linux-zen-server/drivers/gpu/drm/amd/display/dc/dcn20/dcn20_resource.c

2799 lines
76 KiB
C
Raw Permalink Normal View History

2023-08-30 17:53:23 +02:00
/*
* Copyright 2016 Advanced Micro Devices, Inc.
* Copyright 2019 Raptor Engineering, LLC
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include <linux/slab.h>
#include "dm_services.h"
#include "dc.h"
#include "dcn20_init.h"
#include "resource.h"
#include "include/irq_service_interface.h"
#include "dcn20/dcn20_resource.h"
#include "dml/dcn20/dcn20_fpu.h"
#include "dcn10/dcn10_hubp.h"
#include "dcn10/dcn10_ipp.h"
#include "dcn20_hubbub.h"
#include "dcn20_mpc.h"
#include "dcn20_hubp.h"
#include "irq/dcn20/irq_service_dcn20.h"
#include "dcn20_dpp.h"
#include "dcn20_optc.h"
#include "dcn20_hwseq.h"
#include "dce110/dce110_hw_sequencer.h"
#include "dcn10/dcn10_resource.h"
#include "dcn20_opp.h"
#include "dcn20_dsc.h"
#include "dcn20_link_encoder.h"
#include "dcn20_stream_encoder.h"
#include "dce/dce_clock_source.h"
#include "dce/dce_audio.h"
#include "dce/dce_hwseq.h"
#include "virtual/virtual_stream_encoder.h"
#include "dce110/dce110_resource.h"
#include "dml/display_mode_vba.h"
#include "dcn20_dccg.h"
#include "dcn20_vmid.h"
#include "dce/dce_panel_cntl.h"
#include "navi10_ip_offset.h"
#include "dcn/dcn_2_0_0_offset.h"
#include "dcn/dcn_2_0_0_sh_mask.h"
#include "dpcs/dpcs_2_0_0_offset.h"
#include "dpcs/dpcs_2_0_0_sh_mask.h"
#include "nbio/nbio_2_3_offset.h"
#include "dcn20/dcn20_dwb.h"
#include "dcn20/dcn20_mmhubbub.h"
#include "mmhub/mmhub_2_0_0_offset.h"
#include "mmhub/mmhub_2_0_0_sh_mask.h"
#include "reg_helper.h"
#include "dce/dce_abm.h"
#include "dce/dce_dmcu.h"
#include "dce/dce_aux.h"
#include "dce/dce_i2c.h"
#include "vm_helper.h"
#include "link_enc_cfg.h"
#include "amdgpu_socbb.h"
#include "link.h"
#define DC_LOGGER_INIT(logger)
#ifndef mmDP0_DP_DPHY_INTERNAL_CTRL
#define mmDP0_DP_DPHY_INTERNAL_CTRL 0x210f
#define mmDP0_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP1_DP_DPHY_INTERNAL_CTRL 0x220f
#define mmDP1_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP2_DP_DPHY_INTERNAL_CTRL 0x230f
#define mmDP2_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP3_DP_DPHY_INTERNAL_CTRL 0x240f
#define mmDP3_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP4_DP_DPHY_INTERNAL_CTRL 0x250f
#define mmDP4_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP5_DP_DPHY_INTERNAL_CTRL 0x260f
#define mmDP5_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP6_DP_DPHY_INTERNAL_CTRL 0x270f
#define mmDP6_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#endif
enum dcn20_clk_src_array_id {
DCN20_CLK_SRC_PLL0,
DCN20_CLK_SRC_PLL1,
DCN20_CLK_SRC_PLL2,
DCN20_CLK_SRC_PLL3,
DCN20_CLK_SRC_PLL4,
DCN20_CLK_SRC_PLL5,
DCN20_CLK_SRC_TOTAL
};
/* begin *********************
* macros to expend register list macro defined in HW object header file */
/* DCN */
#define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg
#define BASE(seg) BASE_INNER(seg)
#define SR(reg_name)\
.reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
mm ## reg_name
#define SRI(reg_name, block, id)\
.reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
#define SRI2_DWB(reg_name, block, id)\
.reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
mm ## reg_name
#define SF_DWB(reg_name, field_name, post_fix)\
.field_name = reg_name ## __ ## field_name ## post_fix
#define SF_DWB2(reg_name, block, id, field_name, post_fix) \
.field_name = reg_name ## __ ## field_name ## post_fix
#define SRIR(var_name, reg_name, block, id)\
.var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
#define SRII(reg_name, block, id)\
.reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
#define DCCG_SRII(reg_name, block, id)\
.block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
#define VUPDATE_SRII(reg_name, block, id)\
.reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
mm ## reg_name ## _ ## block ## id
/* NBIO */
#define NBIO_BASE_INNER(seg) \
NBIO_BASE__INST0_SEG ## seg
#define NBIO_BASE(seg) \
NBIO_BASE_INNER(seg)
#define NBIO_SR(reg_name)\
.reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \
mm ## reg_name
/* MMHUB */
#define MMHUB_BASE_INNER(seg) \
MMHUB_BASE__INST0_SEG ## seg
#define MMHUB_BASE(seg) \
MMHUB_BASE_INNER(seg)
#define MMHUB_SR(reg_name)\
.reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \
mmMM ## reg_name
static const struct bios_registers bios_regs = {
NBIO_SR(BIOS_SCRATCH_3),
NBIO_SR(BIOS_SCRATCH_6)
};
#define clk_src_regs(index, pllid)\
[index] = {\
CS_COMMON_REG_LIST_DCN2_0(index, pllid),\
}
static const struct dce110_clk_src_regs clk_src_regs[] = {
clk_src_regs(0, A),
clk_src_regs(1, B),
clk_src_regs(2, C),
clk_src_regs(3, D),
clk_src_regs(4, E),
clk_src_regs(5, F)
};
static const struct dce110_clk_src_shift cs_shift = {
CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
};
static const struct dce110_clk_src_mask cs_mask = {
CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
};
static const struct dce_dmcu_registers dmcu_regs = {
DMCU_DCN10_REG_LIST()
};
static const struct dce_dmcu_shift dmcu_shift = {
DMCU_MASK_SH_LIST_DCN10(__SHIFT)
};
static const struct dce_dmcu_mask dmcu_mask = {
DMCU_MASK_SH_LIST_DCN10(_MASK)
};
static const struct dce_abm_registers abm_regs = {
ABM_DCN20_REG_LIST()
};
static const struct dce_abm_shift abm_shift = {
ABM_MASK_SH_LIST_DCN20(__SHIFT)
};
static const struct dce_abm_mask abm_mask = {
ABM_MASK_SH_LIST_DCN20(_MASK)
};
#define audio_regs(id)\
[id] = {\
AUD_COMMON_REG_LIST(id)\
}
static const struct dce_audio_registers audio_regs[] = {
audio_regs(0),
audio_regs(1),
audio_regs(2),
audio_regs(3),
audio_regs(4),
audio_regs(5),
audio_regs(6),
};
#define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
static const struct dce_audio_shift audio_shift = {
DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
};
static const struct dce_audio_mask audio_mask = {
DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
};
#define stream_enc_regs(id)\
[id] = {\
SE_DCN2_REG_LIST(id)\
}
static const struct dcn10_stream_enc_registers stream_enc_regs[] = {
stream_enc_regs(0),
stream_enc_regs(1),
stream_enc_regs(2),
stream_enc_regs(3),
stream_enc_regs(4),
stream_enc_regs(5),
};
static const struct dcn10_stream_encoder_shift se_shift = {
SE_COMMON_MASK_SH_LIST_DCN20(__SHIFT)
};
static const struct dcn10_stream_encoder_mask se_mask = {
SE_COMMON_MASK_SH_LIST_DCN20(_MASK)
};
#define aux_regs(id)\
[id] = {\
DCN2_AUX_REG_LIST(id)\
}
static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = {
aux_regs(0),
aux_regs(1),
aux_regs(2),
aux_regs(3),
aux_regs(4),
aux_regs(5)
};
#define hpd_regs(id)\
[id] = {\
HPD_REG_LIST(id)\
}
static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = {
hpd_regs(0),
hpd_regs(1),
hpd_regs(2),
hpd_regs(3),
hpd_regs(4),
hpd_regs(5)
};
#define link_regs(id, phyid)\
[id] = {\
LE_DCN10_REG_LIST(id), \
UNIPHY_DCN2_REG_LIST(phyid), \
DPCS_DCN2_REG_LIST(id), \
SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \
}
static const struct dcn10_link_enc_registers link_enc_regs[] = {
link_regs(0, A),
link_regs(1, B),
link_regs(2, C),
link_regs(3, D),
link_regs(4, E),
link_regs(5, F)
};
static const struct dcn10_link_enc_shift le_shift = {
LINK_ENCODER_MASK_SH_LIST_DCN20(__SHIFT),\
DPCS_DCN2_MASK_SH_LIST(__SHIFT)
};
static const struct dcn10_link_enc_mask le_mask = {
LINK_ENCODER_MASK_SH_LIST_DCN20(_MASK),\
DPCS_DCN2_MASK_SH_LIST(_MASK)
};
static const struct dce_panel_cntl_registers panel_cntl_regs[] = {
{ DCN_PANEL_CNTL_REG_LIST() }
};
static const struct dce_panel_cntl_shift panel_cntl_shift = {
DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT)
};
static const struct dce_panel_cntl_mask panel_cntl_mask = {
DCE_PANEL_CNTL_MASK_SH_LIST(_MASK)
};
#define ipp_regs(id)\
[id] = {\
IPP_REG_LIST_DCN20(id),\
}
static const struct dcn10_ipp_registers ipp_regs[] = {
ipp_regs(0),
ipp_regs(1),
ipp_regs(2),
ipp_regs(3),
ipp_regs(4),
ipp_regs(5),
};
static const struct dcn10_ipp_shift ipp_shift = {
IPP_MASK_SH_LIST_DCN20(__SHIFT)
};
static const struct dcn10_ipp_mask ipp_mask = {
IPP_MASK_SH_LIST_DCN20(_MASK),
};
#define opp_regs(id)\
