linux-zen-server/drivers/gpu/drm/amd/display/dc/dcn31/dcn31_hubbub.c

1067 lines
42 KiB
C
Raw Permalink Normal View History

2023-08-30 17:53:23 +02:00
/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dcn30/dcn30_hubbub.h"
#include "dcn31_hubbub.h"
#include "dm_services.h"
#include "reg_helper.h"
#define CTX \
hubbub2->base.ctx
#define DC_LOGGER \
hubbub2->base.ctx->logger
#define REG(reg)\
hubbub2->regs->reg
#undef FN
#define FN(reg_name, field_name) \
hubbub2->shifts->field_name, hubbub2->masks->field_name
#ifdef NUM_VMID
#undef NUM_VMID
#endif
#define NUM_VMID 16
#define DCN31_CRB_SEGMENT_SIZE_KB 64
static void dcn31_init_crb(struct hubbub *hubbub)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
REG_GET(DCHUBBUB_DET0_CTRL, DET0_SIZE_CURRENT,
&hubbub2->det0_size);
REG_GET(DCHUBBUB_DET1_CTRL, DET1_SIZE_CURRENT,
&hubbub2->det1_size);
REG_GET(DCHUBBUB_DET2_CTRL, DET2_SIZE_CURRENT,
&hubbub2->det2_size);
REG_GET(DCHUBBUB_DET3_CTRL, DET3_SIZE_CURRENT,
&hubbub2->det3_size);
REG_GET(DCHUBBUB_COMPBUF_CTRL, COMPBUF_SIZE_CURRENT,
&hubbub2->compbuf_size_segments);
REG_SET_2(COMPBUF_RESERVED_SPACE, 0,
COMPBUF_RESERVED_SPACE_64B, hubbub2->pixel_chunk_size / 32,
COMPBUF_RESERVED_SPACE_ZS, hubbub2->pixel_chunk_size / 128);
REG_UPDATE(DCHUBBUB_DEBUG_CTRL_0, DET_DEPTH, 0x17F);
}
static void dcn31_program_det_size(struct hubbub *hubbub, int hubp_inst, unsigned int det_buffer_size_in_kbyte)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
unsigned int det_size_segments = (det_buffer_size_in_kbyte + DCN31_CRB_SEGMENT_SIZE_KB - 1) / DCN31_CRB_SEGMENT_SIZE_KB;
switch (hubp_inst) {
case 0:
REG_UPDATE(DCHUBBUB_DET0_CTRL,
DET0_SIZE, det_size_segments);
hubbub2->det0_size = det_size_segments;
break;
case 1:
REG_UPDATE(DCHUBBUB_DET1_CTRL,
DET1_SIZE, det_size_segments);
hubbub2->det1_size = det_size_segments;
break;
case 2:
REG_UPDATE(DCHUBBUB_DET2_CTRL,
DET2_SIZE, det_size_segments);
hubbub2->det2_size = det_size_segments;
break;
case 3:
REG_UPDATE(DCHUBBUB_DET3_CTRL,
DET3_SIZE, det_size_segments);
hubbub2->det3_size = det_size_segments;
break;
default:
break;
}
/* Should never be hit, if it is we have an erroneous hw config*/
ASSERT(hubbub2->det0_size + hubbub2->det1_size + hubbub2->det2_size
+ hubbub2->det3_size + hubbub2->compbuf_size_segments <= hubbub2->crb_size_segs);
}
static void dcn31_program_compbuf_size(struct hubbub *hubbub, unsigned int compbuf_size_kb, bool safe_to_increase)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
unsigned int compbuf_size_segments = (compbuf_size_kb + DCN31_CRB_SEGMENT_SIZE_KB - 1) / DCN31_CRB_SEGMENT_SIZE_KB;
if (safe_to_increase || compbuf_size_segments <= hubbub2->compbuf_size_segments) {
if (compbuf_size_segments > hubbub2->compbuf_size_segments) {
REG_WAIT(DCHUBBUB_DET0_CTRL, DET0_SIZE_CURRENT, hubbub2->det0_size, 1, 100);
REG_WAIT(DCHUBBUB_DET1_CTRL, DET1_SIZE_CURRENT, hubbub2->det1_size, 1, 100);
REG_WAIT(DCHUBBUB_DET2_CTRL, DET2_SIZE_CURRENT, hubbub2->det2_size, 1, 100);
REG_WAIT(DCHUBBUB_DET3_CTRL, DET3_SIZE_CURRENT, hubbub2->det3_size, 1, 100);
}
/* Should never be hit, if it is we have an erroneous hw config*/
ASSERT(hubbub2->det0_size + hubbub2->det1_size + hubbub2->det2_size
+ hubbub2->det3_size + compbuf_size_segments <= hubbub2->crb_size_segs);
REG_UPDATE(DCHUBBUB_COMPBUF_CTRL, COMPBUF_SIZE, compbuf_size_segments);
hubbub2->compbuf_size_segments = compbuf_size_segments;
ASSERT(REG_GET(DCHUBBUB_COMPBUF_CTRL, CONFIG_ERROR, &compbuf_size_segments) && !compbuf_size_segments);
}
}
static uint32_t convert_and_clamp(
uint32_t wm_ns,
uint32_t refclk_mhz,
uint32_t clamp_value)
{
uint32_t ret_val = 0;
ret_val = wm_ns * refclk_mhz;
ret_val /= 1000;
if (ret_val > clamp_value) {
/* clamping WMs is abnormal, unexpected and may lead to underflow*/
ASSERT(0);
ret_val = clamp_value;
}
return ret_val;
}
static bool hubbub31_program_urgent_watermarks(
struct hubbub *hubbub,
struct dcn_watermark_set *watermarks,
unsigned int refclk_mhz,
bool safe_to_lower)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
uint32_t prog_wm_value;
bool wm_pending = false;
/* Repeat for water mark set A, B, C and D. */
/* clock state A */
if (safe_to_lower || watermarks->a.urgent_ns > hubbub2->watermarks.a.urgent_ns) {
hubbub2->watermarks.a.urgent_ns = watermarks->a.urgent_ns;
prog_wm_value = convert_and_clamp(watermarks->a.urgent_ns,
refclk_mhz, 0x3fff);
REG_SET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A, 0,
DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("URGENCY_WATERMARK_A calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->a.urgent_ns, prog_wm_value);
} else if (watermarks->a.urgent_ns < hubbub2->watermarks.a.urgent_ns)
wm_pending = true;
/* determine the transfer time for a quantity of data for a particular requestor.*/
if (safe_to_lower || watermarks->a.frac_urg_bw_flip
> hubbub2->watermarks.a.frac_urg_bw_flip) {
hubbub2->watermarks.a.frac_urg_bw_flip = watermarks->a.frac_urg_bw_flip;
REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_A, 0,
DCHUBBUB_ARB_FRAC_URG_BW_FLIP_A, watermarks->a.frac_urg_bw_flip);
} else if (watermarks->a.frac_urg_bw_flip
