linux-zen-server/drivers/gpu/drm/amd/display/dc/dce110/dce110_resource.c

1548 lines
40 KiB
C
Raw Permalink Normal View History

2023-08-30 17:53:23 +02:00
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "link_encoder.h"
#include "stream_encoder.h"
#include "resource.h"
#include "dce110/dce110_resource.h"
#include "include/irq_service_interface.h"
#include "dce/dce_audio.h"
#include "dce110/dce110_timing_generator.h"
#include "irq/dce110/irq_service_dce110.h"
#include "dce110/dce110_timing_generator_v.h"
#include "dce/dce_link_encoder.h"
#include "dce/dce_stream_encoder.h"
#include "dce/dce_mem_input.h"
#include "dce110/dce110_mem_input_v.h"
#include "dce/dce_ipp.h"
#include "dce/dce_transform.h"
#include "dce110/dce110_transform_v.h"
#include "dce/dce_opp.h"
#include "dce110/dce110_opp_v.h"
#include "dce/dce_clock_source.h"
#include "dce/dce_hwseq.h"
#include "dce110/dce110_hw_sequencer.h"
#include "dce/dce_aux.h"
#include "dce/dce_abm.h"
#include "dce/dce_dmcu.h"
#include "dce/dce_i2c.h"
#include "dce/dce_panel_cntl.h"
#define DC_LOGGER \
dc->ctx->logger
#include "dce110/dce110_compressor.h"
#include "reg_helper.h"
#include "dce/dce_11_0_d.h"
#include "dce/dce_11_0_sh_mask.h"
#ifndef mmMC_HUB_RDREQ_DMIF_LIMIT
#include "gmc/gmc_8_2_d.h"
#include "gmc/gmc_8_2_sh_mask.h"
#endif
#ifndef mmDP_DPHY_INTERNAL_CTRL
#define mmDP_DPHY_INTERNAL_CTRL 0x4aa7
#define mmDP0_DP_DPHY_INTERNAL_CTRL 0x4aa7
#define mmDP1_DP_DPHY_INTERNAL_CTRL 0x4ba7
#define mmDP2_DP_DPHY_INTERNAL_CTRL 0x4ca7
#define mmDP3_DP_DPHY_INTERNAL_CTRL 0x4da7
#define mmDP4_DP_DPHY_INTERNAL_CTRL 0x4ea7
#define mmDP5_DP_DPHY_INTERNAL_CTRL 0x4fa7
#define mmDP6_DP_DPHY_INTERNAL_CTRL 0x54a7
#define mmDP7_DP_DPHY_INTERNAL_CTRL 0x56a7
#define mmDP8_DP_DPHY_INTERNAL_CTRL 0x57a7
#endif
#ifndef mmBIOS_SCRATCH_2
#define mmBIOS_SCRATCH_2 0x05CB
#define mmBIOS_SCRATCH_3 0x05CC
#define mmBIOS_SCRATCH_6 0x05CF
#endif
#ifndef mmDP_DPHY_BS_SR_SWAP_CNTL
#define mmDP_DPHY_BS_SR_SWAP_CNTL 0x4ADC
#define mmDP0_DP_DPHY_BS_SR_SWAP_CNTL 0x4ADC
#define mmDP1_DP_DPHY_BS_SR_SWAP_CNTL 0x4BDC
#define mmDP2_DP_DPHY_BS_SR_SWAP_CNTL 0x4CDC
#define mmDP3_DP_DPHY_BS_SR_SWAP_CNTL 0x4DDC
#define mmDP4_DP_DPHY_BS_SR_SWAP_CNTL 0x4EDC
#define mmDP5_DP_DPHY_BS_SR_SWAP_CNTL 0x4FDC
#define mmDP6_DP_DPHY_BS_SR_SWAP_CNTL 0x54DC
#endif
#ifndef mmDP_DPHY_FAST_TRAINING
#define mmDP_DPHY_FAST_TRAINING 0x4ABC
#define mmDP0_DP_DPHY_FAST_TRAINING 0x4ABC
#define mmDP1_DP_DPHY_FAST_TRAINING 0x4BBC
#define mmDP2_DP_DPHY_FAST_TRAINING 0x4CBC
#define mmDP3_DP_DPHY_FAST_TRAINING 0x4DBC
#define mmDP4_DP_DPHY_FAST_TRAINING 0x4EBC
#define mmDP5_DP_DPHY_FAST_TRAINING 0x4FBC
#define mmDP6_DP_DPHY_FAST_TRAINING 0x54BC
#endif
#ifndef DPHY_RX_FAST_TRAINING_CAPABLE
#define DPHY_RX_FAST_TRAINING_CAPABLE 0x1
#endif
static const struct dce110_timing_generator_offsets dce110_tg_offsets[] = {
{
.crtc = (mmCRTC0_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP0_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC1_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP1_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC2_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP2_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC3_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP3_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC4_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP4_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC5_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP5_GRPH_CONTROL - mmGRPH_CONTROL),
}
};
/* set register offset */
#define SR(reg_name)\
.reg_name = mm ## reg_name
/* set register offset with instance */
#define SRI(reg_name, block, id)\
.reg_name = mm ## block ## id ## _ ## reg_name
static const struct dce_dmcu_registers dmcu_regs = {
DMCU_DCE110_COMMON_REG_LIST()
};
static const struct dce_dmcu_shift dmcu_shift = {
DMCU_MASK_SH_LIST_DCE110(__SHIFT)
};
static const struct dce_dmcu_mask dmcu_mask = {
DMCU_MASK_SH_LIST_DCE110(_MASK)
