linux-zen-server/drivers/hwmon/peci/cputemp.c

593 lines
14 KiB
C
Raw Permalink Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0-only
// Copyright (c) 2018-2021 Intel Corporation
#include <linux/auxiliary_bus.h>
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/hwmon.h>
#include <linux/jiffies.h>
#include <linux/module.h>
#include <linux/peci.h>
#include <linux/peci-cpu.h>
#include <linux/units.h>
#include "common.h"
#define CORE_NUMS_MAX 64
#define BASE_CHANNEL_NUMS 5
#define CPUTEMP_CHANNEL_NUMS (BASE_CHANNEL_NUMS + CORE_NUMS_MAX)
#define TEMP_TARGET_FAN_TEMP_MASK GENMASK(15, 8)
#define TEMP_TARGET_REF_TEMP_MASK GENMASK(23, 16)
#define TEMP_TARGET_TJ_OFFSET_MASK GENMASK(29, 24)
#define DTS_MARGIN_MASK GENMASK(15, 0)
#define PCS_MODULE_TEMP_MASK GENMASK(15, 0)
struct resolved_cores_reg {
u8 bus;
u8 dev;
u8 func;
u8 offset;
};
struct cpu_info {
struct resolved_cores_reg *reg;
u8 min_peci_revision;
s32 (*thermal_margin_to_millidegree)(u16 val);
};
struct peci_temp_target {
s32 tcontrol;
s32 tthrottle;
s32 tjmax;
struct peci_sensor_state state;
};
enum peci_temp_target_type {
tcontrol_type,
tthrottle_type,
tjmax_type,
crit_hyst_type,
};
struct peci_cputemp {
struct peci_device *peci_dev;
struct device *dev;
const char *name;
const struct cpu_info *gen_info;
struct {
struct peci_temp_target target;
struct peci_sensor_data die;
struct peci_sensor_data dts;
struct peci_sensor_data core[CORE_NUMS_MAX];
} temp;
const char **coretemp_label;
DECLARE_BITMAP(core_mask, CORE_NUMS_MAX);
};
enum cputemp_channels {
channel_die,
channel_dts,
channel_tcontrol,
channel_tthrottle,
channel_tjmax,
channel_core,
};
static const char * const cputemp_label[BASE_CHANNEL_NUMS] = {
"Die",
"DTS",
"Tcontrol",
"Tthrottle",
"Tjmax",
};
static int update_temp_target(struct peci_cputemp *priv)
{
s32 tthrottle_offset, tcontrol_margin;
u32 pcs;
int ret;
if (!peci_sensor_need_update(&priv->temp.target.state))
return 0;
ret = peci_pcs_read(priv->peci_dev, PECI_PCS_TEMP_TARGET, 0, &pcs);
if (ret)
return ret;
priv->temp.target.tjmax =
FIELD_GET(TEMP_TARGET_REF_TEMP_MASK, pcs) * MILLIDEGREE_PER_DEGREE;
tcontrol_margin = FIELD_GET(TEMP_TARGET_FAN_TEMP_MASK, pcs);
tcontrol_margin = sign_extend32(tcontrol_margin, 7) * MILLIDEGREE_PER_DEGREE;
priv->temp.target.tcontrol = priv->temp.target.tjmax - tcontrol_margin;
tthrottle_offset = FIELD_GET(TEMP_TARGET_TJ_OFFSET_MASK, pcs) * MILLIDEGREE_PER_DEGREE;
priv->temp.target.tthrottle = priv->temp.target.tjmax - tthrottle_offset;
peci_sensor_mark_updated(&priv->temp.target.state);
return 0;
}
static int get_temp_target(struct peci_cputemp *priv, enum peci_temp_target_type type, long *val)
{
int ret;
mutex_lock(&priv->temp.target.state.lock);
ret = update_temp_target(priv);
if (ret)
goto unlock;
switch (type) {
case tcontrol_type:
*val = priv->temp.target.tcontrol;
break;
case tthrottle_type:
*val = priv->temp.target.tthrottle;
break;
case tjmax_type:
*val = priv->temp.target.tjmax;
break;
case crit_hyst_type:
*val = priv->temp.target.tjmax - priv->temp.target.tcontrol;
break;
default:
ret = -EOPNOTSUPP;
break;
}
unlock:
mutex_unlock(&priv->temp.target.state.lock);
return ret;
}
/*
* Error codes:
* 0x8000: General sensor error
* 0x8001: Reserved
* 0x8002: Underflow on reading value
* 0x8003-0x81ff: Reserved
*/
static bool dts_valid(u16 val)
{
return val < 0x8000 || val > 0x81ff;
}
/*
* Processors return a value of DTS reading in S10.6 fixed point format
* (16 bits: 10-bit signed magnitude, 6-bit fraction).
