BO at the specefied addr into the VM.
*
* Returns:
* 0 for success, error for failure.
*
* Object has to be reserved and unreserved outside!
*/
int amdgpu_vm_bo_map(struct amdgpu_device *adev,
struct amdgpu_bo_va *bo_va,
uint64_t saddr, uint64_t offset,
uint64_t size, uint64_t flags)
{
struct amdgpu_bo_va_mapping *mapping, *tmp;
struct amdgpu_bo *bo = bo_va->base.bo;
struct amdgpu_vm *vm = bo_va->base.vm;
uint64_t eaddr;
/* validate the parameters */
if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
size == 0 || size & ~PAGE_MASK)
return -EINVAL;
/* make sure object fit at this offset */
eaddr = saddr + size - 1;
if (saddr >= eaddr ||
(bo && offset + size > amdgpu_bo_size(bo)) ||
(eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
return -EINVAL;
saddr /= AMDGPU_GPU_PAGE_SIZE;
eaddr /= AMDGPU_GPU_PAGE_SIZE;
tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
if (tmp) {
/* bo and tmp overlap, invalid addr */
dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
tmp->start, tmp->last + 1);
return -EINVAL;
}
mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
if (!mapping)
return -ENOMEM;
mapping->start = saddr;
mapping->last = eaddr;
mapping->offset = offset;
mapping->flags = flags;
amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
return 0;
}
/**
* amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
*
* @adev: amdgpu_device pointer
* @bo_va: bo_va to store the address
* @saddr: where to map the BO
* @offset: requested offset in the BO
* @size: BO size in bytes
* @flags: attributes of pages (read/write/valid/etc.)
*
* Add a mapping of the BO at the specefied addr into the VM. Replace existing
* mappings as we do so.
*
* Returns:
* 0 for success, error for failure.
*
* Object has to be reserved and unreserved outside!
*/
int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
struct amdgpu_bo_va *bo_va,
uint64_t saddr, uint64_t offset,
uint64_t size, uint64_t flags)
{
struct amdgpu_bo_va_mapping *mapping;
struct amdgpu_bo *bo = bo_va->base.bo;
uint64_t eaddr;
int r;
/* validate the parameters */
if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
size == 0 || size & ~PAGE_MASK)
return -EINVAL;
/* make sure object fit at this offset */
eaddr = saddr + size - 1;
if (saddr >= eaddr ||
(bo && offset + size > amdgpu_bo_size(bo)) ||
(eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
return -EINVAL;
/* Allocate all the needed memory */
mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
if (!mapping)
return -ENOMEM;
r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
if (r) {
kfree(mapping);
return r;
}
saddr /= AMDGPU_GPU_PAGE_SIZE;
eaddr /= AMDGPU_GPU_PAGE_SIZE;
mapping->start = saddr;
mapping->last = eaddr;
mapping->offset = offset;
mapping->flags = flags;
amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
return 0;
}
/**
* amdgpu_vm_bo_unmap - remove bo mapping from vm
*
* @adev: amdgpu_device pointer
* @bo_va: bo_va to remove the address from
* @saddr: where to the BO is mapped
*
* Remove a mapping of the BO at the specefied addr from the VM.
*
* Returns:
* 0 for success, error for failure.
*
* Object has to be reserved and unreserved outside!
*/
int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
struct amdgpu_bo_va *bo_va,
uint64_t saddr)
{
struct amdgpu_bo_va_mapping *mapping;
struct amdgpu_vm *vm = bo_va->base.vm;
bool valid = true;
saddr /= AMDGPU_GPU_PAGE_SIZE;
list_for_each_entry(mapping, &bo_va->valids, list) {
if (mapping->start == saddr)
break;
}
if (&mapping->list == &bo_va->valids) {
valid = false;
list_for_each_entry(mapping, &bo_va->invalids, list) {
if (mapping->start == saddr)
break;
}
if (&mapping->list == &bo_va->invalids)
return -ENOENT;
}
list_del(&mapping->list);
amdgpu_vm_it_remove(mapping, &vm->va);
mapping->bo_va = NULL;
trace_amdgpu_vm_bo_unmap(bo_va, mapping);
if (valid)
list_add(&mapping->list, &vm->freed);
else
amdgpu_vm_free_mapping(adev, vm, mapping,
bo_va->last_pt_update);
return 0;
}
/**
* amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
*
* @adev: amdgpu_device pointer
* @vm: VM structure to use
* @saddr: start of the range
* @size: size of the range
*
* Remove all mappings in a range, split them as appropriate.