};
static const struct dce_abm_registers abm_regs = {
ABM_DCE110_COMMON_REG_LIST()
};
static const struct dce_abm_shift abm_shift = {
ABM_MASK_SH_LIST_DCE110(__SHIFT)
};
static const struct dce_abm_mask abm_mask = {
ABM_MASK_SH_LIST_DCE110(_MASK)
};
#define ipp_regs(id)\
[id] = {\
IPP_DCE110_REG_LIST_DCE_BASE(id)\
}
static const struct dce_ipp_registers ipp_regs[] = {
ipp_regs(0),
ipp_regs(1),
ipp_regs(2)
};
static const struct dce_ipp_shift ipp_shift = {
IPP_DCE100_MASK_SH_LIST_DCE_COMMON_BASE(__SHIFT)
};
static const struct dce_ipp_mask ipp_mask = {
IPP_DCE100_MASK_SH_LIST_DCE_COMMON_BASE(_MASK)
};
#define transform_regs(id)\
[id] = {\
XFM_COMMON_REG_LIST_DCE110(id)\
}
static const struct dce_transform_registers xfm_regs[] = {
transform_regs(0),
transform_regs(1),
transform_regs(2)
};
static const struct dce_transform_shift xfm_shift = {
XFM_COMMON_MASK_SH_LIST_DCE110(__SHIFT)
};
static const struct dce_transform_mask xfm_mask = {
XFM_COMMON_MASK_SH_LIST_DCE110(_MASK)
};
#define aux_regs(id)\
[id] = {\
AUX_REG_LIST(id)\
}
static const struct dce110_link_enc_aux_registers link_enc_aux_regs[] = {
aux_regs(0),
aux_regs(1),
aux_regs(2),
aux_regs(3),
aux_regs(4),
aux_regs(5)
};
#define hpd_regs(id)\
[id] = {\
HPD_REG_LIST(id)\
}
static const struct dce110_link_enc_hpd_registers link_enc_hpd_regs[] = {
hpd_regs(0),
hpd_regs(1),
hpd_regs(2),
hpd_regs(3),
hpd_regs(4),
hpd_regs(5)
};
#define link_regs(id)\
[id] = {\
LE_DCE110_REG_LIST(id)\
}
static const struct dce110_link_enc_registers link_enc_regs[] = {
link_regs(0),
link_regs(1),
link_regs(2),
link_regs(3),
link_regs(4),
link_regs(5),
link_regs(6),
};
#define stream_enc_regs(id)\
[id] = {\
SE_COMMON_REG_LIST(id),\
.TMDS_CNTL = 0,\
}
static const struct dce110_stream_enc_registers stream_enc_regs[] = {
stream_enc_regs(0),
stream_enc_regs(1),
stream_enc_regs(2)
};
static const struct dce_stream_encoder_shift se_shift = {
SE_COMMON_MASK_SH_LIST_DCE110(__SHIFT)
};
static const struct dce_stream_encoder_mask se_mask = {
SE_COMMON_MASK_SH_LIST_DCE110(_MASK)
};
static const struct dce_panel_cntl_registers panel_cntl_regs[] = {
{ DCE_PANEL_CNTL_REG_LIST() }
};
static const struct dce_panel_cntl_shift panel_cntl_shift = {
DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT)
};
static const struct dce_panel_cntl_mask panel_cntl_mask = {
DCE_PANEL_CNTL_MASK_SH_LIST(_MASK)
};
static const struct dce110_aux_registers_shift aux_shift = {
DCE_AUX_MASK_SH_LIST(__SHIFT)
};
static const struct dce110_aux_registers_mask aux_mask = {
DCE_AUX_MASK_SH_LIST(_MASK)
};
#define opp_regs(id)\
[id] = {\
OPP_DCE_110_REG_LIST(id),\
}
static const struct dce_opp_registers opp_regs[] = {
opp_regs(0),
opp_regs(1),
opp_regs(2),
opp_regs(3),
opp_regs(4),
opp_regs(5)
};
static const struct dce_opp_shift opp_shift = {
OPP_COMMON_MASK_SH_LIST_DCE_110(__SHIFT)
};
static const struct dce_opp_mask opp_mask = {
OPP_COMMON_MASK_SH_LIST_DCE_110(_MASK)
};
#define aux_engine_regs(id)\
[id] = {\
AUX_COMMON_REG_LIST(id), \
.AUX_RESET_MASK = 0 \
}
static const struct dce110_aux_registers aux_engine_regs[] = {
aux_engine_regs(0),
aux_engine_regs(1),
aux_engine_regs(2),
aux_engine_regs(3),
aux_engine_regs(4),
aux_engine_regs(5)
};
#define audio_regs(id)\
[id] = {\
AUD_COMMON_REG_LIST(id)\
}
static const struct dce_audio_registers audio_regs[] = {
audio_regs(0),
audio_regs(1),
audio_regs(2),
audio_regs(3),
audio_regs(4),
audio_regs(5),
audio_regs(6),
};
static const struct dce_audio_shift audio_shift = {
AUD_COMMON_MASK_SH_LIST(__SHIFT)
};
static const struct dce_audio_mask audio_mask = {
AUD_COMMON_MASK_SH_LIST(_MASK)
};
/* AG TBD Needs to be reduced back to 3 pipes once dce10 hw sequencer implemented. */
#define clk_src_regs(id)\
[id] = {\
CS_COMMON_REG_LIST_DCE_100_110(id),\
}
static const struct dce110_clk_src_regs clk_src_regs[] = {
clk_src_regs(0),
clk_src_regs(1),
clk_src_regs(2)
};
static const struct dce110_clk_src_shift cs_shift = {