*/
static s32 dts_ten_dot_six_to_millidegree(u16 val)
{
return sign_extend32(val, 15) * MILLIDEGREE_PER_DEGREE / 64;
}
/*
* For older processors, thermal margin reading is returned in S8.8 fixed
* point format (16 bits: 8-bit signed magnitude, 8-bit fraction).
*/
static s32 dts_eight_dot_eight_to_millidegree(u16 val)
{
return sign_extend32(val, 15) * MILLIDEGREE_PER_DEGREE / 256;
}
static int get_die_temp(struct peci_cputemp *priv, long *val)
{
int ret = 0;
long tjmax;
u16 temp;
mutex_lock(&priv->temp.die.state.lock);
if (!peci_sensor_need_update(&priv->temp.die.state))
goto skip_update;
ret = peci_temp_read(priv->peci_dev, &temp);
if (ret)
goto err_unlock;
if (!dts_valid(temp)) {
ret = -EIO;
goto err_unlock;
}
ret = get_temp_target(priv, tjmax_type, &tjmax);
if (ret)
goto err_unlock;
priv->temp.die.value = (s32)tjmax + dts_ten_dot_six_to_millidegree(temp);
peci_sensor_mark_updated(&priv->temp.die.state);
skip_update:
*val = priv->temp.die.value;
err_unlock:
mutex_unlock(&priv->temp.die.state.lock);
return ret;
}
static int get_dts(struct peci_cputemp *priv, long *val)
{
int ret = 0;
u16 thermal_margin;
long tcontrol;
u32 pcs;
mutex_lock(&priv->temp.dts.state.lock);
if (!peci_sensor_need_update(&priv->temp.dts.state))
goto skip_update;
ret = peci_pcs_read(priv->peci_dev, PECI_PCS_THERMAL_MARGIN, 0, &pcs);
if (ret)
goto err_unlock;
thermal_margin = FIELD_GET(DTS_MARGIN_MASK, pcs);
if (!dts_valid(thermal_margin)) {
ret = -EIO;
goto err_unlock;
}
ret = get_temp_target(priv, tcontrol_type, &tcontrol);
if (ret)
goto err_unlock;
/* Note that the tcontrol should be available before calling it */
priv->temp.dts.value =
(s32)tcontrol - priv->gen_info->thermal_margin_to_millidegree(thermal_margin);
peci_sensor_mark_updated(&priv->temp.dts.state);
skip_update:
*val = priv->temp.dts.value;
err_unlock:
mutex_unlock(&priv->temp.dts.state.lock);
return ret;
}
static int get_core_temp(struct peci_cputemp *priv, int core_index, long *val)
{
int ret = 0;
u16 core_dts_margin;
long tjmax;
u32 pcs;
mutex_lock(&priv->temp.core[core_index].state.lock);
if (!peci_sensor_need_update(&priv->temp.core[core_index].state))
goto skip_update;
ret = peci_pcs_read(priv->peci_dev, PECI_PCS_MODULE_TEMP, core_index, &pcs);
if (ret)
goto err_unlock;
core_dts_margin = FIELD_GET(PCS_MODULE_TEMP_MASK, pcs);
if (!dts_valid(core_dts_margin)) {
ret = -EIO;
goto err_unlock;
}
ret = get_temp_target(priv, tjmax_type, &tjmax);
if (ret)
goto err_unlock;
/* Note that the tjmax should be available before calling it */
priv->temp.core[core_index].value =
(s32)tjmax + dts_ten_dot_six_to_millidegree(core_dts_margin);
peci_sensor_mark_updated(&priv->temp.core[core_index].state);
skip_update:
*val = priv->temp.core[core_index].value;
err_unlock:
mutex_unlock(&priv->temp.core[core_index].state.lock);
return ret;
}
static int cputemp_read_string(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, const char **str)
{
struct peci_cputemp *priv = dev_get_drvdata(dev);
if (attr != hwmon_temp_label)
return -EOPNOTSUPP;
*str = channel < channel_core ?