< hubbub2->watermarks.a.frac_urg_bw_flip)
wm_pending = true;
if (safe_to_lower || watermarks->a.frac_urg_bw_nom
> hubbub2->watermarks.a.frac_urg_bw_nom) {
hubbub2->watermarks.a.frac_urg_bw_nom = watermarks->a.frac_urg_bw_nom;
REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_NOM_A, 0,
DCHUBBUB_ARB_FRAC_URG_BW_NOM_A, watermarks->a.frac_urg_bw_nom);
} else if (watermarks->a.frac_urg_bw_nom
< hubbub2->watermarks.a.frac_urg_bw_nom)
wm_pending = true;
if (safe_to_lower || watermarks->a.urgent_latency_ns > hubbub2->watermarks.a.urgent_latency_ns) {
hubbub2->watermarks.a.urgent_latency_ns = watermarks->a.urgent_latency_ns;
prog_wm_value = convert_and_clamp(watermarks->a.urgent_latency_ns,
refclk_mhz, 0x3fff);
REG_SET(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_A, 0,
DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_A, prog_wm_value);
} else if (watermarks->a.urgent_latency_ns < hubbub2->watermarks.a.urgent_latency_ns)
wm_pending = true;
/* clock state B */
if (safe_to_lower || watermarks->b.urgent_ns > hubbub2->watermarks.b.urgent_ns) {
hubbub2->watermarks.b.urgent_ns = watermarks->b.urgent_ns;
prog_wm_value = convert_and_clamp(watermarks->b.urgent_ns,
refclk_mhz, 0x3fff);
REG_SET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B, 0,
DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("URGENCY_WATERMARK_B calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->b.urgent_ns, prog_wm_value);
} else if (watermarks->b.urgent_ns < hubbub2->watermarks.b.urgent_ns)
wm_pending = true;
/* determine the transfer time for a quantity of data for a particular requestor.*/
if (safe_to_lower || watermarks->b.frac_urg_bw_flip
> hubbub2->watermarks.b.frac_urg_bw_flip) {
hubbub2->watermarks.b.frac_urg_bw_flip = watermarks->b.frac_urg_bw_flip;
REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_B, 0,
DCHUBBUB_ARB_FRAC_URG_BW_FLIP_B, watermarks->b.frac_urg_bw_flip);
} else if (watermarks->b.frac_urg_bw_flip
< hubbub2->watermarks.b.frac_urg_bw_flip)
wm_pending = true;
if (safe_to_lower || watermarks->b.frac_urg_bw_nom
> hubbub2->watermarks.b.frac_urg_bw_nom) {
hubbub2->watermarks.b.frac_urg_bw_nom = watermarks->b.frac_urg_bw_nom;
REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_NOM_B, 0,
DCHUBBUB_ARB_FRAC_URG_BW_NOM_B, watermarks->b.frac_urg_bw_nom);
} else if (watermarks->b.frac_urg_bw_nom
< hubbub2->watermarks.b.frac_urg_bw_nom)
wm_pending = true;
if (safe_to_lower || watermarks->b.urgent_latency_ns > hubbub2->watermarks.b.urgent_latency_ns) {
hubbub2->watermarks.b.urgent_latency_ns = watermarks->b.urgent_latency_ns;
prog_wm_value = convert_and_clamp(watermarks->b.urgent_latency_ns,
refclk_mhz, 0x3fff);
REG_SET(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_B, 0,
DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_B, prog_wm_value);
} else if (watermarks->b.urgent_latency_ns < hubbub2->watermarks.b.urgent_latency_ns)
wm_pending = true;
/* clock state C */
if (safe_to_lower || watermarks->c.urgent_ns > hubbub2->watermarks.c.urgent_ns) {
hubbub2->watermarks.c.urgent_ns = watermarks->c.urgent_ns;
prog_wm_value = convert_and_clamp(watermarks->c.urgent_ns,
refclk_mhz, 0x3fff);
REG_SET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_C, 0,
DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_C, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("URGENCY_WATERMARK_C calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->c.urgent_ns, prog_wm_value);
} else if (watermarks->c.urgent_ns < hubbub2->watermarks.c.urgent_ns)
wm_pending = true;
/* determine the transfer time for a quantity of data for a particular requestor.*/
if (safe_to_lower || watermarks->c.frac_urg_bw_flip
> hubbub2->watermarks.c.frac_urg_bw_flip) {
hubbub2->watermarks.c.frac_urg_bw_flip = watermarks->c.frac_urg_bw_flip;
REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_C, 0,
DCHUBBUB_ARB_FRAC_URG_BW_FLIP_C, watermarks->c.frac_urg_bw_flip);
} else if (watermarks->c.frac_urg_bw_flip
< hubbub2->watermarks.c.frac_urg_bw_flip)
wm_pending = true;
if (safe_to_lower || watermarks->c.frac_urg_bw_nom
> hubbub2->watermarks.c.frac_urg_bw_nom) {
hubbub2->watermarks.c.frac_urg_bw_nom = watermarks->c.frac_urg_bw_nom;
REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_NOM_C, 0,
DCHUBBUB_ARB_FRAC_URG_BW_NOM_C, watermarks->c.frac_urg_bw_nom);
} else if (watermarks->c.frac_urg_bw_nom
< hubbub2->watermarks.c.frac_urg_bw_nom)
wm_pending = true;
if (safe_to_lower || watermarks->c.urgent_latency_ns > hubbub2->watermarks.c.urgent_latency_ns) {
hubbub2->watermarks.c.urgent_latency_ns = watermarks->c.urgent_latency_ns;
prog_wm_value = convert_and_clamp(watermarks->c.urgent_latency_ns,
refclk_mhz, 0x3fff);
REG_SET(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_C, 0,
DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_C, prog_wm_value);
} else if (watermarks->c.urgent_latency_ns < hubbub2->watermarks.c.urgent_latency_ns)
wm_pending = true;
/* clock state D */
if (safe_to_lower || watermarks->d.urgent_ns > hubbub2->watermarks.d.urgent_ns) {
hubbub2->watermarks.d.urgent_ns = watermarks->d.urgent_ns;
prog_wm_value = convert_and_clamp(watermarks->d.urgent_ns,