*
* Returns:
* 0 for success, error for failure.
*/
int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
uint64_t saddr, uint64_t size)
{
struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
LIST_HEAD(removed);
uint64_t eaddr;
eaddr = saddr + size - 1;
saddr /= AMDGPU_GPU_PAGE_SIZE;
eaddr /= AMDGPU_GPU_PAGE_SIZE;
/* Allocate all the needed memory */
before = kzalloc(sizeof(*before), GFP_KERNEL);
if (!before)
return -ENOMEM;
INIT_LIST_HEAD(&before->list);
after = kzalloc(sizeof(*after), GFP_KERNEL);
if (!after) {
kfree(before);
return -ENOMEM;
}
INIT_LIST_HEAD(&after->list);
/* Now gather all removed mappings */
tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
while (tmp) {
/* Remember mapping split at the start */
if (tmp->start < saddr) {
before->start = tmp->start;
before->last = saddr - 1;
before->offset = tmp->offset;
before->flags = tmp->flags;
before->bo_va = tmp->bo_va;
list_add(&before->list, &tmp->bo_va->invalids);
}
/* Remember mapping split at the end */
if (tmp->last > eaddr) {
after->start = eaddr + 1;
after->last = tmp->last;
after->offset = tmp->offset;
after->offset += (after->start - tmp->start) << PAGE_SHIFT;
after->flags = tmp->flags;
after->bo_va = tmp->bo_va;
list_add(&after->list, &tmp->bo_va->invalids);
}
list_del(&tmp->list);
list_add(&tmp->list, &removed);
tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
}
/* And free them up */
list_for_each_entry_safe(tmp, next, &removed, list) {
amdgpu_vm_it_remove(tmp, &vm->va);
list_del(&tmp->list);
if (tmp->start < saddr)
tmp->start = saddr;
if (tmp->last > eaddr)
tmp->last = eaddr;
tmp->bo_va = NULL;
list_add(&tmp->list, &vm->freed);
trace_amdgpu_vm_bo_unmap(NULL, tmp);
}
/* Insert partial mapping before the range */
if (!list_empty(&before->list)) {
amdgpu_vm_it_insert(before, &vm->va);
if (before->flags & AMDGPU_PTE_PRT)
amdgpu_vm_prt_get(adev);
} else {
kfree(before);
}
/* Insert partial mapping after the range */
if (!list_empty(&after->list)) {
amdgpu_vm_it_insert(after, &vm->va);
if (after->flags & AMDGPU_PTE_PRT)
amdgpu_vm_prt_get(adev);
} else {
kfree(after);
}
return 0;
}
/**
* amdgpu_vm_bo_lookup_mapping - find mapping by address
*
* @vm: the requested VM
* @addr: the address
*
* Find a mapping by it's address.
*
* Returns:
* The amdgpu_bo_va_mapping matching for addr or NULL
*
*/
struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
uint64_t addr)
{
return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
}
/**
* amdgpu_vm_bo_trace_cs - trace all reserved mappings
*
* @vm: the requested vm
* @ticket: CS ticket
*
* Trace all mappings of BOs reserved during a command submission.