CS_COMMON_MASK_SH_LIST_DCE_COMMON_BASE(__SHIFT)
};
static const struct dce110_clk_src_mask cs_mask = {
CS_COMMON_MASK_SH_LIST_DCE_COMMON_BASE(_MASK)
};
static const struct bios_registers bios_regs = {
.BIOS_SCRATCH_3 = mmBIOS_SCRATCH_3,
.BIOS_SCRATCH_6 = mmBIOS_SCRATCH_6
};
static const struct resource_caps carrizo_resource_cap = {
.num_timing_generator = 3,
.num_video_plane = 1,
.num_audio = 3,
.num_stream_encoder = 3,
.num_pll = 2,
.num_ddc = 3,
};
static const struct resource_caps stoney_resource_cap = {
.num_timing_generator = 2,
.num_video_plane = 1,
.num_audio = 3,
.num_stream_encoder = 3,
.num_pll = 2,
.num_ddc = 3,
};
static const struct dc_plane_cap plane_cap = {
.type = DC_PLANE_TYPE_DCE_RGB,
.blends_with_below = true,
.blends_with_above = true,
.per_pixel_alpha = 1,
.pixel_format_support = {
.argb8888 = true,
.nv12 = false,
.fp16 = true
},
.max_upscale_factor = {
.argb8888 = 16000,
.nv12 = 1,
.fp16 = 1
},
.max_downscale_factor = {
.argb8888 = 250,
.nv12 = 1,
.fp16 = 1
},
64,
64
};
static const struct dc_plane_cap underlay_plane_cap = {
.type = DC_PLANE_TYPE_DCE_UNDERLAY,
.blends_with_above = true,
.per_pixel_alpha = 1,
.pixel_format_support = {
.argb8888 = false,
.nv12 = true,
.fp16 = false
},
.max_upscale_factor = {
.argb8888 = 1,
.nv12 = 16000,
.fp16 = 1
},
.max_downscale_factor = {
.argb8888 = 1,
.nv12 = 250,
.fp16 = 1
},
64,
64
};
#define CTX ctx
#define REG(reg) mm ## reg
#ifndef mmCC_DC_HDMI_STRAPS
#define mmCC_DC_HDMI_STRAPS 0x4819
#define CC_DC_HDMI_STRAPS__HDMI_DISABLE_MASK 0x40
#define CC_DC_HDMI_STRAPS__HDMI_DISABLE__SHIFT 0x6
#define CC_DC_HDMI_STRAPS__AUDIO_STREAM_NUMBER_MASK 0x700
#define CC_DC_HDMI_STRAPS__AUDIO_STREAM_NUMBER__SHIFT 0x8
#endif
static int map_transmitter_id_to_phy_instance(
enum transmitter transmitter)
{
switch (transmitter) {
case TRANSMITTER_UNIPHY_A:
return 0;
case TRANSMITTER_UNIPHY_B:
return 1;
case TRANSMITTER_UNIPHY_C:
return 2;
case TRANSMITTER_UNIPHY_D:
return 3;
case TRANSMITTER_UNIPHY_E:
return 4;
case TRANSMITTER_UNIPHY_F:
return 5;
case TRANSMITTER_UNIPHY_G:
return 6;
default:
ASSERT(0);
return 0;
}
}
static void read_dce_straps(
struct dc_context *ctx,
struct resource_straps *straps)
{
REG_GET_2(CC_DC_HDMI_STRAPS,
HDMI_DISABLE, &straps->hdmi_disable,
AUDIO_STREAM_NUMBER, &straps->audio_stream_number);
REG_GET(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO, &straps->dc_pinstraps_audio);
}
static struct audio *create_audio(
struct dc_context *ctx, unsigned int inst)
{
return dce_audio_create(ctx, inst,
&audio_regs[inst], &audio_shift, &audio_mask);
}
static struct timing_generator *dce110_timing_generator_create(
struct dc_context *ctx,
uint32_t instance,
const struct dce110_timing_generator_offsets *offsets)
{
struct dce110_timing_generator *tg110 =
kzalloc(sizeof(struct dce110_timing_generator), GFP_KERNEL);
if (!tg110)
return NULL;
dce110_timing_generator_construct(tg110, ctx, instance, offsets);
return &tg110->base;
}
static struct stream_encoder *dce110_stream_encoder_create(
enum engine_id eng_id,
struct dc_context *ctx)
{
struct dce110_stream_encoder *enc110 =
kzalloc(sizeof(struct dce110_stream_encoder), GFP_KERNEL);
if (!enc110)
return NULL;
dce110_stream_encoder_construct(enc110, ctx, ctx->dc_bios, eng_id,
&stream_enc_regs[eng_id],
&se_shift, &se_mask);
return &enc110->base;
}
#define SRII(reg_name, block, id)\
.reg_name[id] = mm ## block ## id ## _ ## reg_name
static const struct dce_hwseq_registers hwseq_stoney_reg = {
HWSEQ_ST_REG_LIST()
};
static const struct dce_hwseq_registers hwseq_cz_reg = {
HWSEQ_CZ_REG_LIST()
};
static const struct dce_hwseq_shift hwseq_shift = {
HWSEQ_DCE11_MASK_SH_LIST(__SHIFT),
};
static const struct dce_hwseq_mask hwseq_mask = {
HWSEQ_DCE11_MASK_SH_LIST(_MASK),
};
static struct dce_hwseq *dce110_hwseq_create(
struct dc_context *ctx)
{
struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
if (hws) {
hws->ctx = ctx;
hws->regs = ASIC_REV_IS_STONEY(ctx->asic_id.hw_internal_rev) ?