refclk_mhz, 0x3fff);
REG_SET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_D, 0,
DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_D, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("URGENCY_WATERMARK_D calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->d.urgent_ns, prog_wm_value);
} else if (watermarks->d.urgent_ns < hubbub2->watermarks.d.urgent_ns)
wm_pending = true;
/* determine the transfer time for a quantity of data for a particular requestor.*/
if (safe_to_lower || watermarks->d.frac_urg_bw_flip
> hubbub2->watermarks.d.frac_urg_bw_flip) {
hubbub2->watermarks.d.frac_urg_bw_flip = watermarks->d.frac_urg_bw_flip;
REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_D, 0,
DCHUBBUB_ARB_FRAC_URG_BW_FLIP_D, watermarks->d.frac_urg_bw_flip);
} else if (watermarks->d.frac_urg_bw_flip
< hubbub2->watermarks.d.frac_urg_bw_flip)
wm_pending = true;
if (safe_to_lower || watermarks->d.frac_urg_bw_nom
> hubbub2->watermarks.d.frac_urg_bw_nom) {
hubbub2->watermarks.d.frac_urg_bw_nom = watermarks->d.frac_urg_bw_nom;
REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_NOM_D, 0,
DCHUBBUB_ARB_FRAC_URG_BW_NOM_D, watermarks->d.frac_urg_bw_nom);
} else if (watermarks->d.frac_urg_bw_nom
< hubbub2->watermarks.d.frac_urg_bw_nom)
wm_pending = true;
if (safe_to_lower || watermarks->d.urgent_latency_ns > hubbub2->watermarks.d.urgent_latency_ns) {
hubbub2->watermarks.d.urgent_latency_ns = watermarks->d.urgent_latency_ns;
prog_wm_value = convert_and_clamp(watermarks->d.urgent_latency_ns,
refclk_mhz, 0x3fff);
REG_SET(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_D, 0,
DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_D, prog_wm_value);
} else if (watermarks->d.urgent_latency_ns < hubbub2->watermarks.d.urgent_latency_ns)
wm_pending = true;
return wm_pending;
}
static bool hubbub31_program_stutter_watermarks(
struct hubbub *hubbub,
struct dcn_watermark_set *watermarks,
unsigned int refclk_mhz,
bool safe_to_lower)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
uint32_t prog_wm_value;
bool wm_pending = false;
/* clock state A */
if (safe_to_lower || watermarks->a.cstate_pstate.cstate_enter_plus_exit_ns
> hubbub2->watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns) {
hubbub2->watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns =
watermarks->a.cstate_pstate.cstate_enter_plus_exit_ns;
prog_wm_value = convert_and_clamp(
watermarks->a.cstate_pstate.cstate_enter_plus_exit_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A, 0,
DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("SR_ENTER_EXIT_WATERMARK_A calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->a.cstate_pstate.cstate_enter_plus_exit_ns, prog_wm_value);
} else if (watermarks->a.cstate_pstate.cstate_enter_plus_exit_ns
< hubbub2->watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns)
wm_pending = true;
if (safe_to_lower || watermarks->a.cstate_pstate.cstate_exit_ns
> hubbub2->watermarks.a.cstate_pstate.cstate_exit_ns) {
hubbub2->watermarks.a.cstate_pstate.cstate_exit_ns =
watermarks->a.cstate_pstate.cstate_exit_ns;
prog_wm_value = convert_and_clamp(
watermarks->a.cstate_pstate.cstate_exit_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A, 0,
DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_A calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->a.cstate_pstate.cstate_exit_ns, prog_wm_value);
} else if (watermarks->a.cstate_pstate.cstate_exit_ns
< hubbub2->watermarks.a.cstate_pstate.cstate_exit_ns)
wm_pending = true;
if (safe_to_lower || watermarks->a.cstate_pstate.cstate_enter_plus_exit_z8_ns
> hubbub2->watermarks.a.cstate_pstate.cstate_enter_plus_exit_z8_ns) {
hubbub2->watermarks.a.cstate_pstate.cstate_enter_plus_exit_z8_ns =
watermarks->a.cstate_pstate.cstate_enter_plus_exit_z8_ns;
prog_wm_value = convert_and_clamp(
watermarks->a.cstate_pstate.cstate_enter_plus_exit_z8_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_Z8_A, 0,
DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_Z8_A, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("SR_ENTER_WATERMARK_Z8_A calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->a.cstate_pstate.cstate_enter_plus_exit_z8_ns, prog_wm_value);
} else if (watermarks->a.cstate_pstate.cstate_enter_plus_exit_z8_ns
< hubbub2->watermarks.a.cstate_pstate.cstate_enter_plus_exit_z8_ns)
wm_pending = true;
if (safe_to_lower || watermarks->a.cstate_pstate.cstate_exit_z8_ns
> hubbub2->watermarks.a.cstate_pstate.cstate_exit_z8_ns) {
hubbub2->watermarks.a.cstate_pstate.cstate_exit_z8_ns =
watermarks->a.cstate_pstate.cstate_exit_z8_ns;
prog_wm_value = convert_and_clamp(
watermarks->a.cstate_pstate.cstate_exit_z8_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_Z8_A, 0,
DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_Z8_A, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_Z8_A calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->a.cstate_pstate.cstate_exit_z8_ns, prog_wm_value);
} else if (watermarks->a.cstate_pstate.cstate_exit_z8_ns
< hubbub2->watermarks.a.cstate_pstate.cstate_exit_z8_ns)
wm_pending = true;
/* clock state B */