[id] = {\
OPP_REG_LIST_DCN20(id),\
}
static const struct dcn20_opp_registers opp_regs[] = {
opp_regs(0),
opp_regs(1),
opp_regs(2),
opp_regs(3),
opp_regs(4),
opp_regs(5),
};
static const struct dcn20_opp_shift opp_shift = {
OPP_MASK_SH_LIST_DCN20(__SHIFT)
};
static const struct dcn20_opp_mask opp_mask = {
OPP_MASK_SH_LIST_DCN20(_MASK)
};
#define aux_engine_regs(id)\
[id] = {\
AUX_COMMON_REG_LIST0(id), \
.AUXN_IMPCAL = 0, \
.AUXP_IMPCAL = 0, \
.AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \
}
static const struct dce110_aux_registers aux_engine_regs[] = {
aux_engine_regs(0),
aux_engine_regs(1),
aux_engine_regs(2),
aux_engine_regs(3),
aux_engine_regs(4),
aux_engine_regs(5)
};
#define tf_regs(id)\
[id] = {\
TF_REG_LIST_DCN20(id),\
TF_REG_LIST_DCN20_COMMON_APPEND(id),\
}
static const struct dcn2_dpp_registers tf_regs[] = {
tf_regs(0),
tf_regs(1),
tf_regs(2),
tf_regs(3),
tf_regs(4),
tf_regs(5),
};
static const struct dcn2_dpp_shift tf_shift = {
TF_REG_LIST_SH_MASK_DCN20(__SHIFT),
TF_DEBUG_REG_LIST_SH_DCN20
};
static const struct dcn2_dpp_mask tf_mask = {
TF_REG_LIST_SH_MASK_DCN20(_MASK),
TF_DEBUG_REG_LIST_MASK_DCN20
};
#define dwbc_regs_dcn2(id)\
[id] = {\
DWBC_COMMON_REG_LIST_DCN2_0(id),\
}
static const struct dcn20_dwbc_registers dwbc20_regs[] = {
dwbc_regs_dcn2(0),
};
static const struct dcn20_dwbc_shift dwbc20_shift = {
DWBC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
};
static const struct dcn20_dwbc_mask dwbc20_mask = {
DWBC_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
};
#define mcif_wb_regs_dcn2(id)\
[id] = {\
MCIF_WB_COMMON_REG_LIST_DCN2_0(id),\
}
static const struct dcn20_mmhubbub_registers mcif_wb20_regs[] = {
mcif_wb_regs_dcn2(0),
};
static const struct dcn20_mmhubbub_shift mcif_wb20_shift = {
MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
};
static const struct dcn20_mmhubbub_mask mcif_wb20_mask = {
MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
};
static const struct dcn20_mpc_registers mpc_regs = {
MPC_REG_LIST_DCN2_0(0),
MPC_REG_LIST_DCN2_0(1),
MPC_REG_LIST_DCN2_0(2),
MPC_REG_LIST_DCN2_0(3),
MPC_REG_LIST_DCN2_0(4),
MPC_REG_LIST_DCN2_0(5),
MPC_OUT_MUX_REG_LIST_DCN2_0(0),
MPC_OUT_MUX_REG_LIST_DCN2_0(1),
MPC_OUT_MUX_REG_LIST_DCN2_0(2),
MPC_OUT_MUX_REG_LIST_DCN2_0(3),
MPC_OUT_MUX_REG_LIST_DCN2_0(4),
MPC_OUT_MUX_REG_LIST_DCN2_0(5),
MPC_DBG_REG_LIST_DCN2_0()
};
static const struct dcn20_mpc_shift mpc_shift = {
MPC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT),
MPC_DEBUG_REG_LIST_SH_DCN20
};
static const struct dcn20_mpc_mask mpc_mask = {
MPC_COMMON_MASK_SH_LIST_DCN2_0(_MASK),
MPC_DEBUG_REG_LIST_MASK_DCN20
};
#define tg_regs(id)\
[id] = {TG_COMMON_REG_LIST_DCN2_0(id)}
static const struct dcn_optc_registers tg_regs[] = {
tg_regs(0),
tg_regs(1),
tg_regs(2),
tg_regs(3),
tg_regs(4),
tg_regs(5)
};
static const struct dcn_optc_shift tg_shift = {
TG_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
};
static const struct dcn_optc_mask tg_mask = {
TG_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
};
#define hubp_regs(id)\
[id] = {\
HUBP_REG_LIST_DCN20(id)\
}
static const struct dcn_hubp2_registers hubp_regs[] = {
hubp_regs(0),
hubp_regs(1),
hubp_regs(2),
hubp_regs(3),
hubp_regs(4),
hubp_regs(5)
};
static const struct dcn_hubp2_shift hubp_shift = {
HUBP_MASK_SH_LIST_DCN20(__SHIFT)
};
static const struct dcn_hubp2_mask hubp_mask = {
HUBP_MASK_SH_LIST_DCN20(_MASK)
};
static const struct dcn_hubbub_registers hubbub_reg = {
HUBBUB_REG_LIST_DCN20(0)
};
static const struct dcn_hubbub_shift hubbub_shift = {
HUBBUB_MASK_SH_LIST_DCN20(__SHIFT)
};
static const struct dcn_hubbub_mask hubbub_mask = {
HUBBUB_MASK_SH_LIST_DCN20(_MASK)
};
#define vmid_regs(id)\
[id] = {\
DCN20_VMID_REG_LIST(id)\
}
static const struct dcn_vmid_registers vmid_regs[] = {
vmid_regs(0),
vmid_regs(1),
vmid_regs(2),
vmid_regs(3),
vmid_regs(4),
vmid_regs(5),
vmid_regs(6),
vmid_regs(7),
vmid_regs(8),
vmid_regs(9),
vmid_regs(10),
vmid_regs(11),
vmid_regs(12),
vmid_regs(13),
vmid_regs(14),
vmid_regs(15)
};
static const struct dcn20_vmid_shift vmid_shifts = {
DCN20_VMID_MASK_SH_LIST(__SHIFT)
};
static const struct dcn20_vmid_mask vmid_masks = {
DCN20_VMID_MASK_SH_LIST(_MASK)
};
static const struct dce110_aux_registers_shift aux_shift = {
DCN_AUX_MASK_SH_LIST(__SHIFT)
};
static const struct dce110_aux_registers_mask aux_mask = {
DCN_AUX_MASK_SH_LIST(_MASK)
};
static int map_transmitter_id_to_phy_instance(
enum transmitter transmitter)
{
switch (transmitter) {
case TRANSMITTER_UNIPHY_A:
return 0;
break;
case TRANSMITTER_UNIPHY_B:
return 1;
break;
case TRANSMITTER_UNIPHY_C:
return 2;
break;
case TRANSMITTER_UNIPHY_D:
return 3;
break;
case TRANSMITTER_UNIPHY_E:
return 4;
break;
case TRANSMITTER_UNIPHY_F:
return 5;
break;
default:
ASSERT(0);
return 0;
}
}
#define dsc_regsDCN20(id)\
[id] = {\
DSC_REG_LIST_DCN20(id)\
}
static const struct dcn20_dsc_registers dsc_regs[] = {
dsc_regsDCN20(0),
dsc_regsDCN20(1),
dsc_regsDCN20(2),
dsc_regsDCN20(3),
dsc_regsDCN20(4),
dsc_regsDCN20(5)
};
static const struct dcn20_dsc_shift dsc_shift = {
DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
};
static const struct dcn20_dsc_mask dsc_mask = {
DSC_REG_LIST_SH_MASK_DCN20(_MASK)
};
static const struct dccg_registers dccg_regs = {
DCCG_REG_LIST_DCN2()
};
static const struct dccg_shift dccg_shift = {
DCCG_MASK_SH_LIST_DCN2(__SHIFT)
};
static const struct dccg_mask dccg_mask = {
DCCG_MASK_SH_LIST_DCN2(_MASK)
};
static const struct resource_caps res_cap_nv10 = {
.num_timing_generator = 6,
.num_opp = 6,
.num_video_plane = 6,
.num_audio = 7,
.num_stream_encoder = 6,
.num_pll = 6,
.num_dwb = 1,
.num_ddc = 6,
.num_vmid = 16,
.num_dsc = 6,
};
static const struct dc_plane_cap plane_cap = {
.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
.blends_with_above = true,
.blends_with_below = true,
.per_pixel_alpha = true,
.pixel_format_support = {
.argb8888 = true,
.nv12 = true,
.fp16 = true,
.p010 = true
},
.max_upscale_factor = {
.argb8888 = 16000,
.nv12 = 16000,
.fp16 = 1
},
.max_downscale_factor = {
.argb8888 = 250,
.nv12 = 250,
.fp16 = 1
},
16,
16
};
static const struct resource_caps res_cap_nv14 = {
.num_timing_generator = 5,
.num_opp = 5,
.num_video_plane = 5,
.num_audio = 6,
.num_stream_encoder = 5,
.num_pll = 5,
.num_dwb = 1,
.num_ddc = 5,
.num_vmid = 16,
.num_dsc = 5,
};
static const struct dc_debug_options debug_defaults_drv = {
.disable_dmcu = false,
.force_abm_enable = false,
.timing_trace = false,
.clock_trace = true,
.disable_pplib_clock_request = true,
.pipe_split_policy = MPC_SPLIT_AVOID_MULT_DISP,
.force_single_disp_pipe_split = false,
.disable_dcc = DCC_ENABLE,
.vsr_support = true,
.performance_trace = false,
.max_downscale_src_width = 5120,/*upto 5K*/
.disable_pplib_wm_range = false,
.scl_reset_length10 = true,
.sanity_checks = false,
.underflow_assert_delay_us = 0xFFFFFFFF,
};
static const struct dc_debug_options debug_defaults_diags = {
.disable_dmcu = false,
.force_abm_enable = false,
.timing_trace = true,
.clock_trace = true,
.disable_dpp_power_gate = true,
.disable_hubp_power_gate = true,
.disable_clock_gate = true,
.disable_pplib_clock_request = true,
.disable_pplib_wm_range = true,
.disable_stutter = true,
.scl_reset_length10 = true,
.underflow_assert_delay_us = 0xFFFFFFFF,
.enable_tri_buf = true,
};
void dcn20_dpp_destroy(struct dpp **dpp)
{
kfree(TO_DCN20_DPP(*dpp));
*dpp = NULL;
}
struct dpp *dcn20_dpp_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn20_dpp *dpp =
kzalloc(sizeof(struct dcn20_dpp), GFP_ATOMIC);
if (!dpp)
return NULL;
if (dpp2_construct(dpp, ctx, inst,
&tf_regs[inst], &tf_shift, &tf_mask))
return &dpp->base;
BREAK_TO_DEBUGGER();
kfree(dpp);
return NULL;
}
struct input_pixel_processor *dcn20_ipp_create(
struct dc_context *ctx, uint32_t inst)
{
struct dcn10_ipp *ipp =
kzalloc(sizeof(struct dcn10_ipp), GFP_ATOMIC);
if (!ipp) {
BREAK_TO_DEBUGGER();
return NULL;
}
dcn20_ipp_construct(ipp, ctx, inst,
&ipp_regs[inst], &ipp_shift, &ipp_mask);
return &ipp->base;
}
struct output_pixel_processor *dcn20_opp_create(
struct dc_context *ctx, uint32_t inst)
{
struct dcn20_opp *opp =
kzalloc(sizeof(struct dcn20_opp), GFP_ATOMIC);