&hwseq_stoney_reg : &hwseq_cz_reg;
hws->shifts = &hwseq_shift;
hws->masks = &hwseq_mask;
hws->wa.blnd_crtc_trigger = true;
}
return hws;
}
static const struct resource_create_funcs res_create_funcs = {
.read_dce_straps = read_dce_straps,
.create_audio = create_audio,
.create_stream_encoder = dce110_stream_encoder_create,
.create_hwseq = dce110_hwseq_create,
};
#define mi_inst_regs(id) { \
MI_DCE11_REG_LIST(id), \
.MC_HUB_RDREQ_DMIF_LIMIT = mmMC_HUB_RDREQ_DMIF_LIMIT \
}
static const struct dce_mem_input_registers mi_regs[] = {
mi_inst_regs(0),
mi_inst_regs(1),
mi_inst_regs(2),
};
static const struct dce_mem_input_shift mi_shifts = {
MI_DCE11_MASK_SH_LIST(__SHIFT),
.ENABLE = MC_HUB_RDREQ_DMIF_LIMIT__ENABLE__SHIFT
};
static const struct dce_mem_input_mask mi_masks = {
MI_DCE11_MASK_SH_LIST(_MASK),
.ENABLE = MC_HUB_RDREQ_DMIF_LIMIT__ENABLE_MASK
};
static struct mem_input *dce110_mem_input_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce_mem_input *dce_mi = kzalloc(sizeof(struct dce_mem_input),
GFP_KERNEL);
if (!dce_mi) {
BREAK_TO_DEBUGGER();
return NULL;
}
dce_mem_input_construct(dce_mi, ctx, inst, &mi_regs[inst], &mi_shifts, &mi_masks);
dce_mi->wa.single_head_rdreq_dmif_limit = 3;
return &dce_mi->base;
}
static void dce110_transform_destroy(struct transform **xfm)
{
kfree(TO_DCE_TRANSFORM(*xfm));
*xfm = NULL;
}
static struct transform *dce110_transform_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce_transform *transform =
kzalloc(sizeof(struct dce_transform), GFP_KERNEL);
if (!transform)
return NULL;
dce_transform_construct(transform, ctx, inst,
&xfm_regs[inst], &xfm_shift, &xfm_mask);
return &transform->base;
}
static struct input_pixel_processor *dce110_ipp_create(
struct dc_context *ctx, uint32_t inst)
{
struct dce_ipp *ipp = kzalloc(sizeof(struct dce_ipp), GFP_KERNEL);
if (!ipp) {
BREAK_TO_DEBUGGER();
return NULL;
}
dce_ipp_construct(ipp, ctx, inst,
&ipp_regs[inst], &ipp_shift, &ipp_mask);
return &ipp->base;
}
static const struct encoder_feature_support link_enc_feature = {
.max_hdmi_deep_color = COLOR_DEPTH_121212,
.max_hdmi_pixel_clock = 300000,
.flags.bits.IS_HBR2_CAPABLE = true,
.flags.bits.IS_TPS3_CAPABLE = true
};
static struct link_encoder *dce110_link_encoder_create(
struct dc_context *ctx,
const struct encoder_init_data *enc_init_data)
{
struct dce110_link_encoder *enc110 =
kzalloc(sizeof(struct dce110_link_encoder), GFP_KERNEL);
int link_regs_id;
if (!enc110)
return NULL;
link_regs_id =
map_transmitter_id_to_phy_instance(enc_init_data->transmitter);
dce110_link_encoder_construct(enc110,
enc_init_data,
&link_enc_feature,
&link_enc_regs[link_regs_id],
&link_enc_aux_regs[enc_init_data->channel - 1],
&link_enc_hpd_regs[enc_init_data->hpd_source]);
return &enc110->base;
}
static struct panel_cntl *dce110_panel_cntl_create(const struct panel_cntl_init_data *init_data)
{
struct dce_panel_cntl *panel_cntl =
kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL);
if (!panel_cntl)
return NULL;
dce_panel_cntl_construct(panel_cntl,
init_data,
&panel_cntl_regs[init_data->inst],
&panel_cntl_shift,
&panel_cntl_mask);
return &panel_cntl->base;
}
static struct output_pixel_processor *dce110_opp_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce110_opp *opp =
kzalloc(sizeof(struct dce110_opp), GFP_KERNEL);
if (!opp)
return NULL;
dce110_opp_construct(opp,
ctx, inst, &opp_regs[inst], &opp_shift, &opp_mask);
return &opp->base;
}
static struct dce_aux *dce110_aux_engine_create(
struct dc_context *ctx,
uint32_t inst)
{
struct aux_engine_dce110 *aux_engine =
kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
if (!aux_engine)
return NULL;
dce110_aux_engine_construct(aux_engine, ctx, inst,
SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
&aux_engine_regs[inst],
&aux_mask,
&aux_shift,
ctx->dc->caps.extended_aux_timeout_support);
return &aux_engine->base;
}
#define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) }
static const struct dce_i2c_registers i2c_hw_regs[] = {
i2c_inst_regs(1),
i2c_inst_regs(2),
i2c_inst_regs(3),
i2c_inst_regs(4),
i2c_inst_regs(5),
i2c_inst_regs(6),
};
static const struct dce_i2c_shift i2c_shifts = {
I2C_COMMON_MASK_SH_LIST_DCE110(__SHIFT)
};
static const struct dce_i2c_mask i2c_masks = {
I2C_COMMON_MASK_SH_LIST_DCE110(_MASK)
};
static struct dce_i2c_hw *dce110_i2c_hw_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce_i2c_hw *dce_i2c_hw =
kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
if (!dce_i2c_hw)
return NULL;
dce100_i2c_hw_construct(dce_i2c_hw, ctx, inst,
&i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
return dce_i2c_hw;
}
static struct clock_source *dce110_clock_source_create(
struct dc_context *ctx,
struct dc_bios *bios,
enum clock_source_id id,
const struct dce110_clk_src_regs *regs,
bool dp_clk_src)
{
struct dce110_clk_src *clk_src =
kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
if (!clk_src)
return NULL;
if (dce110_clk_src_construct(clk_src, ctx, bios, id,
regs, &cs_shift, &cs_mask)) {
clk_src->base.dp_clk_src = dp_clk_src;
return &clk_src->base;
}
kfree(clk_src);
BREAK_TO_DEBUGGER();