if (safe_to_lower || watermarks->b.cstate_pstate.cstate_enter_plus_exit_ns
> hubbub2->watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns) {
hubbub2->watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns =
watermarks->b.cstate_pstate.cstate_enter_plus_exit_ns;
prog_wm_value = convert_and_clamp(
watermarks->b.cstate_pstate.cstate_enter_plus_exit_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B, 0,
DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("SR_ENTER_EXIT_WATERMARK_B calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->b.cstate_pstate.cstate_enter_plus_exit_ns, prog_wm_value);
} else if (watermarks->b.cstate_pstate.cstate_enter_plus_exit_ns
< hubbub2->watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns)
wm_pending = true;
if (safe_to_lower || watermarks->b.cstate_pstate.cstate_exit_ns
> hubbub2->watermarks.b.cstate_pstate.cstate_exit_ns) {
hubbub2->watermarks.b.cstate_pstate.cstate_exit_ns =
watermarks->b.cstate_pstate.cstate_exit_ns;
prog_wm_value = convert_and_clamp(
watermarks->b.cstate_pstate.cstate_exit_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B, 0,
DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_B calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->b.cstate_pstate.cstate_exit_ns, prog_wm_value);
} else if (watermarks->b.cstate_pstate.cstate_exit_ns
< hubbub2->watermarks.b.cstate_pstate.cstate_exit_ns)
wm_pending = true;
if (safe_to_lower || watermarks->b.cstate_pstate.cstate_enter_plus_exit_z8_ns
> hubbub2->watermarks.b.cstate_pstate.cstate_enter_plus_exit_z8_ns) {
hubbub2->watermarks.b.cstate_pstate.cstate_enter_plus_exit_z8_ns =
watermarks->b.cstate_pstate.cstate_enter_plus_exit_z8_ns;
prog_wm_value = convert_and_clamp(
watermarks->b.cstate_pstate.cstate_enter_plus_exit_z8_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_Z8_B, 0,
DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_Z8_B, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("SR_ENTER_WATERMARK_Z8_B calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->b.cstate_pstate.cstate_enter_plus_exit_z8_ns, prog_wm_value);
} else if (watermarks->b.cstate_pstate.cstate_enter_plus_exit_z8_ns
< hubbub2->watermarks.b.cstate_pstate.cstate_enter_plus_exit_z8_ns)
wm_pending = true;
if (safe_to_lower || watermarks->b.cstate_pstate.cstate_exit_z8_ns
> hubbub2->watermarks.b.cstate_pstate.cstate_exit_z8_ns) {
hubbub2->watermarks.b.cstate_pstate.cstate_exit_z8_ns =
watermarks->b.cstate_pstate.cstate_exit_z8_ns;
prog_wm_value = convert_and_clamp(
watermarks->b.cstate_pstate.cstate_exit_z8_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_Z8_B, 0,
DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_Z8_B, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_Z8_B calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->b.cstate_pstate.cstate_exit_z8_ns, prog_wm_value);
} else if (watermarks->b.cstate_pstate.cstate_exit_z8_ns
< hubbub2->watermarks.b.cstate_pstate.cstate_exit_z8_ns)
wm_pending = true;
/* clock state C */
if (safe_to_lower || watermarks->c.cstate_pstate.cstate_enter_plus_exit_ns
> hubbub2->watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns) {
hubbub2->watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns =
watermarks->c.cstate_pstate.cstate_enter_plus_exit_ns;
prog_wm_value = convert_and_clamp(
watermarks->c.cstate_pstate.cstate_enter_plus_exit_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_C, 0,
DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_C, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("SR_ENTER_EXIT_WATERMARK_C calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->c.cstate_pstate.cstate_enter_plus_exit_ns, prog_wm_value);
} else if (watermarks->c.cstate_pstate.cstate_enter_plus_exit_ns
< hubbub2->watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns)
wm_pending = true;
if (safe_to_lower || watermarks->c.cstate_pstate.cstate_exit_ns
> hubbub2->watermarks.c.cstate_pstate.cstate_exit_ns) {
hubbub2->watermarks.c.cstate_pstate.cstate_exit_ns =
watermarks->c.cstate_pstate.cstate_exit_ns;
prog_wm_value = convert_and_clamp(
watermarks->c.cstate_pstate.cstate_exit_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_C, 0,
DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_C, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_C calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->c.cstate_pstate.cstate_exit_ns, prog_wm_value);
} else if (watermarks->c.cstate_pstate.cstate_exit_ns
< hubbub2->watermarks.c.cstate_pstate.cstate_exit_ns)
wm_pending = true;
if (safe_to_lower || watermarks->c.cstate_pstate.cstate_enter_plus_exit_z8_ns
> hubbub2->watermarks.c.cstate_pstate.cstate_enter_plus_exit_z8_ns) {
hubbub2->watermarks.c.cstate_pstate.cstate_enter_plus_exit_z8_ns =
watermarks->c.cstate_pstate.cstate_enter_plus_exit_z8_ns;
prog_wm_value = convert_and_clamp(
watermarks->c.cstate_pstate.cstate_enter_plus_exit_z8_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_Z8_C, 0,
DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_Z8_C, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("SR_ENTER_WATERMARK_Z8_C calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->c.cstate_pstate.cstate_enter_plus_exit_z8_ns, prog_wm_value);