cputemp_label[channel] : priv->coretemp_label[channel - channel_core];
return 0;
}
static int cputemp_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
struct peci_cputemp *priv = dev_get_drvdata(dev);
switch (attr) {
case hwmon_temp_input:
switch (channel) {
case channel_die:
return get_die_temp(priv, val);
case channel_dts:
return get_dts(priv, val);
case channel_tcontrol:
return get_temp_target(priv, tcontrol_type, val);
case channel_tthrottle:
return get_temp_target(priv, tthrottle_type, val);
case channel_tjmax:
return get_temp_target(priv, tjmax_type, val);
default:
return get_core_temp(priv, channel - channel_core, val);
}
break;
case hwmon_temp_max:
return get_temp_target(priv, tcontrol_type, val);
case hwmon_temp_crit:
return get_temp_target(priv, tjmax_type, val);
case hwmon_temp_crit_hyst:
return get_temp_target(priv, crit_hyst_type, val);
default:
return -EOPNOTSUPP;
}
return 0;
}
static umode_t cputemp_is_visible(const void *data, enum hwmon_sensor_types type,
u32 attr, int channel)
{
const struct peci_cputemp *priv = data;
if (channel > CPUTEMP_CHANNEL_NUMS)
return 0;
if (channel < channel_core)
return 0444;
if (test_bit(channel - channel_core, priv->core_mask))
return 0444;
return 0;
}
static int init_core_mask(struct peci_cputemp *priv)
{
struct peci_device *peci_dev = priv->peci_dev;
struct resolved_cores_reg *reg = priv->gen_info->reg;
u64 core_mask;
u32 data;
int ret;
/* Get the RESOLVED_CORES register value */
switch (peci_dev->info.model) {
case INTEL_FAM6_ICELAKE_X:
case INTEL_FAM6_ICELAKE_D:
ret = peci_ep_pci_local_read(peci_dev, 0, reg->bus, reg->dev,
reg->func, reg->offset + 4, &data);
if (ret)
return ret;
core_mask = (u64)data << 32;
ret = peci_ep_pci_local_read(peci_dev, 0, reg->bus, reg->dev,
reg->func, reg->offset, &data);
if (ret)
return ret;
core_mask |= data;
break;
default:
ret = peci_pci_local_read(peci_dev, reg->bus, reg->dev,
reg->func, reg->offset, &data);
if (ret)
return ret;
core_mask = data;
break;
}
if (!core_mask)
return -EIO;
bitmap_from_u64(priv->core_mask, core_mask);
return 0;
}
static int create_temp_label(struct peci_cputemp *priv)
{
unsigned long core_max = find_last_bit(priv->core_mask, CORE_NUMS_MAX);
int i;
priv->coretemp_label = devm_kzalloc(priv->dev, (core_max + 1) * sizeof(char *), GFP_KERNEL);
if (!priv->coretemp_label)
return -ENOMEM;
for_each_set_bit(i, priv->core_mask, CORE_NUMS_MAX) {
priv->coretemp_label[i] = devm_kasprintf(priv->dev, GFP_KERNEL, "Core %d", i);
if (!priv->coretemp_label[i])
return -ENOMEM;
}
return 0;
}
static void check_resolved_cores(struct peci_cputemp *priv)
{
/*
* Failure to resolve cores is non-critical, we're still able to
* provide other sensor data.