if (!opp) {
BREAK_TO_DEBUGGER();
return NULL;
}
dcn20_opp_construct(opp, ctx, inst,
&opp_regs[inst], &opp_shift, &opp_mask);
return &opp->base;
}
struct dce_aux *dcn20_aux_engine_create(
struct dc_context *ctx,
uint32_t inst)
{
struct aux_engine_dce110 *aux_engine =
kzalloc(sizeof(struct aux_engine_dce110), GFP_ATOMIC);
if (!aux_engine)
return NULL;
dce110_aux_engine_construct(aux_engine, ctx, inst,
SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
&aux_engine_regs[inst],
&aux_mask,
&aux_shift,
ctx->dc->caps.extended_aux_timeout_support);
return &aux_engine->base;
}
#define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) }
static const struct dce_i2c_registers i2c_hw_regs[] = {
i2c_inst_regs(1),
i2c_inst_regs(2),
i2c_inst_regs(3),
i2c_inst_regs(4),
i2c_inst_regs(5),
i2c_inst_regs(6),
};
static const struct dce_i2c_shift i2c_shifts = {
I2C_COMMON_MASK_SH_LIST_DCN2(__SHIFT)
};
static const struct dce_i2c_mask i2c_masks = {
I2C_COMMON_MASK_SH_LIST_DCN2(_MASK)
};
struct dce_i2c_hw *dcn20_i2c_hw_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce_i2c_hw *dce_i2c_hw =
kzalloc(sizeof(struct dce_i2c_hw), GFP_ATOMIC);
if (!dce_i2c_hw)
return NULL;
dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
&i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
return dce_i2c_hw;
}
struct mpc *dcn20_mpc_create(struct dc_context *ctx)
{
struct dcn20_mpc *mpc20 = kzalloc(sizeof(struct dcn20_mpc),
GFP_ATOMIC);
if (!mpc20)
return NULL;
dcn20_mpc_construct(mpc20, ctx,
&mpc_regs,
&mpc_shift,
&mpc_mask,
6);
return &mpc20->base;
}
struct hubbub *dcn20_hubbub_create(struct dc_context *ctx)
{
int i;
struct dcn20_hubbub *hubbub = kzalloc(sizeof(struct dcn20_hubbub),
GFP_ATOMIC);
if (!hubbub)
return NULL;
hubbub2_construct(hubbub, ctx,
&hubbub_reg,
&hubbub_shift,
&hubbub_mask);
for (i = 0; i < res_cap_nv10.num_vmid; i++) {
struct dcn20_vmid *vmid = &hubbub->vmid[i];
vmid->ctx = ctx;
vmid->regs = &vmid_regs[i];
vmid->shifts = &vmid_shifts;
vmid->masks = &vmid_masks;
}
return &hubbub->base;
}
struct timing_generator *dcn20_timing_generator_create(
struct dc_context *ctx,
uint32_t instance)
{
struct optc *tgn10 =
kzalloc(sizeof(struct optc), GFP_ATOMIC);
if (!tgn10)
return NULL;
tgn10->base.inst = instance;
tgn10->base.ctx = ctx;
tgn10->tg_regs = &tg_regs[instance];
tgn10->tg_shift = &tg_shift;
tgn10->tg_mask = &tg_mask;
dcn20_timing_generator_init(tgn10);
return &tgn10->base;
}
static const struct encoder_feature_support link_enc_feature = {
.max_hdmi_deep_color = COLOR_DEPTH_121212,
.max_hdmi_pixel_clock = 600000,
.hdmi_ycbcr420_supported = true,
.dp_ycbcr420_supported = true,
.fec_supported = true,
.flags.bits.IS_HBR2_CAPABLE = true,
.flags.bits.IS_HBR3_CAPABLE = true,
.flags.bits.IS_TPS3_CAPABLE = true,
.flags.bits.IS_TPS4_CAPABLE = true
};
struct link_encoder *dcn20_link_encoder_create(
struct dc_context *ctx,
const struct encoder_init_data *enc_init_data)
{
struct dcn20_link_encoder *enc20 =
kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
int link_regs_id;
if (!enc20)
return NULL;
link_regs_id =
map_transmitter_id_to_phy_instance(enc_init_data->transmitter);
dcn20_link_encoder_construct(enc20,
enc_init_data,
&link_enc_feature,
&link_enc_regs[link_regs_id],
&link_enc_aux_regs[enc_init_data->channel - 1],
&link_enc_hpd_regs[enc_init_data->hpd_source],
&le_shift,
&le_mask);
return &enc20->enc10.base;
}
static struct panel_cntl *dcn20_panel_cntl_create(const struct panel_cntl_init_data *init_data)
{
struct dce_panel_cntl *panel_cntl =
kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL);
if (!panel_cntl)
return NULL;
dce_panel_cntl_construct(panel_cntl,
init_data,
&panel_cntl_regs[init_data->inst],
&panel_cntl_shift,
&panel_cntl_mask);
return &panel_cntl->base;
}
static struct clock_source *dcn20_clock_source_create(
struct dc_context *ctx,
struct dc_bios *bios,
enum clock_source_id id,
const struct dce110_clk_src_regs *regs,
bool dp_clk_src)
{
struct dce110_clk_src *clk_src =
kzalloc(sizeof(struct dce110_clk_src), GFP_ATOMIC);
if (!clk_src)
return NULL;
if (dcn20_clk_src_construct(clk_src, ctx, bios, id,
regs, &cs_shift, &cs_mask)) {
clk_src->base.dp_clk_src = dp_clk_src;
return &clk_src->base;
}
kfree(clk_src);
BREAK_TO_DEBUGGER();
return NULL;
}
static void read_dce_straps(
struct dc_context *ctx,
struct resource_straps *straps)
{
generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX),
FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
}
static struct audio *dcn20_create_audio(
struct dc_context *ctx, unsigned int inst)
{
return dce_audio_create(ctx, inst,
&audio_regs[inst], &audio_shift, &audio_mask);
}
struct stream_encoder *dcn20_stream_encoder_create(
enum engine_id eng_id,
struct dc_context *ctx)
{
struct dcn10_stream_encoder *enc1 =
kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
if (!enc1)
return NULL;
if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) {
if (eng_id >= ENGINE_ID_DIGD)
eng_id++;
}
dcn20_stream_encoder_construct(enc1, ctx, ctx->dc_bios, eng_id,
&stream_enc_regs[eng_id],
&se_shift, &se_mask);
return &enc1->base;
}
static const struct dce_hwseq_registers hwseq_reg = {
HWSEQ_DCN2_REG_LIST()
};
static const struct dce_hwseq_shift hwseq_shift = {
HWSEQ_DCN2_MASK_SH_LIST(__SHIFT)
};
static const struct dce_hwseq_mask hwseq_mask = {
HWSEQ_DCN2_MASK_SH_LIST(_MASK)
};
struct dce_hwseq *dcn20_hwseq_create(
struct dc_context *ctx)
{
struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
if (hws) {
hws->ctx = ctx;
hws->regs = &hwseq_reg;
hws->shifts = &hwseq_shift;
hws->masks = &hwseq_mask;
}
return hws;
}
static const struct resource_create_funcs res_create_funcs = {
.read_dce_straps = read_dce_straps,
.create_audio = dcn20_create_audio,
.create_stream_encoder = dcn20_stream_encoder_create,
.create_hwseq = dcn20_hwseq_create,
};
static const struct resource_create_funcs res_create_maximus_funcs = {
.read_dce_straps = NULL,
.create_audio = NULL,
.create_stream_encoder = NULL,
.create_hwseq = dcn20_hwseq_create,
};
static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu);
void dcn20_clock_source_destroy(struct clock_source **clk_src)
{
kfree(TO_DCE110_CLK_SRC(*clk_src));
*clk_src = NULL;
}
struct display_stream_compressor *dcn20_dsc_create(
struct dc_context *ctx, uint32_t inst)
{
struct dcn20_dsc *dsc =
kzalloc(sizeof(struct dcn20_dsc), GFP_ATOMIC);
if (!dsc) {
BREAK_TO_DEBUGGER();
return NULL;
}
dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
return &dsc->base;
}
void dcn20_dsc_destroy(struct display_stream_compressor **dsc)
{
kfree(container_of(*dsc, struct dcn20_dsc, base));
*dsc = NULL;
}
static void dcn20_resource_destruct(struct dcn20_resource_pool *pool)
{
unsigned int i;
for (i = 0; i < pool->base.stream_enc_count; i++) {
if (pool->base.stream_enc[i] != NULL) {
kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
pool->base.stream_enc[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
if (pool->base.dscs[i] != NULL)
dcn20_dsc_destroy(&pool->base.dscs[i]);
}
if (pool->base.mpc != NULL) {
kfree(TO_DCN20_MPC(pool->base.mpc));
pool->base.mpc = NULL;
}
if (pool->base.hubbub != NULL) {
kfree(pool->base.hubbub);
pool->base.hubbub = NULL;
}
for (i = 0; i < pool->base.pipe_count; i++) {
if (pool->base.dpps[i] != NULL)
dcn20_dpp_destroy(&pool->base.dpps[i]);
if (pool->base.ipps[i] != NULL)
pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
if (pool->base.hubps[i] != NULL) {
kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
pool->base.hubps[i] = NULL;
}
if (pool->base.irqs != NULL) {
dal_irq_service_destroy(&pool->base.irqs);
}
}
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
if (pool->base.engines[i] != NULL)
dce110_engine_destroy(&pool->base.engines[i]);
if (pool->base.hw_i2cs[i] != NULL) {
kfree(pool->base.hw_i2cs[i]);
pool->base.hw_i2cs[i] = NULL;
}
if (pool->base.sw_i2cs[i] != NULL) {
kfree(pool->base.sw_i2cs[i]);
pool->base.sw_i2cs[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_opp; i++) {
if (pool->base.opps[i] != NULL)
pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
}
for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