*/
void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
{
struct amdgpu_bo_va_mapping *mapping;
if (!trace_amdgpu_vm_bo_cs_enabled())
return;
for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
if (mapping->bo_va && mapping->bo_va->base.bo) {
struct amdgpu_bo *bo;
bo = mapping->bo_va->base.bo;
if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
ticket)
continue;
}
trace_amdgpu_vm_bo_cs(mapping);
}
}
/**
* amdgpu_vm_bo_del - remove a bo from a specific vm
*
* @adev: amdgpu_device pointer
* @bo_va: requested bo_va
*
* Remove @bo_va->bo from the requested vm.
*
* Object have to be reserved!
*/
void amdgpu_vm_bo_del(struct amdgpu_device *adev,
struct amdgpu_bo_va *bo_va)
{
struct amdgpu_bo_va_mapping *mapping, *next;
struct amdgpu_bo *bo = bo_va->base.bo;
struct amdgpu_vm *vm = bo_va->base.vm;
struct amdgpu_vm_bo_base **base;
dma_resv_assert_held(vm->root.bo->tbo.base.resv);
if (bo) {
dma_resv_assert_held(bo->tbo.base.resv);
if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
ttm_bo_set_bulk_move(&bo->tbo, NULL);
for (base = &bo_va->base.bo->vm_bo; *base;
base = &(*base)->next) {
if (*base != &bo_va->base)
continue;
*base = bo_va->base.next;
break;
}
}
spin_lock(&vm->status_lock);
list_del(&bo_va->base.vm_status);
spin_unlock(&vm->status_lock);
list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
list_del(&mapping->list);
amdgpu_vm_it_remove(mapping, &vm->va);
mapping->bo_va = NULL;
trace_amdgpu_vm_bo_unmap(bo_va, mapping);
list_add(&mapping->list, &vm->freed);
}
list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
list_del(&mapping->list);
amdgpu_vm_it_remove(mapping, &vm->va);
amdgpu_vm_free_mapping(adev, vm, mapping,
bo_va->last_pt_update);
}
dma_fence_put(bo_va->last_pt_update);
if (bo && bo_va->is_xgmi)
amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
kfree(bo_va);
}
/**
* amdgpu_vm_evictable - check if we can evict a VM
*
* @bo: A page table of the VM.
*
* Check if it is possible to evict a VM.
*/
bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
{
struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
/* Page tables of a destroyed VM can go away immediately */
if (!bo_base || !bo_base->vm)
return true;
/* Don't evict VM page tables while they are busy */
if (!dma_resv_test_signaled(bo->tbo.base.resv, DMA_RESV_USAGE_BOOKKEEP))
return false;
/* Try to block ongoing updates */
if (!amdgpu_vm_eviction_trylock(bo_base->vm))
return false;
/* Don't evict VM page tables while they are updated */
if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
amdgpu_vm_eviction_unlock(bo_base->vm);
return false;
}
bo_base->vm->evicting = true;
amdgpu_vm_eviction_unlock(bo_base->vm);
return true;
}
/**
* amdgpu_vm_bo_invalidate - mark the bo as invalid
*
* @adev: amdgpu_device pointer
* @bo: amdgpu buffer object
* @evicted: is the BO evicted
*
* Mark @bo as invalid.
*/
void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
struct amdgpu_bo *bo, bool evicted)
{
struct amdgpu_vm_bo_base *bo_base;
/* shadow bo doesn't have bo base, its validation needs its parent */
if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo))
bo = bo->parent;
for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
struct amdgpu_vm *vm = bo_base->vm;
if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
amdgpu_vm_bo_evicted(bo_base);
continue;
}
if (bo_base->moved)
continue;
bo_base->moved = true;
if (bo->tbo.type == ttm_bo_type_kernel)
amdgpu_vm_bo_relocated(bo_base);
else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
amdgpu_vm_bo_moved(bo_base);
else
amdgpu_vm_bo_invalidated(bo_base);
}
}
/**
* amdgpu_vm_get_block_size - calculate VM page table size as power of two
*
* @vm_size: VM size
*
* Returns:
* VM page table as power of two
*/
static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
{
/* Total bits covered by PD + PTs */
unsigned bits = ilog2(vm_size) + 18;
/* Make sure the PD is 4K in size up to 8GB address space.