return NULL;
}
static void dce110_clock_source_destroy(struct clock_source **clk_src)
{
struct dce110_clk_src *dce110_clk_src;
if (!clk_src)
return;
dce110_clk_src = TO_DCE110_CLK_SRC(*clk_src);
kfree(dce110_clk_src->dp_ss_params);
kfree(dce110_clk_src->hdmi_ss_params);
kfree(dce110_clk_src->dvi_ss_params);
kfree(dce110_clk_src);
*clk_src = NULL;
}
static void dce110_resource_destruct(struct dce110_resource_pool *pool)
{
unsigned int i;
for (i = 0; i < pool->base.pipe_count; i++) {
if (pool->base.opps[i] != NULL)
dce110_opp_destroy(&pool->base.opps[i]);
if (pool->base.transforms[i] != NULL)
dce110_transform_destroy(&pool->base.transforms[i]);
if (pool->base.ipps[i] != NULL)
dce_ipp_destroy(&pool->base.ipps[i]);
if (pool->base.mis[i] != NULL) {
kfree(TO_DCE_MEM_INPUT(pool->base.mis[i]));
pool->base.mis[i] = NULL;
}
if (pool->base.timing_generators[i] != NULL) {
kfree(DCE110TG_FROM_TG(pool->base.timing_generators[i]));
pool->base.timing_generators[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
if (pool->base.engines[i] != NULL)
dce110_engine_destroy(&pool->base.engines[i]);
if (pool->base.hw_i2cs[i] != NULL) {
kfree(pool->base.hw_i2cs[i]);
pool->base.hw_i2cs[i] = NULL;
}
if (pool->base.sw_i2cs[i] != NULL) {
kfree(pool->base.sw_i2cs[i]);
pool->base.sw_i2cs[i] = NULL;
}
}
for (i = 0; i < pool->base.stream_enc_count; i++) {
if (pool->base.stream_enc[i] != NULL)
kfree(DCE110STRENC_FROM_STRENC(pool->base.stream_enc[i]));
}
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] != NULL) {
dce110_clock_source_destroy(&pool->base.clock_sources[i]);
}
}
if (pool->base.dp_clock_source != NULL)
dce110_clock_source_destroy(&pool->base.dp_clock_source);
for (i = 0; i < pool->base.audio_count; i++) {
if (pool->base.audios[i] != NULL) {
dce_aud_destroy(&pool->base.audios[i]);
}
}
if (pool->base.abm != NULL)
dce_abm_destroy(&pool->base.abm);
if (pool->base.dmcu != NULL)
dce_dmcu_destroy(&pool->base.dmcu);
if (pool->base.irqs != NULL) {
dal_irq_service_destroy(&pool->base.irqs);
}
}
static void get_pixel_clock_parameters(
const struct pipe_ctx *pipe_ctx,
struct pixel_clk_params *pixel_clk_params)
{
const struct dc_stream_state *stream = pipe_ctx->stream;
/*TODO: is this halved for YCbCr 420? in that case we might want to move
* the pixel clock normalization for hdmi up to here instead of doing it
* in pll_adjust_pix_clk
*/
pixel_clk_params->requested_pix_clk_100hz = stream->timing.pix_clk_100hz;
pixel_clk_params->encoder_object_id = stream->link->link_enc->id;
pixel_clk_params->signal_type = pipe_ctx->stream->signal;
pixel_clk_params->controller_id = pipe_ctx->stream_res.tg->inst + 1;
/* TODO: un-hardcode*/
pixel_clk_params->requested_sym_clk = LINK_RATE_LOW *
LINK_RATE_REF_FREQ_IN_KHZ;
pixel_clk_params->flags.ENABLE_SS = 0;
pixel_clk_params->color_depth =
stream->timing.display_color_depth;
pixel_clk_params->flags.DISPLAY_BLANKED = 1;
pixel_clk_params->flags.SUPPORT_YCBCR420 = (stream->timing.pixel_encoding ==
PIXEL_ENCODING_YCBCR420);
pixel_clk_params->pixel_encoding = stream->timing.pixel_encoding;
if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR422) {
pixel_clk_params->color_depth = COLOR_DEPTH_888;
}
if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
pixel_clk_params->requested_pix_clk_100hz = pixel_clk_params->requested_pix_clk_100hz / 2;
}
if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
pixel_clk_params->requested_pix_clk_100hz *= 2;
}
void dce110_resource_build_pipe_hw_param(struct pipe_ctx *pipe_ctx)
{
get_pixel_clock_parameters(pipe_ctx, &pipe_ctx->stream_res.pix_clk_params);
pipe_ctx->clock_source->funcs->get_pix_clk_dividers(
pipe_ctx->clock_source,
&pipe_ctx->stream_res.pix_clk_params,
&pipe_ctx->pll_settings);
resource_build_bit_depth_reduction_params(pipe_ctx->stream,
&pipe_ctx->stream->bit_depth_params);
pipe_ctx->stream->clamping.pixel_encoding = pipe_ctx->stream->timing.pixel_encoding;
}
static bool is_surface_pixel_format_supported(struct pipe_ctx *pipe_ctx, unsigned int underlay_idx)
{
if (pipe_ctx->pipe_idx != underlay_idx)
return true;
if (!pipe_ctx->plane_state)
return false;
if (pipe_ctx->plane_state->format < SURFACE_PIXEL_FORMAT_VIDEO_BEGIN)
return false;
return true;
}
static enum dc_status build_mapped_resource(
const struct dc *dc,
struct dc_state *context,
struct dc_stream_state *stream)
{
struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
if (!pipe_ctx)
return DC_ERROR_UNEXPECTED;
if (!is_surface_pixel_format_supported(pipe_ctx,
dc->res_pool->underlay_pipe_index))
return DC_SURFACE_PIXEL_FORMAT_UNSUPPORTED;
dce110_resource_build_pipe_hw_param(pipe_ctx);
/* TODO: validate audio ASIC caps, encoder */
resource_build_info_frame(pipe_ctx);
return DC_OK;
}
static bool dce110_validate_bandwidth(
struct dc *dc,
struct dc_state *context,
bool fast_validate)
{
bool result = false;
DC_LOG_BANDWIDTH_CALCS(
"%s: start",
__func__);
if (bw_calcs(
dc->ctx,
dc->bw_dceip,
dc->bw_vbios,
context->res_ctx.pipe_ctx,
dc->res_pool->pipe_count,
&context->bw_ctx.bw.dce))
result = true;
if (!result)
DC_LOG_BANDWIDTH_VALIDATION("%s: %dx%d@%d Bandwidth validation failed!\n",