} else if (watermarks->c.cstate_pstate.cstate_enter_plus_exit_z8_ns
< hubbub2->watermarks.c.cstate_pstate.cstate_enter_plus_exit_z8_ns)
wm_pending = true;
if (safe_to_lower || watermarks->c.cstate_pstate.cstate_exit_z8_ns
> hubbub2->watermarks.c.cstate_pstate.cstate_exit_z8_ns) {
hubbub2->watermarks.c.cstate_pstate.cstate_exit_z8_ns =
watermarks->c.cstate_pstate.cstate_exit_z8_ns;
prog_wm_value = convert_and_clamp(
watermarks->c.cstate_pstate.cstate_exit_z8_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_Z8_C, 0,
DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_Z8_C, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_Z8_C calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->c.cstate_pstate.cstate_exit_z8_ns, prog_wm_value);
} else if (watermarks->c.cstate_pstate.cstate_exit_z8_ns
< hubbub2->watermarks.c.cstate_pstate.cstate_exit_z8_ns)
wm_pending = true;
/* clock state D */
if (safe_to_lower || watermarks->d.cstate_pstate.cstate_enter_plus_exit_ns
> hubbub2->watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns) {
hubbub2->watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns =
watermarks->d.cstate_pstate.cstate_enter_plus_exit_ns;
prog_wm_value = convert_and_clamp(
watermarks->d.cstate_pstate.cstate_enter_plus_exit_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_D, 0,
DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_D, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("SR_ENTER_EXIT_WATERMARK_D calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->d.cstate_pstate.cstate_enter_plus_exit_ns, prog_wm_value);
} else if (watermarks->d.cstate_pstate.cstate_enter_plus_exit_ns
< hubbub2->watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns)
wm_pending = true;
if (safe_to_lower || watermarks->d.cstate_pstate.cstate_exit_ns
> hubbub2->watermarks.d.cstate_pstate.cstate_exit_ns) {
hubbub2->watermarks.d.cstate_pstate.cstate_exit_ns =
watermarks->d.cstate_pstate.cstate_exit_ns;
prog_wm_value = convert_and_clamp(
watermarks->d.cstate_pstate.cstate_exit_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_D, 0,
DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_D, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_D calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->d.cstate_pstate.cstate_exit_ns, prog_wm_value);
} else if (watermarks->d.cstate_pstate.cstate_exit_ns
< hubbub2->watermarks.d.cstate_pstate.cstate_exit_ns)
wm_pending = true;
if (safe_to_lower || watermarks->d.cstate_pstate.cstate_enter_plus_exit_z8_ns
> hubbub2->watermarks.d.cstate_pstate.cstate_enter_plus_exit_z8_ns) {
hubbub2->watermarks.d.cstate_pstate.cstate_enter_plus_exit_z8_ns =
watermarks->d.cstate_pstate.cstate_enter_plus_exit_z8_ns;
prog_wm_value = convert_and_clamp(
watermarks->d.cstate_pstate.cstate_enter_plus_exit_z8_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_Z8_D, 0,
DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_Z8_D, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("SR_ENTER_WATERMARK_Z8_D calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->d.cstate_pstate.cstate_enter_plus_exit_z8_ns, prog_wm_value);
} else if (watermarks->d.cstate_pstate.cstate_enter_plus_exit_z8_ns
< hubbub2->watermarks.d.cstate_pstate.cstate_enter_plus_exit_z8_ns)
wm_pending = true;
if (safe_to_lower || watermarks->d.cstate_pstate.cstate_exit_z8_ns
> hubbub2->watermarks.d.cstate_pstate.cstate_exit_z8_ns) {
hubbub2->watermarks.d.cstate_pstate.cstate_exit_z8_ns =
watermarks->d.cstate_pstate.cstate_exit_z8_ns;
prog_wm_value = convert_and_clamp(
watermarks->d.cstate_pstate.cstate_exit_z8_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_Z8_D, 0,
DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_Z8_D, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_Z8_D calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->d.cstate_pstate.cstate_exit_z8_ns, prog_wm_value);
} else if (watermarks->d.cstate_pstate.cstate_exit_z8_ns
< hubbub2->watermarks.d.cstate_pstate.cstate_exit_z8_ns)
wm_pending = true;
return wm_pending;
}
static bool hubbub31_program_pstate_watermarks(
struct hubbub *hubbub,
struct dcn_watermark_set *watermarks,
unsigned int refclk_mhz,
bool safe_to_lower)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
uint32_t prog_wm_value;
bool wm_pending = false;
/* clock state A */
if (safe_to_lower || watermarks->a.cstate_pstate.pstate_change_ns
> hubbub2->watermarks.a.cstate_pstate.pstate_change_ns) {
hubbub2->watermarks.a.cstate_pstate.pstate_change_ns =
watermarks->a.cstate_pstate.pstate_change_ns;
prog_wm_value = convert_and_clamp(
watermarks->a.cstate_pstate.pstate_change_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_A, 0,
DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_A, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("DRAM_CLK_CHANGE_WATERMARK_A calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->a.cstate_pstate.pstate_change_ns, prog_wm_value);
} else if (watermarks->a.cstate_pstate.pstate_change_ns
< hubbub2->watermarks.a.cstate_pstate.pstate_change_ns)