if (pool->base.timing_generators[i] != NULL) {
kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
pool->base.timing_generators[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
if (pool->base.dwbc[i] != NULL) {
kfree(TO_DCN20_DWBC(pool->base.dwbc[i]));
pool->base.dwbc[i] = NULL;
}
if (pool->base.mcif_wb[i] != NULL) {
kfree(TO_DCN20_MMHUBBUB(pool->base.mcif_wb[i]));
pool->base.mcif_wb[i] = NULL;
}
}
for (i = 0; i < pool->base.audio_count; i++) {
if (pool->base.audios[i])
dce_aud_destroy(&pool->base.audios[i]);
}
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] != NULL) {
dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
pool->base.clock_sources[i] = NULL;
}
}
if (pool->base.dp_clock_source != NULL) {
dcn20_clock_source_destroy(&pool->base.dp_clock_source);
pool->base.dp_clock_source = NULL;
}
if (pool->base.abm != NULL)
dce_abm_destroy(&pool->base.abm);
if (pool->base.dmcu != NULL)
dce_dmcu_destroy(&pool->base.dmcu);
if (pool->base.dccg != NULL)
dcn_dccg_destroy(&pool->base.dccg);
if (pool->base.pp_smu != NULL)
dcn20_pp_smu_destroy(&pool->base.pp_smu);
if (pool->base.oem_device != NULL)
link_destroy_ddc_service(&pool->base.oem_device);
}
struct hubp *dcn20_hubp_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn20_hubp *hubp2 =
kzalloc(sizeof(struct dcn20_hubp), GFP_ATOMIC);
if (!hubp2)
return NULL;
if (hubp2_construct(hubp2, ctx, inst,
&hubp_regs[inst], &hubp_shift, &hubp_mask))
return &hubp2->base;
BREAK_TO_DEBUGGER();
kfree(hubp2);
return NULL;
}
static void get_pixel_clock_parameters(
struct pipe_ctx *pipe_ctx,
struct pixel_clk_params *pixel_clk_params)
{
const struct dc_stream_state *stream = pipe_ctx->stream;
struct pipe_ctx *odm_pipe;
int opp_cnt = 1;
struct dc_link *link = stream->link;
struct link_encoder *link_enc = NULL;
struct dc *dc = pipe_ctx->stream->ctx->dc;
struct dce_hwseq *hws = dc->hwseq;
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
opp_cnt++;
pixel_clk_params->requested_pix_clk_100hz = stream->timing.pix_clk_100hz;
link_enc = link_enc_cfg_get_link_enc(link);
if (link_enc)
pixel_clk_params->encoder_object_id = link_enc->id;
pixel_clk_params->signal_type = pipe_ctx->stream->signal;
pixel_clk_params->controller_id = pipe_ctx->stream_res.tg->inst + 1;
/* TODO: un-hardcode*/
/* TODO - DP2.0 HW: calculate requested_sym_clk for UHBR rates */
pixel_clk_params->requested_sym_clk = LINK_RATE_LOW *
LINK_RATE_REF_FREQ_IN_KHZ;
pixel_clk_params->flags.ENABLE_SS = 0;
pixel_clk_params->color_depth =
stream->timing.display_color_depth;
pixel_clk_params->flags.DISPLAY_BLANKED = 1;
pixel_clk_params->pixel_encoding = stream->timing.pixel_encoding;
if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR422)
pixel_clk_params->color_depth = COLOR_DEPTH_888;
if (opp_cnt == 4)
pixel_clk_params->requested_pix_clk_100hz /= 4;
else if (optc2_is_two_pixels_per_containter(&stream->timing) || opp_cnt == 2)
pixel_clk_params->requested_pix_clk_100hz /= 2;
else if (hws->funcs.is_dp_dig_pixel_rate_div_policy) {
if (hws->funcs.is_dp_dig_pixel_rate_div_policy(pipe_ctx))
pixel_clk_params->requested_pix_clk_100hz /= 2;
}
if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
pixel_clk_params->requested_pix_clk_100hz *= 2;
}
static void build_clamping_params(struct dc_stream_state *stream)
{
stream->clamping.clamping_level = CLAMPING_FULL_RANGE;
stream->clamping.c_depth = stream->timing.display_color_depth;
stream->clamping.pixel_encoding = stream->timing.pixel_encoding;
}
static enum dc_status build_pipe_hw_param(struct pipe_ctx *pipe_ctx)
{
get_pixel_clock_parameters(pipe_ctx, &pipe_ctx->stream_res.pix_clk_params);
pipe_ctx->clock_source->funcs->get_pix_clk_dividers(
pipe_ctx->clock_source,
&pipe_ctx->stream_res.pix_clk_params,
&pipe_ctx->pll_settings);
pipe_ctx->stream->clamping.pixel_encoding = pipe_ctx->stream->timing.pixel_encoding;
resource_build_bit_depth_reduction_params(pipe_ctx->stream,
&pipe_ctx->stream->bit_depth_params);
build_clamping_params(pipe_ctx->stream);
return DC_OK;
}
enum dc_status dcn20_build_mapped_resource(const struct dc *dc, struct dc_state *context, struct dc_stream_state *stream)
{
enum dc_status status = DC_OK;
struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
if (!pipe_ctx)
return DC_ERROR_UNEXPECTED;
status = build_pipe_hw_param(pipe_ctx);
return status;
}
void dcn20_acquire_dsc(const struct dc *dc,
struct resource_context *res_ctx,
struct display_stream_compressor **dsc,
int pipe_idx)
{
int i;
const struct resource_pool *pool = dc->res_pool;
struct display_stream_compressor *dsc_old = dc->current_state->res_ctx.pipe_ctx[pipe_idx].stream_res.dsc;
ASSERT(*dsc == NULL); /* If this ASSERT fails, dsc was not released properly */
*dsc = NULL;
/* Always do 1-to-1 mapping when number of DSCs is same as number of pipes */
if (pool->res_cap->num_dsc == pool->res_cap->num_opp) {
*dsc = pool->dscs[pipe_idx];
res_ctx->is_dsc_acquired[pipe_idx] = true;
return;
}
/* Return old DSC to avoid the need for re-programming */
if (dsc_old && !res_ctx->is_dsc_acquired[dsc_old->inst]) {
*dsc = dsc_old;
res_ctx->is_dsc_acquired[dsc_old->inst] = true;
return ;
}
/* Find first free DSC */
for (i = 0; i < pool->res_cap->num_dsc; i++)
if (!res_ctx->is_dsc_acquired[i]) {
*dsc = pool->dscs[i];
res_ctx->is_dsc_acquired[i] = true;
break;
}
}
void dcn20_release_dsc(struct resource_context *res_ctx,
const struct resource_pool *pool,
struct display_stream_compressor **dsc)
{
int i;
for (i = 0; i < pool->res_cap->num_dsc; i++)
if (pool->dscs[i] == *dsc) {
res_ctx->is_dsc_acquired[i] = false;
*dsc = NULL;
break;
}
}
enum dc_status dcn20_add_dsc_to_stream_resource(struct dc *dc,
struct dc_state *dc_ctx,
struct dc_stream_state *dc_stream)
{
enum dc_status result = DC_OK;
int i;
/* Get a DSC if required and available */
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &dc_ctx->res_ctx.pipe_ctx[i];
if (pipe_ctx->top_pipe)
continue;
if (pipe_ctx->stream != dc_stream)
continue;
if (pipe_ctx->stream_res.dsc)
continue;
dcn20_acquire_dsc(dc, &dc_ctx->res_ctx, &pipe_ctx->stream_res.dsc, i);
/* The number of DSCs can be less than the number of pipes */
if (!pipe_ctx->stream_res.dsc) {
result = DC_NO_DSC_RESOURCE;
}
break;
}
return result;
}
static enum dc_status remove_dsc_from_stream_resource(struct dc *dc,
struct dc_state *new_ctx,
struct dc_stream_state *dc_stream)
{
struct pipe_ctx *pipe_ctx = NULL;
int i;
for (i = 0; i < MAX_PIPES; i++) {
if (new_ctx->res_ctx.pipe_ctx[i].stream == dc_stream && !new_ctx->res_ctx.pipe_ctx[i].top_pipe) {
pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i];
if (pipe_ctx->stream_res.dsc)
dcn20_release_dsc(&new_ctx->res_ctx, dc->res_pool, &pipe_ctx->stream_res.dsc);
}
}
if (!pipe_ctx)
return DC_ERROR_UNEXPECTED;
else
return DC_OK;
}
enum dc_status dcn20_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
{
enum dc_status result = DC_ERROR_UNEXPECTED;
result = resource_map_pool_resources(dc, new_ctx, dc_stream);
if (result == DC_OK)
result = resource_map_phy_clock_resources(dc, new_ctx, dc_stream);
/* Get a DSC if required and available */
if (result == DC_OK && dc_stream->timing.flags.DSC)
result = dcn20_add_dsc_to_stream_resource(dc, new_ctx, dc_stream);
if (result == DC_OK)
result = dcn20_build_mapped_resource(dc, new_ctx, dc_stream);
return result;
}
enum dc_status dcn20_remove_stream_from_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
{
enum dc_status result = DC_OK;
result = remove_dsc_from_stream_resource(dc, new_ctx, dc_stream);
return result;
}
/**
* dcn20_split_stream_for_odm - Check if stream can be splited for ODM
*
* @dc: DC object with resource pool info required for pipe split
* @res_ctx: Persistent state of resources
* @prev_odm_pipe: Reference to the previous ODM pipe
* @next_odm_pipe: Reference to the next ODM pipe
*
* This function takes a logically active pipe and a logically free pipe and
* halves all the scaling parameters that need to be halved while populating
* the free pipe with the required resources and configuring the next/previous
* ODM pipe pointers.
*
* Return:
* Return true if split stream for ODM is possible, otherwise, return false.