Above that split equal between PD and PTs */
if (vm_size <= 8)
return (bits - 9);
else
return ((bits + 3) / 2);
}
/**
* amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
*
* @adev: amdgpu_device pointer
* @min_vm_size: the minimum vm size in GB if it's set auto
* @fragment_size_default: Default PTE fragment size
* @max_level: max VMPT level
* @max_bits: max address space size in bits
*
*/
void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
uint32_t fragment_size_default, unsigned max_level,
unsigned max_bits)
{
unsigned int max_size = 1 << (max_bits - 30);
unsigned int vm_size;
uint64_t tmp;
/* adjust vm size first */
if (amdgpu_vm_size != -1) {
vm_size = amdgpu_vm_size;
if (vm_size > max_size) {
dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
amdgpu_vm_size, max_size);
vm_size = max_size;
}
} else {
struct sysinfo si;
unsigned int phys_ram_gb;
/* Optimal VM size depends on the amount of physical
* RAM available. Underlying requirements and
* assumptions:
*
* - Need to map system memory and VRAM from all GPUs
* - VRAM from other GPUs not known here
* - Assume VRAM <= system memory
* - On GFX8 and older, VM space can be segmented for
* different MTYPEs
* - Need to allow room for fragmentation, guard pages etc.
*
* This adds up to a rough guess of system memory x3.
* Round up to power of two to maximize the available
* VM size with the given page table size.
*/
si_meminfo(&si);
phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
(1 << 30) - 1) >> 30;
vm_size = roundup_pow_of_two(
min(max(phys_ram_gb * 3, min_vm_size), max_size));
}
adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
if (amdgpu_vm_block_size != -1)
tmp >>= amdgpu_vm_block_size - 9;
tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
switch (adev->vm_manager.num_level) {
case 3:
adev->vm_manager.root_level = AMDGPU_VM_PDB2;
break;
case 2:
adev->vm_manager.root_level = AMDGPU_VM_PDB1;
break;
case 1:
adev->vm_manager.root_level = AMDGPU_VM_PDB0;
break;
default:
dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
}
/* block size depends on vm size and hw setup*/
if (amdgpu_vm_block_size != -1)
adev->vm_manager.block_size =
min((unsigned)amdgpu_vm_block_size, max_bits
- AMDGPU_GPU_PAGE_SHIFT
- 9 * adev->vm_manager.num_level);
else if (adev->vm_manager.num_level > 1)
adev->vm_manager.block_size = 9;
else
adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
if (amdgpu_vm_fragment_size == -1)
adev->vm_manager.fragment_size = fragment_size_default;
else
adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
vm_size, adev->vm_manager.num_level + 1,
adev->vm_manager.block_size,
adev->vm_manager.fragment_size);
}
/**
* amdgpu_vm_wait_idle - wait for the VM to become idle
*
* @vm: VM object to wait for
* @timeout: timeout to wait for VM to become idle
*/
long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
{
timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv,
DMA_RESV_USAGE_BOOKKEEP,
true, timeout);
if (timeout <= 0)
return timeout;
return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
}
/**
* amdgpu_vm_init - initialize a vm instance
*
* @adev: amdgpu_device pointer
* @vm: requested vm
*
* Init @vm fields.
*
* Returns:
* 0 for success, error for failure.