wm_pending = true;
/* clock state B */
if (safe_to_lower || watermarks->b.cstate_pstate.pstate_change_ns
> hubbub2->watermarks.b.cstate_pstate.pstate_change_ns) {
hubbub2->watermarks.b.cstate_pstate.pstate_change_ns =
watermarks->b.cstate_pstate.pstate_change_ns;
prog_wm_value = convert_and_clamp(
watermarks->b.cstate_pstate.pstate_change_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_B, 0,
DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_B, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("DRAM_CLK_CHANGE_WATERMARK_B calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->b.cstate_pstate.pstate_change_ns, prog_wm_value);
} else if (watermarks->b.cstate_pstate.pstate_change_ns
< hubbub2->watermarks.b.cstate_pstate.pstate_change_ns)
wm_pending = false;
/* clock state C */
if (safe_to_lower || watermarks->c.cstate_pstate.pstate_change_ns
> hubbub2->watermarks.c.cstate_pstate.pstate_change_ns) {
hubbub2->watermarks.c.cstate_pstate.pstate_change_ns =
watermarks->c.cstate_pstate.pstate_change_ns;
prog_wm_value = convert_and_clamp(
watermarks->c.cstate_pstate.pstate_change_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_C, 0,
DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_C, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("DRAM_CLK_CHANGE_WATERMARK_C calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->c.cstate_pstate.pstate_change_ns, prog_wm_value);
} else if (watermarks->c.cstate_pstate.pstate_change_ns
< hubbub2->watermarks.c.cstate_pstate.pstate_change_ns)
wm_pending = true;
/* clock state D */
if (safe_to_lower || watermarks->d.cstate_pstate.pstate_change_ns
> hubbub2->watermarks.d.cstate_pstate.pstate_change_ns) {
hubbub2->watermarks.d.cstate_pstate.pstate_change_ns =
watermarks->d.cstate_pstate.pstate_change_ns;
prog_wm_value = convert_and_clamp(
watermarks->d.cstate_pstate.pstate_change_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_D, 0,
DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_D, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("DRAM_CLK_CHANGE_WATERMARK_D calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->d.cstate_pstate.pstate_change_ns, prog_wm_value);
} else if (watermarks->d.cstate_pstate.pstate_change_ns
< hubbub2->watermarks.d.cstate_pstate.pstate_change_ns)
wm_pending = true;
return wm_pending;
}
static bool hubbub31_program_watermarks(
struct hubbub *hubbub,
struct dcn_watermark_set *watermarks,
unsigned int refclk_mhz,
bool safe_to_lower)
{
bool wm_pending = false;
if (hubbub31_program_urgent_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower))
wm_pending = true;
if (hubbub31_program_stutter_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower))
wm_pending = true;
if (hubbub31_program_pstate_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower))
wm_pending = true;
/*
* The DCHub arbiter has a mechanism to dynamically rate limit the DCHub request stream to the fabric.
* If the memory controller is fully utilized and the DCHub requestors are
* well ahead of their amortized schedule, then it is safe to prevent the next winner
* from being committed and sent to the fabric.
* The utilization of the memory controller is approximated by ensuring that
* the number of outstanding requests is greater than a threshold specified
* by the ARB_MIN_REQ_OUTSTANDING. To determine that the DCHub requestors are well ahead of the amortized schedule,
* the slack of the next winner is compared with the ARB_SAT_LEVEL in DLG RefClk cycles.
*
* TODO: Revisit request limit after figure out right number. request limit for RM isn't decided yet, set maximum value (0x1FF)
* to turn off it for now.
*/
/*REG_SET(DCHUBBUB_ARB_SAT_LEVEL, 0,
DCHUBBUB_ARB_SAT_LEVEL, 60 * refclk_mhz);
REG_UPDATE(DCHUBBUB_ARB_DF_REQ_OUTSTAND,
DCHUBBUB_ARB_MIN_REQ_OUTSTAND, 0x1FF);*/
hubbub1_allow_self_refresh_control(hubbub, !hubbub->ctx->dc->debug.disable_stutter);
return wm_pending;
}
static void hubbub3_get_blk256_size(unsigned int *blk256_width, unsigned int *blk256_height,
unsigned int bytes_per_element)
{
/* copied from DML. might want to refactor DML to leverage from DML */
/* DML : get_blk256_size */
if (bytes_per_element == 1) {
*blk256_width = 16;
*blk256_height = 16;
} else if (bytes_per_element == 2) {
*blk256_width = 16;
*blk256_height = 8;
} else if (bytes_per_element == 4) {
*blk256_width = 8;
*blk256_height = 8;
} else if (bytes_per_element == 8) {
*blk256_width = 8;
*blk256_height = 4;
}
}
static void hubbub31_det_request_size(
unsigned int detile_buf_size,
unsigned int height,
unsigned int width,
unsigned int bpe,
bool *req128_horz_wc,
bool *req128_vert_wc)
{
unsigned int blk256_height = 0;
unsigned int blk256_width = 0;
unsigned int swath_bytes_horz_wc, swath_bytes_vert_wc;
hubbub3_get_blk256_size(&blk256_width, &blk256_height, bpe);
swath_bytes_horz_wc = width * blk256_height * bpe;
swath_bytes_vert_wc = height * blk256_width * bpe;
*req128_horz_wc = (2 * swath_bytes_horz_wc <= detile_buf_size) ?
false : /* full 256B request */
true; /* half 128b request */
*req128_vert_wc = (2 * swath_bytes_vert_wc <= detile_buf_size) ?