*/
if (init_core_mask(priv))
return;
if (create_temp_label(priv))
bitmap_zero(priv->core_mask, CORE_NUMS_MAX);
}
static void sensor_init(struct peci_cputemp *priv)
{
int i;
mutex_init(&priv->temp.target.state.lock);
mutex_init(&priv->temp.die.state.lock);
mutex_init(&priv->temp.dts.state.lock);
for_each_set_bit(i, priv->core_mask, CORE_NUMS_MAX)
mutex_init(&priv->temp.core[i].state.lock);
}
static const struct hwmon_ops peci_cputemp_ops = {
.is_visible = cputemp_is_visible,
.read_string = cputemp_read_string,
.read = cputemp_read,
};
static const struct hwmon_channel_info *peci_cputemp_info[] = {
HWMON_CHANNEL_INFO(temp,
/* Die temperature */
HWMON_T_LABEL | HWMON_T_INPUT | HWMON_T_MAX |
HWMON_T_CRIT | HWMON_T_CRIT_HYST,
/* DTS margin */
HWMON_T_LABEL | HWMON_T_INPUT | HWMON_T_MAX |
HWMON_T_CRIT | HWMON_T_CRIT_HYST,
/* Tcontrol temperature */
HWMON_T_LABEL | HWMON_T_INPUT | HWMON_T_CRIT,
/* Tthrottle temperature */
HWMON_T_LABEL | HWMON_T_INPUT,
/* Tjmax temperature */
HWMON_T_LABEL | HWMON_T_INPUT,
/* Core temperature - for all core channels */
[channel_core ... CPUTEMP_CHANNEL_NUMS - 1] =
HWMON_T_LABEL | HWMON_T_INPUT),
NULL
};
static const struct hwmon_chip_info peci_cputemp_chip_info = {
.ops = &peci_cputemp_ops,
.info = peci_cputemp_info,
};
static int peci_cputemp_probe(struct auxiliary_device *adev,
const struct auxiliary_device_id *id)
{
struct device *dev = &adev->dev;
struct peci_device *peci_dev = to_peci_device(dev->parent);
struct peci_cputemp *priv;
struct device *hwmon_dev;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->name = devm_kasprintf(dev, GFP_KERNEL, "peci_cputemp.cpu%d",
peci_dev->info.socket_id);
if (!priv->name)
return -ENOMEM;
priv->dev = dev;
priv->peci_dev = peci_dev;
priv->gen_info = (const struct cpu_info *)id->driver_data;
/*
* This is just a sanity check. Since we're using commands that are
* guaranteed to be supported on a given platform, we should never see
* revision lower than expected.
*/
if (peci_dev->info.peci_revision < priv->gen_info->min_peci_revision)
dev_warn(priv->dev,
"Unexpected PECI revision %#x, some features may be unavailable\n",
peci_dev->info.peci_revision);
check_resolved_cores(priv);
sensor_init(priv);
hwmon_dev = devm_hwmon_device_register_with_info(priv->dev, priv->name,
priv, &peci_cputemp_chip_info, NULL);
return PTR_ERR_OR_ZERO(hwmon_dev);
}
/*
* RESOLVED_CORES PCI configuration register may have different location on
* different platforms.
*/
static struct resolved_cores_reg resolved_cores_reg_hsx = {
.bus = 1,
.dev = 30,
.func = 3,
.offset = 0xb4,
};
static struct resolved_cores_reg resolved_cores_reg_icx = {
.bus = 14,
.dev = 30,
.func = 3,
.offset = 0xd0,
};
static const struct cpu_info cpu_hsx = {
.reg = &resolved_cores_reg_hsx,
.min_peci_revision = 0x33,
.thermal_margin_to_millidegree = &dts_eight_dot_eight_to_millidegree,
};
static const struct cpu_info cpu_skx = {
.reg = &resolved_cores_reg_hsx,
.min_peci_revision = 0x33,
.thermal_margin_to_millidegree = &dts_ten_dot_six_to_millidegree,
};
static const struct cpu_info cpu_icx = {
.reg = &resolved_cores_reg_icx,
.min_peci_revision = 0x40,
.thermal_margin_to_millidegree = &dts_ten_dot_six_to_millidegree,
};
static const struct auxiliary_device_id peci_cputemp_ids[] = {
{
.name = "peci_cpu.cputemp.hsx",
.driver_data = (kernel_ulong_t)&cpu_hsx,
},
{
.name = "peci_cpu.cputemp.bdx",
.driver_data = (kernel_ulong_t)&cpu_hsx,
},
{
.name = "peci_cpu.cputemp.bdxd",
.driver_data = (kernel_ulong_t)&cpu_hsx,
},
{
.name = "peci_cpu.cputemp.skx",
.driver_data = (kernel_ulong_t)&cpu_skx,
},
{
.name = "peci_cpu.cputemp.icx",
.driver_data = (kernel_ulong_t)&cpu_icx,
},
{
.name = "peci_cpu.cputemp.icxd",
.driver_data = (kernel_ulong_t)&cpu_icx,
},
{ }
};
MODULE_DEVICE_TABLE(auxiliary, peci_cputemp_ids);
static struct auxiliary_driver peci_cputemp_driver = {
.probe = peci_cputemp_probe,
.id_table = peci_cputemp_ids,
};
module_auxiliary_driver(peci_cputemp_driver);
MODULE_AUTHOR("Jae Hyun Yoo <jae.hyun.yoo@linux.intel.com>");
MODULE_AUTHOR("Iwona Winiarska <iwona.winiarska@intel.com>");
MODULE_DESCRIPTION("PECI cputemp driver");
MODULE_LICENSE("GPL");
MODULE_IMPORT_NS(PECI_CPU);