*/
int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
{
struct amdgpu_bo *root_bo;
struct amdgpu_bo_vm *root;
int r, i;
vm->va = RB_ROOT_CACHED;
for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
vm->reserved_vmid[i] = NULL;
INIT_LIST_HEAD(&vm->evicted);
INIT_LIST_HEAD(&vm->relocated);
INIT_LIST_HEAD(&vm->moved);
INIT_LIST_HEAD(&vm->idle);
INIT_LIST_HEAD(&vm->invalidated);
spin_lock_init(&vm->status_lock);
INIT_LIST_HEAD(&vm->freed);
INIT_LIST_HEAD(&vm->done);
INIT_LIST_HEAD(&vm->pt_freed);
INIT_WORK(&vm->pt_free_work, amdgpu_vm_pt_free_work);
/* create scheduler entities for page table updates */
r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
adev->vm_manager.vm_pte_scheds,
adev->vm_manager.vm_pte_num_scheds, NULL);
if (r)
return r;
r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
adev->vm_manager.vm_pte_scheds,
adev->vm_manager.vm_pte_num_scheds, NULL);
if (r)
goto error_free_immediate;
vm->pte_support_ats = false;
vm->is_compute_context = false;
vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
AMDGPU_VM_USE_CPU_FOR_GFX);
DRM_DEBUG_DRIVER("VM update mode is %s\n",
vm->use_cpu_for_update ? "CPU" : "SDMA");
WARN_ONCE((vm->use_cpu_for_update &&
!amdgpu_gmc_vram_full_visible(&adev->gmc)),
"CPU update of VM recommended only for large BAR system\n");
if (vm->use_cpu_for_update)
vm->update_funcs = &amdgpu_vm_cpu_funcs;
else
vm->update_funcs = &amdgpu_vm_sdma_funcs;
vm->last_update = NULL;
vm->last_unlocked = dma_fence_get_stub();
vm->last_tlb_flush = dma_fence_get_stub();
mutex_init(&vm->eviction_lock);
vm->evicting = false;
r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level,
false, &root);
if (r)
goto error_free_delayed;
root_bo = &root->bo;
r = amdgpu_bo_reserve(root_bo, true);
if (r)
goto error_free_root;
r = dma_resv_reserve_fences(root_bo->tbo.base.resv, 1);
if (r)
goto error_unreserve;
amdgpu_vm_bo_base_init(&vm->root, vm, root_bo);
r = amdgpu_vm_pt_clear(adev, vm, root, false);
if (r)
goto error_unreserve;
amdgpu_bo_unreserve(vm->root.bo);
INIT_KFIFO(vm->faults);
return 0;
error_unreserve:
amdgpu_bo_unreserve(vm->root.bo);
error_free_root:
amdgpu_bo_unref(&root->shadow);
amdgpu_bo_unref(&root_bo);
vm->root.bo = NULL;
error_free_delayed:
dma_fence_put(vm->last_tlb_flush);
dma_fence_put(vm->last_unlocked);
drm_sched_entity_destroy(&vm->delayed);
error_free_immediate:
drm_sched_entity_destroy(&vm->immediate);
return r;
}
/**
* amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
*
* @adev: amdgpu_device pointer
* @vm: requested vm
*
* This only works on GFX VMs that don't have any BOs added and no
* page tables allocated yet.
*
* Changes the following VM parameters:
* - use_cpu_for_update
* - pte_supports_ats
*
* Reinitializes the page directory to reflect the changed ATS
* setting.
*
* Returns:
* 0 for success, -errno for errors.
*/
int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
{
bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
int r;
r = amdgpu_bo_reserve(vm->root.bo, true);
if (r)
return r;
/* Sanity checks */
if (!amdgpu_vm_pt_is_root_clean(adev, vm)) {
r = -EINVAL;
goto unreserve_bo;
}
/* Check if PD needs to be reinitialized and do it before
* changing any other state, in case it fails.