__func__,
context->streams[0]->timing.h_addressable,
context->streams[0]->timing.v_addressable,
context->streams[0]->timing.pix_clk_100hz / 10);
if (memcmp(&dc->current_state->bw_ctx.bw.dce,
&context->bw_ctx.bw.dce, sizeof(context->bw_ctx.bw.dce))) {
DC_LOG_BANDWIDTH_CALCS(
"%s: finish,\n"
"nbpMark_b: %d nbpMark_a: %d urgentMark_b: %d urgentMark_a: %d\n"
"stutMark_b: %d stutMark_a: %d\n"
"nbpMark_b: %d nbpMark_a: %d urgentMark_b: %d urgentMark_a: %d\n"
"stutMark_b: %d stutMark_a: %d\n"
"nbpMark_b: %d nbpMark_a: %d urgentMark_b: %d urgentMark_a: %d\n"
"stutMark_b: %d stutMark_a: %d stutter_mode_enable: %d\n"
"cstate: %d pstate: %d nbpstate: %d sync: %d dispclk: %d\n"
"sclk: %d sclk_sleep: %d yclk: %d blackout_recovery_time_us: %d\n"
,
__func__,
context->bw_ctx.bw.dce.nbp_state_change_wm_ns[0].b_mark,
context->bw_ctx.bw.dce.nbp_state_change_wm_ns[0].a_mark,
context->bw_ctx.bw.dce.urgent_wm_ns[0].b_mark,
context->bw_ctx.bw.dce.urgent_wm_ns[0].a_mark,
context->bw_ctx.bw.dce.stutter_exit_wm_ns[0].b_mark,
context->bw_ctx.bw.dce.stutter_exit_wm_ns[0].a_mark,
context->bw_ctx.bw.dce.nbp_state_change_wm_ns[1].b_mark,
context->bw_ctx.bw.dce.nbp_state_change_wm_ns[1].a_mark,
context->bw_ctx.bw.dce.urgent_wm_ns[1].b_mark,
context->bw_ctx.bw.dce.urgent_wm_ns[1].a_mark,
context->bw_ctx.bw.dce.stutter_exit_wm_ns[1].b_mark,
context->bw_ctx.bw.dce.stutter_exit_wm_ns[1].a_mark,
context->bw_ctx.bw.dce.nbp_state_change_wm_ns[2].b_mark,
context->bw_ctx.bw.dce.nbp_state_change_wm_ns[2].a_mark,
context->bw_ctx.bw.dce.urgent_wm_ns[2].b_mark,
context->bw_ctx.bw.dce.urgent_wm_ns[2].a_mark,
context->bw_ctx.bw.dce.stutter_exit_wm_ns[2].b_mark,
context->bw_ctx.bw.dce.stutter_exit_wm_ns[2].a_mark,
context->bw_ctx.bw.dce.stutter_mode_enable,
context->bw_ctx.bw.dce.cpuc_state_change_enable,
context->bw_ctx.bw.dce.cpup_state_change_enable,
context->bw_ctx.bw.dce.nbp_state_change_enable,
context->bw_ctx.bw.dce.all_displays_in_sync,
context->bw_ctx.bw.dce.dispclk_khz,
context->bw_ctx.bw.dce.sclk_khz,
context->bw_ctx.bw.dce.sclk_deep_sleep_khz,
context->bw_ctx.bw.dce.yclk_khz,
context->bw_ctx.bw.dce.blackout_recovery_time_us);
}
return result;
}
static enum dc_status dce110_validate_plane(const struct dc_plane_state *plane_state,
struct dc_caps *caps)
{
if (((plane_state->dst_rect.width * 2) < plane_state->src_rect.width) ||
((plane_state->dst_rect.height * 2) < plane_state->src_rect.height))
return DC_FAIL_SURFACE_VALIDATE;
return DC_OK;
}
static bool dce110_validate_surface_sets(
struct dc_state *context)
{
int i, j;
for (i = 0; i < context->stream_count; i++) {
if (context->stream_status[i].plane_count == 0)
continue;
if (context->stream_status[i].plane_count > 2)
return false;
for (j = 0; j < context->stream_status[i].plane_count; j++) {
struct dc_plane_state *plane =
context->stream_status[i].plane_states[j];
/* underlay validation */
if (plane->format >= SURFACE_PIXEL_FORMAT_VIDEO_BEGIN) {
if ((plane->src_rect.width > 1920 ||
plane->src_rect.height > 1080))
return false;
/* we don't have the logic to support underlay
* only yet so block the use case where we get
* NV12 plane as top layer
*/
if (j == 0)
return false;
/* irrespective of plane format,
* stream should be RGB encoded
*/
if (context->streams[i]->timing.pixel_encoding
!= PIXEL_ENCODING_RGB)
return false;
}
}
}
return true;
}
static enum dc_status dce110_validate_global(
struct dc *dc,
struct dc_state *context)
{
if (!dce110_validate_surface_sets(context))
return DC_FAIL_SURFACE_VALIDATE;
return DC_OK;
}
static enum dc_status dce110_add_stream_to_ctx(
struct dc *dc,
struct dc_state *new_ctx,
struct dc_stream_state *dc_stream)
{
enum dc_status result = DC_ERROR_UNEXPECTED;
result = resource_map_pool_resources(dc, new_ctx, dc_stream);
if (result == DC_OK)
result = resource_map_clock_resources(dc, new_ctx, dc_stream);
if (result == DC_OK)
result = build_mapped_resource(dc, new_ctx, dc_stream);
return result;
}
static struct pipe_ctx *dce110_acquire_underlay(
struct dc_state *context,
const struct resource_pool *pool,
struct dc_stream_state *stream)
{
struct dc *dc = stream->ctx->dc;
struct dce_hwseq *hws = dc->hwseq;
struct resource_context *res_ctx = &context->res_ctx;
unsigned int underlay_idx = pool->underlay_pipe_index;
struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[underlay_idx];
if (res_ctx->pipe_ctx[underlay_idx].stream)
return NULL;
pipe_ctx->stream_res.tg = pool->timing_generators[underlay_idx];
pipe_ctx->plane_res.mi = pool->mis[underlay_idx];
/*pipe_ctx->plane_res.ipp = res_ctx->pool->ipps[underlay_idx];*/
pipe_ctx->plane_res.xfm = pool->transforms[underlay_idx];
pipe_ctx->stream_res.opp = pool->opps[underlay_idx];
pipe_ctx->pipe_idx = underlay_idx;
pipe_ctx->stream = stream;
if (!dc->current_state->res_ctx.pipe_ctx[underlay_idx].stream) {
struct tg_color black_color = {0};
struct dc_bios *dcb = dc->ctx->dc_bios;
hws->funcs.enable_display_power_gating(
dc,
pipe_ctx->stream_res.tg->inst,
dcb, PIPE_GATING_CONTROL_DISABLE);
/*
* This is for powering on underlay, so crtc does not
* need to be enabled
*/