false : /* full 256B request */
true; /* half 128b request */
}
static bool hubbub31_get_dcc_compression_cap(struct hubbub *hubbub,
const struct dc_dcc_surface_param *input,
struct dc_surface_dcc_cap *output)
{
struct dc *dc = hubbub->ctx->dc;
enum dcc_control dcc_control;
unsigned int bpe;
enum segment_order segment_order_horz, segment_order_vert;
bool req128_horz_wc, req128_vert_wc;
memset(output, 0, sizeof(*output));
if (dc->debug.disable_dcc == DCC_DISABLE)
return false;
if (!hubbub->funcs->dcc_support_pixel_format(input->format,
&bpe))
return false;
if (!hubbub->funcs->dcc_support_swizzle(input->swizzle_mode, bpe,
&segment_order_horz, &segment_order_vert))
return false;
hubbub31_det_request_size(TO_DCN20_HUBBUB(hubbub)->detile_buf_size,
input->surface_size.height, input->surface_size.width,
bpe, &req128_horz_wc, &req128_vert_wc);
if (!req128_horz_wc && !req128_vert_wc) {
dcc_control = dcc_control__256_256_xxx;
} else if (input->scan == SCAN_DIRECTION_HORIZONTAL) {
if (!req128_horz_wc)
dcc_control = dcc_control__256_256_xxx;
else if (segment_order_horz == segment_order__contiguous)
dcc_control = dcc_control__128_128_xxx;
else
dcc_control = dcc_control__256_64_64;
} else if (input->scan == SCAN_DIRECTION_VERTICAL) {
if (!req128_vert_wc)
dcc_control = dcc_control__256_256_xxx;
else if (segment_order_vert == segment_order__contiguous)
dcc_control = dcc_control__128_128_xxx;
else
dcc_control = dcc_control__256_64_64;
} else {
if ((req128_horz_wc &&
segment_order_horz == segment_order__non_contiguous) ||
(req128_vert_wc &&
segment_order_vert == segment_order__non_contiguous))
/* access_dir not known, must use most constraining */
dcc_control = dcc_control__256_64_64;
else
/* reg128 is true for either horz and vert
* but segment_order is contiguous
*/
dcc_control = dcc_control__128_128_xxx;
}
/* Exception for 64KB_R_X */
if ((bpe == 2) && (input->swizzle_mode == DC_SW_64KB_R_X))
dcc_control = dcc_control__128_128_xxx;
if (dc->debug.disable_dcc == DCC_HALF_REQ_DISALBE &&
dcc_control != dcc_control__256_256_xxx)
return false;
switch (dcc_control) {
case dcc_control__256_256_xxx:
output->grph.rgb.max_uncompressed_blk_size = 256;
output->grph.rgb.max_compressed_blk_size = 256;
output->grph.rgb.independent_64b_blks = false;
output->grph.rgb.dcc_controls.dcc_256_256_unconstrained = 1;
output->grph.rgb.dcc_controls.dcc_256_128_128 = 1;
break;
case dcc_control__128_128_xxx:
output->grph.rgb.max_uncompressed_blk_size = 128;
output->grph.rgb.max_compressed_blk_size = 128;
output->grph.rgb.independent_64b_blks = false;
output->grph.rgb.dcc_controls.dcc_128_128_uncontrained = 1;
output->grph.rgb.dcc_controls.dcc_256_128_128 = 1;
break;
case dcc_control__256_64_64:
output->grph.rgb.max_uncompressed_blk_size = 256;
output->grph.rgb.max_compressed_blk_size = 64;
output->grph.rgb.independent_64b_blks = true;
output->grph.rgb.dcc_controls.dcc_256_64_64 = 1;
break;
case dcc_control__256_128_128:
output->grph.rgb.max_uncompressed_blk_size = 256;
output->grph.rgb.max_compressed_blk_size = 128;
output->grph.rgb.independent_64b_blks = false;
output->grph.rgb.dcc_controls.dcc_256_128_128 = 1;
break;
}
output->capable = true;
output->const_color_support = true;
return true;
}
int hubbub31_init_dchub_sys_ctx(struct hubbub *hubbub,
struct dcn_hubbub_phys_addr_config *pa_config)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
struct dcn_vmid_page_table_config phys_config;
REG_SET(DCN_VM_FB_LOCATION_BASE, 0,
FB_BASE, pa_config->system_aperture.fb_base >> 24);
REG_SET(DCN_VM_FB_LOCATION_TOP, 0,
FB_TOP, pa_config->system_aperture.fb_top >> 24);
REG_SET(DCN_VM_FB_OFFSET, 0,
FB_OFFSET, pa_config->system_aperture.fb_offset >> 24);
REG_SET(DCN_VM_AGP_BOT, 0,
AGP_BOT, pa_config->system_aperture.agp_bot >> 24);
REG_SET(DCN_VM_AGP_TOP, 0,
AGP_TOP, pa_config->system_aperture.agp_top >> 24);
REG_SET(DCN_VM_AGP_BASE, 0,
AGP_BASE, pa_config->system_aperture.agp_base >> 24);
if (pa_config->gart_config.page_table_start_addr != pa_config->gart_config.page_table_end_addr) {
phys_config.page_table_start_addr = pa_config->gart_config.page_table_start_addr >> 12;
phys_config.page_table_end_addr = pa_config->gart_config.page_table_end_addr >> 12;
phys_config.page_table_base_addr = pa_config->gart_config.page_table_base_addr;
phys_config.depth = 0;
phys_config.block_size = 0;
// Init VMID 0 based on PA config
dcn20_vmid_setup(&hubbub2->vmid[0], &phys_config);
dcn20_vmid_setup(&hubbub2->vmid[15], &phys_config);
}
dcn21_dchvm_init(hubbub);
return NUM_VMID;
}
static void hubbub31_get_dchub_ref_freq(struct hubbub *hubbub,
unsigned int dccg_ref_freq_inKhz,
unsigned int *dchub_ref_freq_inKhz)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
uint32_t ref_div = 0;
uint32_t ref_en = 0;
unsigned int dc_refclk_khz = 24000;
REG_GET_2(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, &ref_div,
DCHUBBUB_GLOBAL_TIMER_ENABLE, &ref_en);
if (ref_en) {
if (ref_div == 2)
*dchub_ref_freq_inKhz = dc_refclk_khz / 2;
else
*dchub_ref_freq_inKhz = dc_refclk_khz;
/*
* The external Reference Clock may change based on the board or
* platform requirements and the programmable integer divide must
* be programmed to provide a suitable DLG RefClk frequency between
* a minimum of 20MHz and maximum of 50MHz
*/
if (*dchub_ref_freq_inKhz < 20000 || *dchub_ref_freq_inKhz > 50000)
ASSERT_CRITICAL(false);
return;
} else {
*dchub_ref_freq_inKhz = dc_refclk_khz;
// HUBBUB global timer must be enabled.