*/
if (pte_support_ats != vm->pte_support_ats) {
vm->pte_support_ats = pte_support_ats;
r = amdgpu_vm_pt_clear(adev, vm, to_amdgpu_bo_vm(vm->root.bo),
false);
if (r)
goto unreserve_bo;
}
/* Update VM state */
vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
AMDGPU_VM_USE_CPU_FOR_COMPUTE);
DRM_DEBUG_DRIVER("VM update mode is %s\n",
vm->use_cpu_for_update ? "CPU" : "SDMA");
WARN_ONCE((vm->use_cpu_for_update &&
!amdgpu_gmc_vram_full_visible(&adev->gmc)),
"CPU update of VM recommended only for large BAR system\n");
if (vm->use_cpu_for_update) {
/* Sync with last SDMA update/clear before switching to CPU */
r = amdgpu_bo_sync_wait(vm->root.bo,
AMDGPU_FENCE_OWNER_UNDEFINED, true);
if (r)
goto unreserve_bo;
vm->update_funcs = &amdgpu_vm_cpu_funcs;
} else {
vm->update_funcs = &amdgpu_vm_sdma_funcs;
}
/*
* Make sure root PD gets mapped. As vm_update_mode could be changed
* when turning a GFX VM into a compute VM.
*/
r = vm->update_funcs->map_table(to_amdgpu_bo_vm(vm->root.bo));
if (r)
goto unreserve_bo;
dma_fence_put(vm->last_update);
vm->last_update = NULL;
vm->is_compute_context = true;
/* Free the shadow bo for compute VM */
amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow);
goto unreserve_bo;
unreserve_bo:
amdgpu_bo_unreserve(vm->root.bo);
return r;
}
/**
* amdgpu_vm_release_compute - release a compute vm
* @adev: amdgpu_device pointer
* @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
*
* This is a correspondant of amdgpu_vm_make_compute. It decouples compute
* pasid from vm. Compute should stop use of vm after this call.
*/
void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
{
amdgpu_vm_set_pasid(adev, vm, 0);
vm->is_compute_context = false;
}
/**
* amdgpu_vm_fini - tear down a vm instance
*
* @adev: amdgpu_device pointer
* @vm: requested vm
*
* Tear down @vm.
* Unbind the VM and remove all bos from the vm bo list
*/
void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
{
struct amdgpu_bo_va_mapping *mapping, *tmp;
bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
struct amdgpu_bo *root;
unsigned long flags;
int i;
amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
flush_work(&vm->pt_free_work);
root = amdgpu_bo_ref(vm->root.bo);
amdgpu_bo_reserve(root, true);
amdgpu_vm_set_pasid(adev, vm, 0);
dma_fence_wait(vm->last_unlocked, false);
dma_fence_put(vm->last_unlocked);
dma_fence_wait(vm->last_tlb_flush, false);
/* Make sure that all fence callbacks have completed */
spin_lock_irqsave(vm->last_tlb_flush->lock, flags);
spin_unlock_irqrestore(vm->last_tlb_flush->lock, flags);
dma_fence_put(vm->last_tlb_flush);
list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
amdgpu_vm_prt_fini(adev, vm);
prt_fini_needed = false;
}
list_del(&mapping->list);
amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
}
amdgpu_vm_pt_free_root(adev, vm);
amdgpu_bo_unreserve(root);
amdgpu_bo_unref(&root);
WARN_ON(vm->root.bo);
drm_sched_entity_destroy(&vm->immediate);
drm_sched_entity_destroy(&vm->delayed);
if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
dev_err(adev->dev, "still active bo inside vm\n");
}
rbtree_postorder_for_each_entry_safe(mapping, tmp,
&vm->va.rb_root, rb) {
/* Don't remove the mapping here, we don't want to trigger a
* rebalance and the tree is about to be destroyed anyway.
*/
list_del(&mapping->list);
kfree(mapping);
}
dma_fence_put(vm->last_update);
for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
amdgpu_vmid_free_reserved(adev, vm, i);
}
/**
* amdgpu_vm_manager_init - init the VM manager
*
* @adev: amdgpu_device pointer
*
* Initialize the VM manager structures
*/
void amdgpu_vm_manager_init(struct amdgpu_device *adev)
{
unsigned i;
/* Concurrent flushes are only possible starting with Vega10 and
* are broken on Navi10 and Navi14.