*/
bool dcn20_split_stream_for_odm(
const struct dc *dc,
struct resource_context *res_ctx,
struct pipe_ctx *prev_odm_pipe,
struct pipe_ctx *next_odm_pipe)
{
int pipe_idx = next_odm_pipe->pipe_idx;
const struct resource_pool *pool = dc->res_pool;
*next_odm_pipe = *prev_odm_pipe;
next_odm_pipe->pipe_idx = pipe_idx;
next_odm_pipe->plane_res.mi = pool->mis[next_odm_pipe->pipe_idx];
next_odm_pipe->plane_res.hubp = pool->hubps[next_odm_pipe->pipe_idx];
next_odm_pipe->plane_res.ipp = pool->ipps[next_odm_pipe->pipe_idx];
next_odm_pipe->plane_res.xfm = pool->transforms[next_odm_pipe->pipe_idx];
next_odm_pipe->plane_res.dpp = pool->dpps[next_odm_pipe->pipe_idx];
next_odm_pipe->plane_res.mpcc_inst = pool->dpps[next_odm_pipe->pipe_idx]->inst;
next_odm_pipe->stream_res.dsc = NULL;
if (prev_odm_pipe->next_odm_pipe && prev_odm_pipe->next_odm_pipe != next_odm_pipe) {
next_odm_pipe->next_odm_pipe = prev_odm_pipe->next_odm_pipe;
next_odm_pipe->next_odm_pipe->prev_odm_pipe = next_odm_pipe;
}
if (prev_odm_pipe->top_pipe && prev_odm_pipe->top_pipe->next_odm_pipe) {
prev_odm_pipe->top_pipe->next_odm_pipe->bottom_pipe = next_odm_pipe;
next_odm_pipe->top_pipe = prev_odm_pipe->top_pipe->next_odm_pipe;
}
if (prev_odm_pipe->bottom_pipe && prev_odm_pipe->bottom_pipe->next_odm_pipe) {
prev_odm_pipe->bottom_pipe->next_odm_pipe->top_pipe = next_odm_pipe;
next_odm_pipe->bottom_pipe = prev_odm_pipe->bottom_pipe->next_odm_pipe;
}
prev_odm_pipe->next_odm_pipe = next_odm_pipe;
next_odm_pipe->prev_odm_pipe = prev_odm_pipe;
if (prev_odm_pipe->plane_state) {
struct scaler_data *sd = &prev_odm_pipe->plane_res.scl_data;
int new_width;
/* HACTIVE halved for odm combine */
sd->h_active /= 2;
/* Calculate new vp and recout for left pipe */
/* Need at least 16 pixels width per side */
if (sd->recout.x + 16 >= sd->h_active)
return false;
new_width = sd->h_active - sd->recout.x;
sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int(
sd->ratios.horz, sd->recout.width - new_width));
sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int(
sd->ratios.horz_c, sd->recout.width - new_width));
sd->recout.width = new_width;
/* Calculate new vp and recout for right pipe */
sd = &next_odm_pipe->plane_res.scl_data;
/* HACTIVE halved for odm combine */
sd->h_active /= 2;
/* Need at least 16 pixels width per side */
if (new_width <= 16)
return false;
new_width = sd->recout.width + sd->recout.x - sd->h_active;
sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int(
sd->ratios.horz, sd->recout.width - new_width));
sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int(
sd->ratios.horz_c, sd->recout.width - new_width));
sd->recout.width = new_width;
sd->viewport.x += dc_fixpt_floor(dc_fixpt_mul_int(
sd->ratios.horz, sd->h_active - sd->recout.x));
sd->viewport_c.x += dc_fixpt_floor(dc_fixpt_mul_int(
sd->ratios.horz_c, sd->h_active - sd->recout.x));
sd->recout.x = 0;
}
if (!next_odm_pipe->top_pipe)
next_odm_pipe->stream_res.opp = pool->opps[next_odm_pipe->pipe_idx];
else
next_odm_pipe->stream_res.opp = next_odm_pipe->top_pipe->stream_res.opp;
if (next_odm_pipe->stream->timing.flags.DSC == 1 && !next_odm_pipe->top_pipe) {
dcn20_acquire_dsc(dc, res_ctx, &next_odm_pipe->stream_res.dsc, next_odm_pipe->pipe_idx);
ASSERT(next_odm_pipe->stream_res.dsc);
if (next_odm_pipe->stream_res.dsc == NULL)
return false;
}
return true;
}
void dcn20_split_stream_for_mpc(
struct resource_context *res_ctx,
const struct resource_pool *pool,
struct pipe_ctx *primary_pipe,
struct pipe_ctx *secondary_pipe)
{
int pipe_idx = secondary_pipe->pipe_idx;
struct pipe_ctx *sec_bot_pipe = secondary_pipe->bottom_pipe;
*secondary_pipe = *primary_pipe;
secondary_pipe->bottom_pipe = sec_bot_pipe;
secondary_pipe->pipe_idx = pipe_idx;
secondary_pipe->plane_res.mi = pool->mis[secondary_pipe->pipe_idx];
secondary_pipe->plane_res.hubp = pool->hubps[secondary_pipe->pipe_idx];
secondary_pipe->plane_res.ipp = pool->ipps[secondary_pipe->pipe_idx];
secondary_pipe->plane_res.xfm = pool->transforms[secondary_pipe->pipe_idx];
secondary_pipe->plane_res.dpp = pool->dpps[secondary_pipe->pipe_idx];
secondary_pipe->plane_res.mpcc_inst = pool->dpps[secondary_pipe->pipe_idx]->inst;
secondary_pipe->stream_res.dsc = NULL;
if (primary_pipe->bottom_pipe && primary_pipe->bottom_pipe != secondary_pipe) {
ASSERT(!secondary_pipe->bottom_pipe);
secondary_pipe->bottom_pipe = primary_pipe->bottom_pipe;
secondary_pipe->bottom_pipe->top_pipe = secondary_pipe;
}
primary_pipe->bottom_pipe = secondary_pipe;
secondary_pipe->top_pipe = primary_pipe;
ASSERT(primary_pipe->plane_state);
}
unsigned int dcn20_calc_max_scaled_time(
unsigned int time_per_pixel,
enum mmhubbub_wbif_mode mode,
unsigned int urgent_watermark)
{
unsigned int time_per_byte = 0;
unsigned int total_y_free_entry = 0x200; /* two memory piece for luma */
unsigned int total_c_free_entry = 0x140; /* two memory piece for chroma */
unsigned int small_free_entry, max_free_entry;
unsigned int buf_lh_capability;
unsigned int max_scaled_time;
if (mode == PACKED_444) /* packed mode */
time_per_byte = time_per_pixel/4;
else if (mode == PLANAR_420_8BPC)
time_per_byte = time_per_pixel;
else if (mode == PLANAR_420_10BPC) /* p010 */
time_per_byte = time_per_pixel * 819/1024;
if (time_per_byte == 0)
time_per_byte = 1;
small_free_entry = (total_y_free_entry > total_c_free_entry) ? total_c_free_entry : total_y_free_entry;
max_free_entry = (mode == PACKED_444) ? total_y_free_entry + total_c_free_entry : small_free_entry;
buf_lh_capability = max_free_entry*time_per_byte*32/16; /* there is 4bit fraction */
max_scaled_time = buf_lh_capability - urgent_watermark;
return max_scaled_time;
}
void dcn20_set_mcif_arb_params(
struct dc *dc,
struct dc_state *context,
display_e2e_pipe_params_st *pipes,
int pipe_cnt)
{
enum mmhubbub_wbif_mode wbif_mode;
struct mcif_arb_params *wb_arb_params;
int i, j, dwb_pipe;
/* Writeback MCIF_WB arbitration parameters */
dwb_pipe = 0;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
if (!context->res_ctx.pipe_ctx[i].stream)
continue;
for (j = 0; j < MAX_DWB_PIPES; j++) {
if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].wb_enabled == false)
continue;
//wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params;
wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe];
if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.out_format == dwb_scaler_mode_yuv420) {
if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.output_depth == DWB_OUTPUT_PIXEL_DEPTH_8BPC)
wbif_mode = PLANAR_420_8BPC;
else
wbif_mode = PLANAR_420_10BPC;
} else
wbif_mode = PACKED_444;
DC_FP_START();
dcn20_fpu_set_wb_arb_params(wb_arb_params, context, pipes, pipe_cnt, i);
DC_FP_END();
wb_arb_params->slice_lines = 32;
wb_arb_params->arbitration_slice = 2;
wb_arb_params->max_scaled_time = dcn20_calc_max_scaled_time(wb_arb_params->time_per_pixel,
wbif_mode,
wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */
dwb_pipe++;
if (dwb_pipe >= MAX_DWB_PIPES)
return;
}
if (dwb_pipe >= MAX_DWB_PIPES)
return;
}
}
bool dcn20_validate_dsc(struct dc *dc, struct dc_state *new_ctx)
{
int i;
/* Validate DSC config, dsc count validation is already done */
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i];
struct dc_stream_state *stream = pipe_ctx->stream;
struct dsc_config dsc_cfg;
struct pipe_ctx *odm_pipe;
int opp_cnt = 1;
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
opp_cnt++;
/* Only need to validate top pipe */
if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe || !stream || !stream->timing.flags.DSC)
continue;
dsc_cfg.pic_width = (stream->timing.h_addressable + stream->timing.h_border_left
+ stream->timing.h_border_right) / opp_cnt;
dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top
+ stream->timing.v_border_bottom;
dsc_cfg.pixel_encoding = stream->timing.pixel_encoding;
dsc_cfg.color_depth = stream->timing.display_color_depth;
dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false;
dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg;
dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt;
if (!pipe_ctx->stream_res.dsc->funcs->dsc_validate_stream(pipe_ctx->stream_res.dsc, &dsc_cfg))
return false;
}
return true;
}
struct pipe_ctx *dcn20_find_secondary_pipe(struct dc *dc,
struct resource_context *res_ctx,
const struct resource_pool *pool,
const struct pipe_ctx *primary_pipe)
{
struct pipe_ctx *secondary_pipe = NULL;
if (dc && primary_pipe) {
int j;
int preferred_pipe_idx = 0;
/* first check the prev dc state:
* if this primary pipe has a bottom pipe in prev. state
* and if the bottom pipe is still available (which it should be),
* pick that pipe as secondary
* Same logic applies for ODM pipes
*/
if (dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe) {
preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe->pipe_idx;
if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
secondary_pipe->pipe_idx = preferred_pipe_idx;
}
}
if (secondary_pipe == NULL &&
dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe) {
preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe->pipe_idx;
if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
secondary_pipe->pipe_idx = preferred_pipe_idx;
}
}
/*
* if this primary pipe does not have a bottom pipe in prev. state
* start backward and find a pipe that did not used to be a bottom pipe in
* prev. dc state. This way we make sure we keep the same assignment as
* last state and will not have to reprogram every pipe
*/
if (secondary_pipe == NULL) {
