linux-zen-server/drivers/i3c/master/mipi-i3c-hci/core.c

794 lines
21 KiB
C
Raw Permalink Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: BSD-3-Clause
/*
* Copyright (c) 2020, MIPI Alliance, Inc.
*
* Author: Nicolas Pitre <npitre@baylibre.com>
*
* Core driver code with main interface to the I3C subsystem.
*/
#include <linux/bitfield.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/i3c/master.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include "hci.h"
#include "ext_caps.h"
#include "cmd.h"
#include "dat.h"
/*
* Host Controller Capabilities and Operation Registers
*/
#define reg_read(r) readl(hci->base_regs + (r))
#define reg_write(r, v) writel(v, hci->base_regs + (r))
#define reg_set(r, v) reg_write(r, reg_read(r) | (v))
#define reg_clear(r, v) reg_write(r, reg_read(r) & ~(v))
#define HCI_VERSION 0x00 /* HCI Version (in BCD) */
#define HC_CONTROL 0x04
#define HC_CONTROL_BUS_ENABLE BIT(31)
#define HC_CONTROL_RESUME BIT(30)
#define HC_CONTROL_ABORT BIT(29)
#define HC_CONTROL_HALT_ON_CMD_TIMEOUT BIT(12)
#define HC_CONTROL_HOT_JOIN_CTRL BIT(8) /* Hot-Join ACK/NACK Control */
#define HC_CONTROL_I2C_TARGET_PRESENT BIT(7)
#define HC_CONTROL_PIO_MODE BIT(6) /* DMA/PIO Mode Selector */
#define HC_CONTROL_DATA_BIG_ENDIAN BIT(4)
#define HC_CONTROL_IBA_INCLUDE BIT(0) /* Include I3C Broadcast Address */
#define MASTER_DEVICE_ADDR 0x08 /* Master Device Address */
#define MASTER_DYNAMIC_ADDR_VALID BIT(31) /* Dynamic Address is Valid */
#define MASTER_DYNAMIC_ADDR(v) FIELD_PREP(GENMASK(22, 16), v)
#define HC_CAPABILITIES 0x0c
#define HC_CAP_SG_DC_EN BIT(30)
#define HC_CAP_SG_IBI_EN BIT(29)
#define HC_CAP_SG_CR_EN BIT(28)
#define HC_CAP_MAX_DATA_LENGTH GENMASK(24, 22)
#define HC_CAP_CMD_SIZE GENMASK(21, 20)
#define HC_CAP_DIRECT_COMMANDS_EN BIT(18)
#define HC_CAP_MULTI_LANE_EN BIT(15)
#define HC_CAP_CMD_CCC_DEFBYTE BIT(10)
#define HC_CAP_HDR_BT_EN BIT(8)
#define HC_CAP_HDR_TS_EN BIT(7)
#define HC_CAP_HDR_DDR_EN BIT(6)
#define HC_CAP_NON_CURRENT_MASTER_CAP BIT(5) /* master handoff capable */
#define HC_CAP_DATA_BYTE_CFG_EN BIT(4) /* endian selection possible */
#define HC_CAP_AUTO_COMMAND BIT(3)
#define HC_CAP_COMBO_COMMAND BIT(2)
#define RESET_CONTROL 0x10
#define BUS_RESET BIT(31)
#define BUS_RESET_TYPE GENMASK(30, 29)
#define IBI_QUEUE_RST BIT(5)
#define RX_FIFO_RST BIT(4)
#define TX_FIFO_RST BIT(3)
#define RESP_QUEUE_RST BIT(2)
#define CMD_QUEUE_RST BIT(1)
#define SOFT_RST BIT(0) /* Core Reset */
#define PRESENT_STATE 0x14
#define STATE_CURRENT_MASTER BIT(2)
#define INTR_STATUS 0x20
#define INTR_STATUS_ENABLE 0x24
#define INTR_SIGNAL_ENABLE 0x28
#define INTR_FORCE 0x2c
#define INTR_HC_CMD_SEQ_UFLOW_STAT BIT(12) /* Cmd Sequence Underflow */