*/
adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
adev->asic_type == CHIP_NAVI10 ||
adev->asic_type == CHIP_NAVI14);
amdgpu_vmid_mgr_init(adev);
adev->vm_manager.fence_context =
dma_fence_context_alloc(AMDGPU_MAX_RINGS);
for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
adev->vm_manager.seqno[i] = 0;
spin_lock_init(&adev->vm_manager.prt_lock);
atomic_set(&adev->vm_manager.num_prt_users, 0);
/* If not overridden by the user, by default, only in large BAR systems
* Compute VM tables will be updated by CPU
*/
#ifdef CONFIG_X86_64
if (amdgpu_vm_update_mode == -1) {
/* For asic with VF MMIO access protection
* avoid using CPU for VM table updates
*/
if (amdgpu_gmc_vram_full_visible(&adev->gmc) &&
!amdgpu_sriov_vf_mmio_access_protection(adev))
adev->vm_manager.vm_update_mode =
AMDGPU_VM_USE_CPU_FOR_COMPUTE;
else
adev->vm_manager.vm_update_mode = 0;
} else
adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
#else
adev->vm_manager.vm_update_mode = 0;
#endif
xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ);
}
/**
* amdgpu_vm_manager_fini - cleanup VM manager
*
* @adev: amdgpu_device pointer
*
* Cleanup the VM manager and free resources.
*/
void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
{
WARN_ON(!xa_empty(&adev->vm_manager.pasids));
xa_destroy(&adev->vm_manager.pasids);
amdgpu_vmid_mgr_fini(adev);
}
/**
* amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
*
* @dev: drm device pointer
* @data: drm_amdgpu_vm
* @filp: drm file pointer
*
* Returns:
* 0 for success, -errno for errors.
*/
int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
{
union drm_amdgpu_vm *args = data;
struct amdgpu_device *adev = drm_to_adev(dev);
struct amdgpu_fpriv *fpriv = filp->driver_priv;
int r;
switch (args->in.op) {
case AMDGPU_VM_OP_RESERVE_VMID:
/* We only have requirement to reserve vmid from gfxhub */
r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
AMDGPU_GFXHUB_0);
if (r)
return r;
break;
case AMDGPU_VM_OP_UNRESERVE_VMID:
amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
break;
default:
return -EINVAL;
}
return 0;
}
/**
* amdgpu_vm_get_task_info - Extracts task info for a PASID.
*
* @adev: drm device pointer
* @pasid: PASID identifier for VM
* @task_info: task_info to fill.
*/
void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid,
struct amdgpu_task_info *task_info)
{
struct amdgpu_vm *vm;
unsigned long flags;
xa_lock_irqsave(&adev->vm_manager.pasids, flags);
vm = xa_load(&adev->vm_manager.pasids, pasid);
if (vm)
*task_info = vm->task_info;
xa_unlock_irqrestore(&adev->vm_manager.pasids, flags);
}
/**
* amdgpu_vm_set_task_info - Sets VMs task info.
*
* @vm: vm for which to set the info
*/
void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
{
if (vm->task_info.pid)
return;
vm->task_info.pid = current->pid;
get_task_comm(vm->task_info.task_name, current);
if (current->group_leader->mm != current->mm)
return;
vm->task_info.tgid = current->group_leader->pid;
get_task_comm(vm->task_info.process_name, current->group_leader);
}
/**
* amdgpu_vm_handle_fault - graceful handling of VM faults.
* @adev: amdgpu device pointer
* @pasid: PASID of the VM
* @addr: Address of the fault
* @write_fault: true is write fault, false is read fault
*
* Try to gracefully handle a VM fault. Return true if the fault was handled and
* shouldn't be reported any more.