pipe_ctx->stream_res.tg->funcs->program_timing(pipe_ctx->stream_res.tg,
&stream->timing,
0,
0,
0,
0,
pipe_ctx->stream->signal,
false);
pipe_ctx->stream_res.tg->funcs->enable_advanced_request(
pipe_ctx->stream_res.tg,
true,
&stream->timing);
pipe_ctx->plane_res.mi->funcs->allocate_mem_input(pipe_ctx->plane_res.mi,
stream->timing.h_total,
stream->timing.v_total,
stream->timing.pix_clk_100hz / 10,
context->stream_count);
color_space_to_black_color(dc,
COLOR_SPACE_YCBCR601, &black_color);
pipe_ctx->stream_res.tg->funcs->set_blank_color(
pipe_ctx->stream_res.tg,
&black_color);
}
return pipe_ctx;
}
static void dce110_destroy_resource_pool(struct resource_pool **pool)
{
struct dce110_resource_pool *dce110_pool = TO_DCE110_RES_POOL(*pool);
dce110_resource_destruct(dce110_pool);
kfree(dce110_pool);
*pool = NULL;
}
struct stream_encoder *dce110_find_first_free_match_stream_enc_for_link(
struct resource_context *res_ctx,
const struct resource_pool *pool,
struct dc_stream_state *stream)
{
int i;
int j = -1;
struct dc_link *link = stream->link;
for (i = 0; i < pool->stream_enc_count; i++) {
if (!res_ctx->is_stream_enc_acquired[i] &&
pool->stream_enc[i]) {
/* Store first available for MST second display
* in daisy chain use case
*/
j = i;
if (pool->stream_enc[i]->id ==
link->link_enc->preferred_engine)
return pool->stream_enc[i];
}
}
/*
* For CZ and later, we can allow DIG FE and BE to differ for all display types
*/
if (j >= 0)
return pool->stream_enc[j];
return NULL;
}
static const struct resource_funcs dce110_res_pool_funcs = {
.destroy = dce110_destroy_resource_pool,
.link_enc_create = dce110_link_encoder_create,
.panel_cntl_create = dce110_panel_cntl_create,
.validate_bandwidth = dce110_validate_bandwidth,
.validate_plane = dce110_validate_plane,
.acquire_idle_pipe_for_layer = dce110_acquire_underlay,
.add_stream_to_ctx = dce110_add_stream_to_ctx,
.validate_global = dce110_validate_global,
.find_first_free_match_stream_enc_for_link = dce110_find_first_free_match_stream_enc_for_link
};
static bool underlay_create(struct dc_context *ctx, struct resource_pool *pool)
{
struct dce110_timing_generator *dce110_tgv = kzalloc(sizeof(*dce110_tgv),
GFP_KERNEL);
struct dce_transform *dce110_xfmv = kzalloc(sizeof(*dce110_xfmv),
GFP_KERNEL);
struct dce_mem_input *dce110_miv = kzalloc(sizeof(*dce110_miv),
GFP_KERNEL);
struct dce110_opp *dce110_oppv = kzalloc(sizeof(*dce110_oppv),
GFP_KERNEL);
if (!dce110_tgv || !dce110_xfmv || !dce110_miv || !dce110_oppv) {
kfree(dce110_tgv);
kfree(dce110_xfmv);
kfree(dce110_miv);
kfree(dce110_oppv);
return false;
}
dce110_opp_v_construct(dce110_oppv, ctx);
dce110_timing_generator_v_construct(dce110_tgv, ctx);
dce110_mem_input_v_construct(dce110_miv, ctx);
dce110_transform_v_construct(dce110_xfmv, ctx);
pool->opps[pool->pipe_count] = &dce110_oppv->base;
pool->timing_generators[pool->pipe_count] = &dce110_tgv->base;
pool->mis[pool->pipe_count] = &dce110_miv->base;
pool->transforms[pool->pipe_count] = &dce110_xfmv->base;
pool->pipe_count++;
/* update the public caps to indicate an underlay is available */
ctx->dc->caps.max_slave_planes = 1;
ctx->dc->caps.max_slave_yuv_planes = 1;
ctx->dc->caps.max_slave_rgb_planes = 0;
return true;
}
static void bw_calcs_data_update_from_pplib(struct dc *dc)
{
struct dm_pp_clock_levels clks = {0};
/*do system clock*/
dm_pp_get_clock_levels_by_type(
dc->ctx,
DM_PP_CLOCK_TYPE_ENGINE_CLK,
&clks);
/* convert all the clock fro kHz to fix point mHz */
dc->bw_vbios->high_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels-1], 1000);
dc->bw_vbios->mid1_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels/8], 1000);
dc->bw_vbios->mid2_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels*2/8], 1000);
dc->bw_vbios->mid3_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels*3/8], 1000);
dc->bw_vbios->mid4_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels*4/8], 1000);
dc->bw_vbios->mid5_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels*5/8], 1000);
dc->bw_vbios->mid6_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels*6/8], 1000);
dc->bw_vbios->low_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[0], 1000);
dc->sclk_lvls = clks;
/*do display clock*/
dm_pp_get_clock_levels_by_type(
dc->ctx,
DM_PP_CLOCK_TYPE_DISPLAY_CLK,
&clks);
dc->bw_vbios->high_voltage_max_dispclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels-1], 1000);
dc->bw_vbios->mid_voltage_max_dispclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels>>1], 1000);
dc->bw_vbios->low_voltage_max_dispclk = bw_frc_to_fixed(
clks.clocks_in_khz[0], 1000);
/*do memory clock*/
dm_pp_get_clock_levels_by_type(
dc->ctx,
DM_PP_CLOCK_TYPE_MEMORY_CLK,
&clks);
dc->bw_vbios->low_yclk = bw_frc_to_fixed(
clks.clocks_in_khz[0] * MEMORY_TYPE_MULTIPLIER_CZ, 1000);
dc->bw_vbios->mid_yclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels>>1] * MEMORY_TYPE_MULTIPLIER_CZ,
1000);
dc->bw_vbios->high_yclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels-1] * MEMORY_TYPE_MULTIPLIER_CZ,
1000);
}
static const struct resource_caps *dce110_resource_cap(