for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) {
if (dc->current_state->res_ctx.pipe_ctx[j].top_pipe == NULL
&& dc->current_state->res_ctx.pipe_ctx[j].prev_odm_pipe == NULL) {
preferred_pipe_idx = j;
if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
secondary_pipe->pipe_idx = preferred_pipe_idx;
break;
}
}
}
}
/*
* We should never hit this assert unless assignments are shuffled around
* if this happens we will prob. hit a vsync tdr
*/
ASSERT(secondary_pipe);
/*
* search backwards for the second pipe to keep pipe
* assignment more consistent
*/
if (secondary_pipe == NULL) {
for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) {
preferred_pipe_idx = j;
if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
secondary_pipe->pipe_idx = preferred_pipe_idx;
break;
}
}
}
}
return secondary_pipe;
}
void dcn20_merge_pipes_for_validate(
struct dc *dc,
struct dc_state *context)
{
int i;
/* merge previously split odm pipes since mode support needs to make the decision */
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
struct pipe_ctx *odm_pipe = pipe->next_odm_pipe;
if (pipe->prev_odm_pipe)
continue;
pipe->next_odm_pipe = NULL;
while (odm_pipe) {
struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
odm_pipe->plane_state = NULL;
odm_pipe->stream = NULL;
odm_pipe->top_pipe = NULL;
odm_pipe->bottom_pipe = NULL;
odm_pipe->prev_odm_pipe = NULL;
odm_pipe->next_odm_pipe = NULL;
if (odm_pipe->stream_res.dsc)
dcn20_release_dsc(&context->res_ctx, dc->res_pool, &odm_pipe->stream_res.dsc);
/* Clear plane_res and stream_res */
memset(&odm_pipe->plane_res, 0, sizeof(odm_pipe->plane_res));
memset(&odm_pipe->stream_res, 0, sizeof(odm_pipe->stream_res));
odm_pipe = next_odm_pipe;
}
if (pipe->plane_state)
resource_build_scaling_params(pipe);
}
/* merge previously mpc split pipes since mode support needs to make the decision */
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe;
if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state)
continue;
pipe->bottom_pipe = hsplit_pipe->bottom_pipe;
if (hsplit_pipe->bottom_pipe)
hsplit_pipe->bottom_pipe->top_pipe = pipe;
hsplit_pipe->plane_state = NULL;
hsplit_pipe->stream = NULL;
hsplit_pipe->top_pipe = NULL;
hsplit_pipe->bottom_pipe = NULL;
/* Clear plane_res and stream_res */
memset(&hsplit_pipe->plane_res, 0, sizeof(hsplit_pipe->plane_res));
memset(&hsplit_pipe->stream_res, 0, sizeof(hsplit_pipe->stream_res));
if (pipe->plane_state)
resource_build_scaling_params(pipe);
}
}
int dcn20_validate_apply_pipe_split_flags(
struct dc *dc,
struct dc_state *context,
int vlevel,
int *split,
bool *merge)
{
int i, pipe_idx, vlevel_split;
int plane_count = 0;
bool force_split = false;
bool avoid_split = dc->debug.pipe_split_policy == MPC_SPLIT_AVOID;
struct vba_vars_st *v = &context->bw_ctx.dml.vba;
int max_mpc_comb = v->maxMpcComb;
if (context->stream_count > 1) {
if (dc->debug.pipe_split_policy == MPC_SPLIT_AVOID_MULT_DISP)
avoid_split = true;
} else if (dc->debug.force_single_disp_pipe_split)
force_split = true;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
/**
* Workaround for avoiding pipe-split in cases where we'd split
* planes that are too small, resulting in splits that aren't
* valid for the scaler.
*/
if (pipe->plane_state &&
(pipe->plane_state->dst_rect.width <= 16 ||
pipe->plane_state->dst_rect.height <= 16 ||
pipe->plane_state->src_rect.width <= 16 ||
pipe->plane_state->src_rect.height <= 16))
avoid_split = true;
/* TODO: fix dc bugs and remove this split threshold thing */
if (pipe->stream && !pipe->prev_odm_pipe &&
(!pipe->top_pipe || pipe->top_pipe->plane_state != pipe->plane_state))
++plane_count;
}
if (plane_count > dc->res_pool->pipe_count / 2)
avoid_split = true;
/* W/A: Mode timing with borders may not work well with pipe split, avoid for this corner case */
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
struct dc_crtc_timing timing;
if (!pipe->stream)
continue;
else {
timing = pipe->stream->timing;
if (timing.h_border_left + timing.h_border_right
+ timing.v_border_top + timing.v_border_bottom > 0) {
avoid_split = true;
break;
}
}
}
/* Avoid split loop looks for lowest voltage level that allows most unsplit pipes possible */
if (avoid_split) {
for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
if (!context->res_ctx.pipe_ctx[i].stream)
continue;
for (vlevel_split = vlevel; vlevel <= context->bw_ctx.dml.soc.num_states; vlevel++)
if (v->NoOfDPP[vlevel][0][pipe_idx] == 1 &&
v->ModeSupport[vlevel][0])
break;
/* Impossible to not split this pipe */
if (vlevel > context->bw_ctx.dml.soc.num_states)
vlevel = vlevel_split;
else
max_mpc_comb = 0;
pipe_idx++;
}
v->maxMpcComb = max_mpc_comb;
}
/* Split loop sets which pipe should be split based on dml outputs and dc flags */
for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
int pipe_plane = v->pipe_plane[pipe_idx];
bool split4mpc = context->stream_count == 1 && plane_count == 1
&& dc->config.enable_4to1MPC && dc->res_pool->pipe_count >= 4;
if (!context->res_ctx.pipe_ctx[i].stream)
continue;
if (split4mpc || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 4)
split[i] = 4;
else if (force_split || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 2)
split[i] = 2;
if ((pipe->stream->view_format ==
VIEW_3D_FORMAT_SIDE_BY_SIDE ||
pipe->stream->view_format ==
VIEW_3D_FORMAT_TOP_AND_BOTTOM) &&
(pipe->stream->timing.timing_3d_format ==
TIMING_3D_FORMAT_TOP_AND_BOTTOM ||
pipe->stream->timing.timing_3d_format ==
TIMING_3D_FORMAT_SIDE_BY_SIDE))
split[i] = 2;
if (dc->debug.force_odm_combine & (1 << pipe->stream_res.tg->inst)) {
split[i] = 2;
v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_2to1;
}
if (dc->debug.force_odm_combine_4to1 & (1 << pipe->stream_res.tg->inst)) {
split[i] = 4;
v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_4to1;
}
/*420 format workaround*/
if (pipe->stream->timing.h_addressable > 7680 &&
pipe->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
split[i] = 4;
}
v->ODMCombineEnabled[pipe_plane] =
v->ODMCombineEnablePerState[vlevel][pipe_plane];
if (v->ODMCombineEnabled[pipe_plane] == dm_odm_combine_mode_disabled) {
if (get_num_mpc_splits(pipe) == 1) {
/*If need split for mpc but 2 way split already*/
if (split[i] == 4)
split[i] = 2; /* 2 -> 4 MPC */
else if (split[i] == 2)
split[i] = 0; /* 2 -> 2 MPC */
else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state)
merge[i] = true; /* 2 -> 1 MPC */
} else if (get_num_mpc_splits(pipe) == 3) {
/*If need split for mpc but 4 way split already*/
if (split[i] == 2 && ((pipe->top_pipe && !pipe->top_pipe->top_pipe)
|| !pipe->bottom_pipe)) {
merge[i] = true; /* 4 -> 2 MPC */
} else if (split[i] == 0 && pipe->top_pipe &&
pipe->top_pipe->plane_state == pipe->plane_state)
merge[i] = true; /* 4 -> 1 MPC */
split[i] = 0;
} else if (get_num_odm_splits(pipe)) {
/* ODM -> MPC transition */
if (pipe->prev_odm_pipe) {
split[i] = 0;
merge[i] = true;
}
}
} else {
if (get_num_odm_splits(pipe) == 1) {
/*If need split for odm but 2 way split already*/
if (split[i] == 4)
split[i] = 2; /* 2 -> 4 ODM */
else if (split[i] == 2)
split[i] = 0; /* 2 -> 2 ODM */
else if (pipe->prev_odm_pipe) {
ASSERT(0); /* NOT expected yet */
merge[i] = true; /* exit ODM */
}
} else if (get_num_odm_splits(pipe) == 3) {
/*If need split for odm but 4 way split already*/
if (split[i] == 2 && ((pipe->prev_odm_pipe && !pipe->prev_odm_pipe->prev_odm_pipe)
|| !pipe->next_odm_pipe)) {
merge[i] = true; /* 4 -> 2 ODM */
} else if (split[i] == 0 && pipe->prev_odm_pipe) {
ASSERT(0); /* NOT expected yet */
merge[i] = true; /* exit ODM */
}
split[i] = 0;
} else if (get_num_mpc_splits(pipe)) {
/* MPC -> ODM transition */
ASSERT(0); /* NOT expected yet */
if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
split[i] = 0;
merge[i] = true;
}
}
}
/* Adjust dppclk when split is forced, do not bother with dispclk */
if (split[i] != 0 && v->NoOfDPP[vlevel][max_mpc_comb][pipe_idx] == 1) {
DC_FP_START();
dcn20_fpu_adjust_dppclk(v, vlevel, max_mpc_comb, pipe_idx, false);
DC_FP_END();
}
pipe_idx++;
}
return vlevel;
}
bool dcn20_fast_validate_bw(
struct dc *dc,
struct dc_state *context,
display_e2e_pipe_params_st *pipes,
int *pipe_cnt_out,
int *pipe_split_from,
int *vlevel_out,
bool fast_validate)
{
bool out = false;
int split[MAX_PIPES] = { 0 };
int pipe_cnt, i, pipe_idx, vlevel;
ASSERT(pipes);
if (!pipes)
return false;
dcn20_merge_pipes_for_validate(dc, context);
DC_FP_START();
pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
DC_FP_END();
*pipe_cnt_out = pipe_cnt;
if (!pipe_cnt) {
out = true;
goto validate_out;
}
vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
if (vlevel > context->bw_ctx.dml.soc.num_states)
goto validate_fail;
vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, NULL);
/*initialize pipe_just_split_from to invalid idx*/
for (i = 0; i < MAX_PIPES; i++)
pipe_split_from[i] = -1;
for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe;
if (!pipe->stream || pipe_split_from[i] >= 0)
continue;
pipe_idx++;
if (!pipe->top_pipe && !pipe->plane_state && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) {
hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe);
ASSERT(hsplit_pipe);
if (!dcn20_split_stream_for_odm(
dc, &context->res_ctx,
pipe, hsplit_pipe))
goto validate_fail;
pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx;
dcn20_build_mapped_resource(dc, context, pipe->stream);
}
if (!pipe->plane_state)
continue;
/* Skip 2nd half of already split pipe */