*/
bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
uint64_t addr, bool write_fault)
{
bool is_compute_context = false;
struct amdgpu_bo *root;
unsigned long irqflags;
uint64_t value, flags;
struct amdgpu_vm *vm;
int r;
xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
vm = xa_load(&adev->vm_manager.pasids, pasid);
if (vm) {
root = amdgpu_bo_ref(vm->root.bo);
is_compute_context = vm->is_compute_context;
} else {
root = NULL;
}
xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
if (!root)
return false;
addr /= AMDGPU_GPU_PAGE_SIZE;
if (is_compute_context &&
!svm_range_restore_pages(adev, pasid, addr, write_fault)) {
amdgpu_bo_unref(&root);
return true;
}
r = amdgpu_bo_reserve(root, true);
if (r)
goto error_unref;
/* Double check that the VM still exists */
xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
vm = xa_load(&adev->vm_manager.pasids, pasid);
if (vm && vm->root.bo != root)
vm = NULL;
xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
if (!vm)
goto error_unlock;
flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
AMDGPU_PTE_SYSTEM;
if (is_compute_context) {
/* Intentionally setting invalid PTE flag
* combination to force a no-retry-fault
*/
flags = AMDGPU_PTE_SNOOPED | AMDGPU_PTE_PRT;
value = 0;
} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
/* Redirect the access to the dummy page */
value = adev->dummy_page_addr;
flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
AMDGPU_PTE_WRITEABLE;
} else {
/* Let the hw retry silently on the PTE */
value = 0;
}
r = dma_resv_reserve_fences(root->tbo.base.resv, 1);
if (r) {
pr_debug("failed %d to reserve fence slot\n", r);
goto error_unlock;
}
r = amdgpu_vm_update_range(adev, vm, true, false, false, NULL, addr,
addr, flags, value, 0, NULL, NULL, NULL);
if (r)
goto error_unlock;
r = amdgpu_vm_update_pdes(adev, vm, true);
error_unlock:
amdgpu_bo_unreserve(root);
if (r < 0)
DRM_ERROR("Can't handle page fault (%d)\n", r);
error_unref:
amdgpu_bo_unref(&root);
return false;
}
#if defined(CONFIG_DEBUG_FS)
/**
* amdgpu_debugfs_vm_bo_info - print BO info for the VM
*
* @vm: Requested VM for printing BO info
* @m: debugfs file
*
* Print BO information in debugfs file for the VM
*/
void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m)
{
struct amdgpu_bo_va *bo_va, *tmp;
u64 total_idle = 0;
u64 total_evicted = 0;
u64 total_relocated = 0;
u64 total_moved = 0;
u64 total_invalidated = 0;
u64 total_done = 0;
unsigned int total_idle_objs = 0;
unsigned int total_evicted_objs = 0;
unsigned int total_relocated_objs = 0;
unsigned int total_moved_objs = 0;
unsigned int total_invalidated_objs = 0;
unsigned int total_done_objs = 0;
unsigned int id = 0;
spin_lock(&vm->status_lock);
seq_puts(m, "\tIdle BOs:\n");
list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
if (!bo_va->base.bo)
continue;
total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
}
total_idle_objs = id;
id = 0;
seq_puts(m, "\tEvicted BOs:\n");
list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
if (!bo_va->base.bo)
continue;
total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
}
total_evicted_objs = id;
id = 0;
seq_puts(m, "\tRelocated BOs:\n");
list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
if (!bo_va->base.bo)
continue;
total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
}
total_relocated_objs = id;
id = 0;
seq_puts(m, "\tMoved BOs:\n");
list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
if (!bo_va->base.bo)
continue;
total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
}
total_moved_objs = id;
id = 0;
seq_puts(m, "\tInvalidated BOs:\n");
list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
if (!bo_va->base.bo)
continue;
total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
}
total_invalidated_objs = id;
id = 0;
seq_puts(m, "\tDone BOs:\n");
list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
if (!bo_va->base.bo)
continue;
total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
}
spin_unlock(&vm->status_lock);
total_done_objs = id;
seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle,
total_idle_objs);
seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted,
total_evicted_objs);
seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated,
total_relocated_objs);
seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved,
total_moved_objs);
seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated,
total_invalidated_objs);
seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done,
total_done_objs);
}
#endif