struct hw_asic_id *asic_id)
{
if (ASIC_REV_IS_STONEY(asic_id->hw_internal_rev))
return &stoney_resource_cap;
else
return &carrizo_resource_cap;
}
static bool dce110_resource_construct(
uint8_t num_virtual_links,
struct dc *dc,
struct dce110_resource_pool *pool,
struct hw_asic_id asic_id)
{
unsigned int i;
struct dc_context *ctx = dc->ctx;
struct dc_bios *bp;
ctx->dc_bios->regs = &bios_regs;
pool->base.res_cap = dce110_resource_cap(&ctx->asic_id);
pool->base.funcs = &dce110_res_pool_funcs;
/*************************************************
* Resource + asic cap harcoding *
*************************************************/
pool->base.pipe_count = pool->base.res_cap->num_timing_generator;
pool->base.underlay_pipe_index = pool->base.pipe_count;
pool->base.timing_generator_count = pool->base.res_cap->num_timing_generator;
dc->caps.max_downscale_ratio = 150;
dc->caps.i2c_speed_in_khz = 40;
dc->caps.i2c_speed_in_khz_hdcp = 40;
dc->caps.max_cursor_size = 128;
dc->caps.min_horizontal_blanking_period = 80;
dc->caps.is_apu = true;
dc->caps.extended_aux_timeout_support = false;
/*************************************************
* Create resources *
*************************************************/
bp = ctx->dc_bios;
if (bp->fw_info_valid && bp->fw_info.external_clock_source_frequency_for_dp != 0) {
pool->base.dp_clock_source =
dce110_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_EXTERNAL, NULL, true);
pool->base.clock_sources[0] =
dce110_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_PLL0,
&clk_src_regs[0], false);
pool->base.clock_sources[1] =
dce110_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_PLL1,
&clk_src_regs[1], false);
pool->base.clk_src_count = 2;
/* TODO: find out if CZ support 3 PLLs */
}
if (pool->base.dp_clock_source == NULL) {
dm_error("DC: failed to create dp clock source!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] == NULL) {
dm_error("DC: failed to create clock sources!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
}
pool->base.dmcu = dce_dmcu_create(ctx,
&dmcu_regs,
&dmcu_shift,
&dmcu_mask);
if (pool->base.dmcu == NULL) {
dm_error("DC: failed to create dmcu!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
pool->base.abm = dce_abm_create(ctx,
&abm_regs,
&abm_shift,
&abm_mask);
if (pool->base.abm == NULL) {
dm_error("DC: failed to create abm!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
{
struct irq_service_init_data init_data;
init_data.ctx = dc->ctx;
pool->base.irqs = dal_irq_service_dce110_create(&init_data);
if (!pool->base.irqs)
goto res_create_fail;
}
for (i = 0; i < pool->base.pipe_count; i++) {
pool->base.timing_generators[i] = dce110_timing_generator_create(
ctx, i, &dce110_tg_offsets[i]);
if (pool->base.timing_generators[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create tg!\n");
goto res_create_fail;
}
pool->base.mis[i] = dce110_mem_input_create(ctx, i);
if (pool->base.mis[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create memory input!\n");
goto res_create_fail;
}
pool->base.ipps[i] = dce110_ipp_create(ctx, i);
if (pool->base.ipps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create input pixel processor!\n");
goto res_create_fail;
}
pool->base.transforms[i] = dce110_transform_create(ctx, i);
if (pool->base.transforms[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create transform!\n");
goto res_create_fail;
}
pool->base.opps[i] = dce110_opp_create(ctx, i);
if (pool->base.opps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create output pixel processor!\n");
goto res_create_fail;
}
}
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
pool->base.engines[i] = dce110_aux_engine_create(ctx, i);
if (pool->base.engines[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create aux engine!!\n");
goto res_create_fail;
}
pool->base.hw_i2cs[i] = dce110_i2c_hw_create(ctx, i);
if (pool->base.hw_i2cs[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create i2c engine!!\n");
goto res_create_fail;
}
pool->base.sw_i2cs[i] = NULL;
}
if (dc->config.fbc_support)
dc->fbc_compressor = dce110_compressor_create(ctx);
if (!underlay_create(ctx, &pool->base))
goto res_create_fail;
if (!resource_construct(num_virtual_links, dc, &pool->base,
&res_create_funcs))
goto res_create_fail;
/* Create hardware sequencer */
dce110_hw_sequencer_construct(dc);
dc->caps.max_planes = pool->base.pipe_count;
for (i = 0; i < pool->base.underlay_pipe_index; ++i)
dc->caps.planes[i] = plane_cap;
dc->caps.planes[pool->base.underlay_pipe_index] = underlay_plane_cap;
bw_calcs_init(dc->bw_dceip, dc->bw_vbios, dc->ctx->asic_id);
bw_calcs_data_update_from_pplib(dc);
return true;
res_create_fail:
dce110_resource_destruct(pool);
return false;
}
struct resource_pool *dce110_create_resource_pool(
uint8_t num_virtual_links,
struct dc *dc,
struct hw_asic_id asic_id)
{
struct dce110_resource_pool *pool =
kzalloc(sizeof(struct dce110_resource_pool), GFP_KERNEL);
if (!pool)
return NULL;
if (dce110_resource_construct(num_virtual_links, dc, pool, asic_id))
return &pool->base;
kfree(pool);
BREAK_TO_DEBUGGER();
return NULL;
}