if (pipe->top_pipe && pipe->plane_state == pipe->top_pipe->plane_state)
continue;
/* We do not support mpo + odm at the moment */
if (hsplit_pipe && hsplit_pipe->plane_state != pipe->plane_state
&& context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx])
goto validate_fail;
if (split[i] == 2) {
if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state) {
/* pipe not split previously needs split */
hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe);
ASSERT(hsplit_pipe);
if (!hsplit_pipe) {
DC_FP_START();
dcn20_fpu_adjust_dppclk(&context->bw_ctx.dml.vba, vlevel, context->bw_ctx.dml.vba.maxMpcComb, pipe_idx, true);
DC_FP_END();
continue;
}
if (context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) {
if (!dcn20_split_stream_for_odm(
dc, &context->res_ctx,
pipe, hsplit_pipe))
goto validate_fail;
dcn20_build_mapped_resource(dc, context, pipe->stream);
} else {
dcn20_split_stream_for_mpc(
&context->res_ctx, dc->res_pool,
pipe, hsplit_pipe);
resource_build_scaling_params(pipe);
resource_build_scaling_params(hsplit_pipe);
}
pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx;
}
} else if (hsplit_pipe && hsplit_pipe->plane_state == pipe->plane_state) {
/* merge should already have been done */
ASSERT(0);
}
}
/* Actual dsc count per stream dsc validation*/
if (!dcn20_validate_dsc(dc, context)) {
context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states] =
DML_FAIL_DSC_VALIDATION_FAILURE;
goto validate_fail;
}
*vlevel_out = vlevel;
out = true;
goto validate_out;
validate_fail:
out = false;
validate_out:
return out;
}
bool dcn20_validate_bandwidth(struct dc *dc, struct dc_state *context,
bool fast_validate)
{
bool voltage_supported;
DC_FP_START();
voltage_supported = dcn20_validate_bandwidth_fp(dc, context, fast_validate);
DC_FP_END();
return voltage_supported;
}
struct pipe_ctx *dcn20_acquire_idle_pipe_for_layer(
struct dc_state *state,
const struct resource_pool *pool,
struct dc_stream_state *stream)
{
struct resource_context *res_ctx = &state->res_ctx;
struct pipe_ctx *head_pipe = resource_get_head_pipe_for_stream(res_ctx, stream);
struct pipe_ctx *idle_pipe = find_idle_secondary_pipe(res_ctx, pool, head_pipe);
if (!head_pipe)
ASSERT(0);
if (!idle_pipe)
return NULL;
idle_pipe->stream = head_pipe->stream;
idle_pipe->stream_res.tg = head_pipe->stream_res.tg;
idle_pipe->stream_res.opp = head_pipe->stream_res.opp;
idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx];
idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx];
idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx];
idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst;
return idle_pipe;
}
bool dcn20_get_dcc_compression_cap(const struct dc *dc,
const struct dc_dcc_surface_param *input,
struct dc_surface_dcc_cap *output)
{
return dc->res_pool->hubbub->funcs->get_dcc_compression_cap(
dc->res_pool->hubbub,
input,
output);
}
static void dcn20_destroy_resource_pool(struct resource_pool **pool)
{
struct dcn20_resource_pool *dcn20_pool = TO_DCN20_RES_POOL(*pool);
dcn20_resource_destruct(dcn20_pool);
kfree(dcn20_pool);
*pool = NULL;
}
static struct dc_cap_funcs cap_funcs = {
.get_dcc_compression_cap = dcn20_get_dcc_compression_cap
};
enum dc_status dcn20_patch_unknown_plane_state(struct dc_plane_state *plane_state)
{
enum surface_pixel_format surf_pix_format = plane_state->format;
unsigned int bpp = resource_pixel_format_to_bpp(surf_pix_format);
plane_state->tiling_info.gfx9.swizzle = DC_SW_64KB_S;
if (bpp == 64)
plane_state->tiling_info.gfx9.swizzle = DC_SW_64KB_D;
return DC_OK;
}
static const struct resource_funcs dcn20_res_pool_funcs = {
.destroy = dcn20_destroy_resource_pool,
.link_enc_create = dcn20_link_encoder_create,
.panel_cntl_create = dcn20_panel_cntl_create,
.validate_bandwidth = dcn20_validate_bandwidth,
.acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer,
.add_stream_to_ctx = dcn20_add_stream_to_ctx,
.add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
.remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
.populate_dml_writeback_from_context = dcn20_populate_dml_writeback_from_context,
.patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
.set_mcif_arb_params = dcn20_set_mcif_arb_params,
.populate_dml_pipes = dcn20_populate_dml_pipes_from_context,
.find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link
};
bool dcn20_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
{
int i;
uint32_t pipe_count = pool->res_cap->num_dwb;
for (i = 0; i < pipe_count; i++) {
struct dcn20_dwbc *dwbc20 = kzalloc(sizeof(struct dcn20_dwbc),
GFP_KERNEL);
if (!dwbc20) {
dm_error("DC: failed to create dwbc20!\n");
return false;
}
dcn20_dwbc_construct(dwbc20, ctx,
&dwbc20_regs[i],
&dwbc20_shift,
&dwbc20_mask,
i);
pool->dwbc[i] = &dwbc20->base;
}
return true;
}
bool dcn20_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
{
int i;
uint32_t pipe_count = pool->res_cap->num_dwb;
ASSERT(pipe_count > 0);
for (i = 0; i < pipe_count; i++) {
struct dcn20_mmhubbub *mcif_wb20 = kzalloc(sizeof(struct dcn20_mmhubbub),
GFP_KERNEL);
if (!mcif_wb20) {
dm_error("DC: failed to create mcif_wb20!\n");
return false;
}
dcn20_mmhubbub_construct(mcif_wb20, ctx,
&mcif_wb20_regs[i],
&mcif_wb20_shift,
&mcif_wb20_mask,
i);
pool->mcif_wb[i] = &mcif_wb20->base;
}
return true;
}
static struct pp_smu_funcs *dcn20_pp_smu_create(struct dc_context *ctx)
{
struct pp_smu_funcs *pp_smu = kzalloc(sizeof(*pp_smu), GFP_ATOMIC);
if (!pp_smu)
return pp_smu;
dm_pp_get_funcs(ctx, pp_smu);
if (pp_smu->ctx.ver != PP_SMU_VER_NV)
pp_smu = memset(pp_smu, 0, sizeof(struct pp_smu_funcs));
return pp_smu;
}
static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu)
{
if (pp_smu && *pp_smu) {
kfree(*pp_smu);
*pp_smu = NULL;
}
}
static struct _vcs_dpi_soc_bounding_box_st *get_asic_rev_soc_bb(
uint32_t hw_internal_rev)
{
if (ASICREV_IS_NAVI14_M(hw_internal_rev))
return &dcn2_0_nv14_soc;
if (ASICREV_IS_NAVI12_P(hw_internal_rev))
return &dcn2_0_nv12_soc;
return &dcn2_0_soc;
}
static struct _vcs_dpi_ip_params_st *get_asic_rev_ip_params(
uint32_t hw_internal_rev)
{
/* NV14 */
if (ASICREV_IS_NAVI14_M(hw_internal_rev))
return &dcn2_0_nv14_ip;
/* NV12 and NV10 */
return &dcn2_0_ip;
}
static enum dml_project get_dml_project_version(uint32_t hw_internal_rev)
{
return DML_PROJECT_NAVI10v2;
}
static bool init_soc_bounding_box(struct dc *dc,
struct dcn20_resource_pool *pool)
{
struct _vcs_dpi_soc_bounding_box_st *loaded_bb =
get_asic_rev_soc_bb(dc->ctx->asic_id.hw_internal_rev);
struct _vcs_dpi_ip_params_st *loaded_ip =
get_asic_rev_ip_params(dc->ctx->asic_id.hw_internal_rev);
DC_LOGGER_INIT(dc->ctx->logger);
if (pool->base.pp_smu) {
struct pp_smu_nv_clock_table max_clocks = {0};
unsigned int uclk_states[8] = {0};
unsigned int num_states = 0;
enum pp_smu_status status;
bool clock_limits_available = false;
bool uclk_states_available = false;
if (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states) {
status = (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states)
(&pool->base.pp_smu->nv_funcs.pp_smu, uclk_states, &num_states);
uclk_states_available = (status == PP_SMU_RESULT_OK);
}
if (pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks) {
status = (*pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks)
(&pool->base.pp_smu->nv_funcs.pp_smu, &max_clocks);
/* SMU cannot set DCF clock to anything equal to or higher than SOC clock
*/
if (max_clocks.dcfClockInKhz >= max_clocks.socClockInKhz)
max_clocks.dcfClockInKhz = max_clocks.socClockInKhz - 1000;
clock_limits_available = (status == PP_SMU_RESULT_OK);
}
if (clock_limits_available && uclk_states_available && num_states) {
DC_FP_START();
dcn20_update_bounding_box(dc, loaded_bb, &max_clocks, uclk_states, num_states);
DC_FP_END();
} else if (clock_limits_available) {
DC_FP_START();
dcn20_cap_soc_clocks(loaded_bb, max_clocks);
DC_FP_END();
}
}
loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator;
loaded_ip->max_num_dpp = pool->base.pipe_count;
DC_FP_START();
dcn20_patch_bounding_box(dc, loaded_bb);
DC_FP_END();
return true;
}
static bool dcn20_resource_construct(
uint8_t num_virtual_links,
struct dc *dc,
struct dcn20_resource_pool *pool)
{
int i;
struct dc_context *ctx = dc->ctx;
struct irq_service_init_data init_data;
struct ddc_service_init_data ddc_init_data = {0};
struct _vcs_dpi_soc_bounding_box_st *loaded_bb =
get_asic_rev_soc_bb(ctx->asic_id.hw_internal_rev);
struct _vcs_dpi_ip_params_st *loaded_ip =
get_asic_rev_ip_params(ctx->asic_id.hw_internal_rev);
enum dml_project dml_project_version =
get_dml_project_version(ctx->asic_id.hw_internal_rev);
ctx->dc_bios->regs = &bios_regs;
pool->base.funcs = &dcn20_res_pool_funcs;
if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) {
pool->base.res_cap = &res_cap_nv14;
pool->base.pipe_count = 5;
pool->base.mpcc_count = 5;
} else {
pool->base.res_cap = &res_cap_nv10;
pool->base.pipe_count = 6;
pool->base.mpcc_count = 6;
}
/*************************************************
* Resource + asic cap harcoding *
*************************************************/
pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
dc->caps.max_downscale_ratio = 200;
dc->caps.i2c_speed_in_khz = 100;
dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/
dc->caps.max_cursor_size = 256;
dc->caps.min_horizontal_blanking_period = 80;
dc->caps.dmdata_alloc_size = 2048;
dc->caps.max_slave_planes = 1;
dc->caps.max_slave_yuv_planes = 1;
dc->caps.max_slave_rgb_planes = 1;
dc->caps.post_blend_color_processing = true;