ASSERT_CRITICAL(false);
return;
}
}
static bool hubbub31_verify_allow_pstate_change_high(struct hubbub *hubbub)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
/*
* Pstate latency is ~20us so if we wait over 40us and pstate allow
* still not asserted, we are probably stuck and going to hang
*/
const unsigned int pstate_wait_timeout_us = 100;
const unsigned int pstate_wait_expected_timeout_us = 40;
static unsigned int max_sampled_pstate_wait_us; /* data collection */
static bool forced_pstate_allow; /* help with revert wa */
unsigned int debug_data = 0;
unsigned int i;
if (forced_pstate_allow) {
/* we hacked to force pstate allow to prevent hang last time
* we verify_allow_pstate_change_high. so disable force
* here so we can check status
*/
REG_UPDATE_2(DCHUBBUB_ARB_DRAM_STATE_CNTL,
DCHUBBUB_ARB_ALLOW_PSTATE_CHANGE_FORCE_VALUE, 0,
DCHUBBUB_ARB_ALLOW_PSTATE_CHANGE_FORCE_ENABLE, 0);
forced_pstate_allow = false;
}
REG_WRITE(DCHUBBUB_TEST_DEBUG_INDEX, hubbub2->debug_test_index_pstate);
for (i = 0; i < pstate_wait_timeout_us; i++) {
debug_data = REG_READ(DCHUBBUB_TEST_DEBUG_DATA);
/* Debug bit is specific to ASIC. */
if (debug_data & (1 << 26)) {
if (i > pstate_wait_expected_timeout_us)
DC_LOG_WARNING("pstate took longer than expected ~%dus\n", i);
return true;
}
if (max_sampled_pstate_wait_us < i)
max_sampled_pstate_wait_us = i;
udelay(1);
}
/* force pstate allow to prevent system hang
* and break to debugger to investigate
*/
REG_UPDATE_2(DCHUBBUB_ARB_DRAM_STATE_CNTL,
DCHUBBUB_ARB_ALLOW_PSTATE_CHANGE_FORCE_VALUE, 1,
DCHUBBUB_ARB_ALLOW_PSTATE_CHANGE_FORCE_ENABLE, 1);
forced_pstate_allow = true;
DC_LOG_WARNING("pstate TEST_DEBUG_DATA: 0x%X\n",
debug_data);
return false;
}
void hubbub31_init(struct hubbub *hubbub)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
/*Enable clock gate*/
if (hubbub->ctx->dc->debug.disable_clock_gate) {
/*done in hwseq*/
/*REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0);*/
REG_UPDATE_2(DCHUBBUB_CLOCK_CNTL,
DISPCLK_R_DCHUBBUB_GATE_DIS, 0,
DCFCLK_R_DCHUBBUB_GATE_DIS, 0);
}
/*
only the DCN will determine when to connect the SDP port
*/
REG_UPDATE(DCHUBBUB_SDPIF_CFG0, SDPIF_PORT_CONTROL, 1);
}
static const struct hubbub_funcs hubbub31_funcs = {
.update_dchub = hubbub2_update_dchub,
.init_dchub_sys_ctx = hubbub31_init_dchub_sys_ctx,
.init_vm_ctx = hubbub2_init_vm_ctx,
.dcc_support_swizzle = hubbub3_dcc_support_swizzle,
.dcc_support_pixel_format = hubbub2_dcc_support_pixel_format,
.get_dcc_compression_cap = hubbub31_get_dcc_compression_cap,
.wm_read_state = hubbub21_wm_read_state,
.get_dchub_ref_freq = hubbub31_get_dchub_ref_freq,
.program_watermarks = hubbub31_program_watermarks,
.allow_self_refresh_control = hubbub1_allow_self_refresh_control,
.is_allow_self_refresh_enabled = hubbub1_is_allow_self_refresh_enabled,
.verify_allow_pstate_change_high = hubbub31_verify_allow_pstate_change_high,
.program_det_size = dcn31_program_det_size,
.program_compbuf_size = dcn31_program_compbuf_size,
.init_crb = dcn31_init_crb,
.hubbub_read_state = hubbub2_read_state,
};
void hubbub31_construct(struct dcn20_hubbub *hubbub31,
struct dc_context *ctx,
const struct dcn_hubbub_registers *hubbub_regs,
const struct dcn_hubbub_shift *hubbub_shift,
const struct dcn_hubbub_mask *hubbub_mask,
int det_size_kb,
int pixel_chunk_size_kb,
int config_return_buffer_size_kb)
{
hubbub3_construct(hubbub31, ctx, hubbub_regs, hubbub_shift, hubbub_mask);
hubbub31->base.funcs = &hubbub31_funcs;
hubbub31->detile_buf_size = det_size_kb * 1024;
hubbub31->pixel_chunk_size = pixel_chunk_size_kb * 1024;
hubbub31->crb_size_segs = config_return_buffer_size_kb / DCN31_CRB_SEGMENT_SIZE_KB;
hubbub31->debug_test_index_pstate = 0x6;
}