dc->caps.force_dp_tps4_for_cp2520 = true;
dc->caps.extended_aux_timeout_support = true;
/* Color pipeline capabilities */
dc->caps.color.dpp.dcn_arch = 1;
dc->caps.color.dpp.input_lut_shared = 0;
dc->caps.color.dpp.icsc = 1;
dc->caps.color.dpp.dgam_ram = 1;
dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 0;
dc->caps.color.dpp.dgam_rom_caps.pq = 0;
dc->caps.color.dpp.dgam_rom_caps.hlg = 0;
dc->caps.color.dpp.post_csc = 0;
dc->caps.color.dpp.gamma_corr = 0;
dc->caps.color.dpp.dgam_rom_for_yuv = 1;
dc->caps.color.dpp.hw_3d_lut = 1;
dc->caps.color.dpp.ogam_ram = 1;
// no OGAM ROM on DCN2, only MPC ROM
dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
dc->caps.color.dpp.ogam_rom_caps.pq = 0;
dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
dc->caps.color.dpp.ocsc = 0;
dc->caps.color.mpc.gamut_remap = 0;
dc->caps.color.mpc.num_3dluts = 0;
dc->caps.color.mpc.shared_3d_lut = 0;
dc->caps.color.mpc.ogam_ram = 1;
dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
dc->caps.color.mpc.ogam_rom_caps.pq = 0;
dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
dc->caps.color.mpc.ocsc = 1;
dc->caps.dp_hdmi21_pcon_support = true;
if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) {
dc->debug = debug_defaults_drv;
} else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) {
pool->base.pipe_count = 4;
pool->base.mpcc_count = pool->base.pipe_count;
dc->debug = debug_defaults_diags;
} else {
dc->debug = debug_defaults_diags;
}
//dcn2.0x
dc->work_arounds.dedcn20_305_wa = true;
// Init the vm_helper
if (dc->vm_helper)
vm_helper_init(dc->vm_helper, 16);
/*************************************************
* Create resources *
*************************************************/
pool->base.clock_sources[DCN20_CLK_SRC_PLL0] =
dcn20_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL0,
&clk_src_regs[0], false);
pool->base.clock_sources[DCN20_CLK_SRC_PLL1] =
dcn20_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL1,
&clk_src_regs[1], false);
pool->base.clock_sources[DCN20_CLK_SRC_PLL2] =
dcn20_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL2,
&clk_src_regs[2], false);
pool->base.clock_sources[DCN20_CLK_SRC_PLL3] =
dcn20_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL3,
&clk_src_regs[3], false);
pool->base.clock_sources[DCN20_CLK_SRC_PLL4] =
dcn20_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL4,
&clk_src_regs[4], false);
pool->base.clock_sources[DCN20_CLK_SRC_PLL5] =
dcn20_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL5,
&clk_src_regs[5], false);
pool->base.clk_src_count = DCN20_CLK_SRC_TOTAL;
/* todo: not reuse phy_pll registers */
pool->base.dp_clock_source =
dcn20_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_ID_DP_DTO,
&clk_src_regs[0], true);
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] == NULL) {
dm_error("DC: failed to create clock sources!\n");
BREAK_TO_DEBUGGER();
goto create_fail;
}
}
pool->base.dccg = dccg2_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
if (pool->base.dccg == NULL) {
dm_error("DC: failed to create dccg!\n");
BREAK_TO_DEBUGGER();
goto create_fail;
}
pool->base.dmcu = dcn20_dmcu_create(ctx,
&dmcu_regs,
&dmcu_shift,
&dmcu_mask);
if (pool->base.dmcu == NULL) {
dm_error("DC: failed to create dmcu!\n");
BREAK_TO_DEBUGGER();
goto create_fail;
}
pool->base.abm = dce_abm_create(ctx,
&abm_regs,
&abm_shift,
&abm_mask);
if (pool->base.abm == NULL) {
dm_error("DC: failed to create abm!\n");
BREAK_TO_DEBUGGER();
goto create_fail;
}
pool->base.pp_smu = dcn20_pp_smu_create(ctx);
if (!init_soc_bounding_box(dc, pool)) {
dm_error("DC: failed to initialize soc bounding box!\n");
BREAK_TO_DEBUGGER();
goto create_fail;
}
dml_init_instance(&dc->dml, loaded_bb, loaded_ip, dml_project_version);
if (!dc->debug.disable_pplib_wm_range) {
struct pp_smu_wm_range_sets ranges = {0};
int i = 0;
ranges.num_reader_wm_sets = 0;
if (loaded_bb->num_states == 1) {
ranges.reader_wm_sets[0].wm_inst = i;
ranges.reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges.reader_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges.reader_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
ranges.num_reader_wm_sets = 1;
} else if (loaded_bb->num_states > 1) {
for (i = 0; i < 4 && i < loaded_bb->num_states; i++) {
ranges.reader_wm_sets[i].wm_inst = i;
ranges.reader_wm_sets[i].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges.reader_wm_sets[i].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
DC_FP_START();
dcn20_fpu_set_wm_ranges(i, &ranges, loaded_bb);
DC_FP_END();
ranges.num_reader_wm_sets = i + 1;
}
ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges.reader_wm_sets[ranges.num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
}
ranges.num_writer_wm_sets = 1;
ranges.writer_wm_sets[0].wm_inst = 0;
ranges.writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges.writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
ranges.writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges.writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
/* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
if (pool->base.pp_smu->nv_funcs.set_wm_ranges)
pool->base.pp_smu->nv_funcs.set_wm_ranges(&pool->base.pp_smu->nv_funcs.pp_smu, &ranges);
}
init_data.ctx = dc->ctx;
pool->base.irqs = dal_irq_service_dcn20_create(&init_data);
if (!pool->base.irqs)
goto create_fail;
/* mem input -> ipp -> dpp -> opp -> TG */
for (i = 0; i < pool->base.pipe_count; i++) {
pool->base.hubps[i] = dcn20_hubp_create(ctx, i);
if (pool->base.hubps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create memory input!\n");
goto create_fail;
}
pool->base.ipps[i] = dcn20_ipp_create(ctx, i);
if (pool->base.ipps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create input pixel processor!\n");
goto create_fail;
}
pool->base.dpps[i] = dcn20_dpp_create(ctx, i);
if (pool->base.dpps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create dpps!\n");
goto create_fail;
}
}
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
pool->base.engines[i] = dcn20_aux_engine_create(ctx, i);
if (pool->base.engines[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create aux engine!!\n");
goto create_fail;
}
pool->base.hw_i2cs[i] = dcn20_i2c_hw_create(ctx, i);
if (pool->base.hw_i2cs[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create hw i2c!!\n");
goto create_fail;
}
pool->base.sw_i2cs[i] = NULL;
}
for (i = 0; i < pool->base.res_cap->num_opp; i++) {
pool->base.opps[i] = dcn20_opp_create(ctx, i);
if (pool->base.opps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create output pixel processor!\n");
goto create_fail;
}
}
for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
pool->base.timing_generators[i] = dcn20_timing_generator_create(
ctx, i);
if (pool->base.timing_generators[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create tg!\n");
goto create_fail;
}
}
pool->base.timing_generator_count = i;
pool->base.mpc = dcn20_mpc_create(ctx);
if (pool->base.mpc == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create mpc!\n");
goto create_fail;
}
pool->base.hubbub = dcn20_hubbub_create(ctx);
if (pool->base.hubbub == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create hubbub!\n");
goto create_fail;
}
for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
pool->base.dscs[i] = dcn20_dsc_create(ctx, i);
if (pool->base.dscs[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create display stream compressor %d!\n", i);
goto create_fail;
}
}
if (!dcn20_dwbc_create(ctx, &pool->base)) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create dwbc!\n");
goto create_fail;
}
if (!dcn20_mmhubbub_create(ctx, &pool->base)) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create mcif_wb!\n");
goto create_fail;
}
if (!resource_construct(num_virtual_links, dc, &pool->base,
(!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ?
&res_create_funcs : &res_create_maximus_funcs)))
goto create_fail;
dcn20_hw_sequencer_construct(dc);
// IF NV12, set PG function pointer to NULL. It's not that
// PG isn't supported for NV12, it's that we don't want to
// program the registers because that will cause more power
// to be consumed. We could have created dcn20_init_hw to get
// the same effect by checking ASIC rev, but there was a
// request at some point to not check ASIC rev on hw sequencer.
if (ASICREV_IS_NAVI12_P(dc->ctx->asic_id.hw_internal_rev)) {
dc->hwseq->funcs.enable_power_gating_plane = NULL;
dc->debug.disable_dpp_power_gate = true;
dc->debug.disable_hubp_power_gate = true;
}
dc->caps.max_planes = pool->base.pipe_count;
for (i = 0; i < dc->caps.max_planes; ++i)
dc->caps.planes[i] = plane_cap;
dc->cap_funcs = cap_funcs;
if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
ddc_init_data.ctx = dc->ctx;
ddc_init_data.link = NULL;
ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
ddc_init_data.id.enum_id = 0;
ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
pool->base.oem_device = link_create_ddc_service(&ddc_init_data);
} else {
pool->base.oem_device = NULL;
}
return true;
create_fail:
dcn20_resource_destruct(pool);
return false;
}
struct resource_pool *dcn20_create_resource_pool(
const struct dc_init_data *init_data,
struct dc *dc)
{
struct dcn20_resource_pool *pool =
kzalloc(sizeof(struct dcn20_resource_pool), GFP_ATOMIC);
if (!pool)
return NULL;
if (dcn20_resource_construct(init_data->num_virtual_links, dc, pool))
return &pool->base;
BREAK_TO_DEBUGGER();
kfree(pool);
return NULL;
}