#define INTR_HC_RESET_CANCEL BIT(11) /* HC Cancelled Reset */
#define INTR_HC_INTERNAL_ERR BIT(10) /* HC Internal Error */
#define INTR_HC_PIO BIT(8) /* cascaded PIO interrupt */
#define INTR_HC_RINGS GENMASK(7, 0)
#define DAT_SECTION 0x30 /* Device Address Table */
#define DAT_ENTRY_SIZE GENMASK(31, 28)
#define DAT_TABLE_SIZE GENMASK(18, 12)
#define DAT_TABLE_OFFSET GENMASK(11, 0)
#define DCT_SECTION 0x34 /* Device Characteristics Table */
#define DCT_ENTRY_SIZE GENMASK(31, 28)
#define DCT_TABLE_INDEX GENMASK(23, 19)
#define DCT_TABLE_SIZE GENMASK(18, 12)
#define DCT_TABLE_OFFSET GENMASK(11, 0)
#define RING_HEADERS_SECTION 0x38
#define RING_HEADERS_OFFSET GENMASK(15, 0)
#define PIO_SECTION 0x3c
#define PIO_REGS_OFFSET GENMASK(15, 0) /* PIO Offset */
#define EXT_CAPS_SECTION 0x40
#define EXT_CAPS_OFFSET GENMASK(15, 0)
#define IBI_NOTIFY_CTRL 0x58 /* IBI Notify Control */
#define IBI_NOTIFY_SIR_REJECTED BIT(3) /* Rejected Target Interrupt Request */
#define IBI_NOTIFY_MR_REJECTED BIT(1) /* Rejected Master Request Control */
#define IBI_NOTIFY_HJ_REJECTED BIT(0) /* Rejected Hot-Join Control */
#define DEV_CTX_BASE_LO 0x60
#define DEV_CTX_BASE_HI 0x64
static inline struct i3c_hci *to_i3c_hci(struct i3c_master_controller *m)
{
return container_of(m, struct i3c_hci, master);
}
static int i3c_hci_bus_init(struct i3c_master_controller *m)
{
struct i3c_hci *hci = to_i3c_hci(m);
struct i3c_device_info info;
int ret;
DBG("");
if (hci->cmd == &mipi_i3c_hci_cmd_v1) {
ret = mipi_i3c_hci_dat_v1.init(hci);
if (ret)
return ret;
}
ret = i3c_master_get_free_addr(m, 0);
if (ret < 0)
return ret;
reg_write(MASTER_DEVICE_ADDR,
MASTER_DYNAMIC_ADDR(ret) | MASTER_DYNAMIC_ADDR_VALID);
memset(&info, 0, sizeof(info));
info.dyn_addr = ret;
ret = i3c_master_set_info(m, &info);
if (ret)
return ret;
ret = hci->io->init(hci);
if (ret)
return ret;
reg_set(HC_CONTROL, HC_CONTROL_BUS_ENABLE);
DBG("HC_CONTROL = %#x", reg_read(HC_CONTROL));
return 0;
}
static void i3c_hci_bus_cleanup(struct i3c_master_controller *m)
{
struct i3c_hci *hci = to_i3c_hci(m);
DBG("");
reg_clear(HC_CONTROL, HC_CONTROL_BUS_ENABLE);
hci->io->cleanup(hci);
if (hci->cmd == &mipi_i3c_hci_cmd_v1)
mipi_i3c_hci_dat_v1.cleanup(hci);
}
void mipi_i3c_hci_resume(struct i3c_hci *hci)
{
/* the HC_CONTROL_RESUME bit is R/W1C so just read and write back */
reg_write(HC_CONTROL, reg_read(HC_CONTROL));
}
/* located here rather than pio.c because needed bits are in core reg space */
void mipi_i3c_hci_pio_reset(struct i3c_hci *hci)
{
reg_write(RESET_CONTROL, RX_FIFO_RST | TX_FIFO_RST | RESP_QUEUE_RST);
}
/* located here rather than dct.c because needed bits are in core reg space */
void mipi_i3c_hci_dct_index_reset(struct i3c_hci *hci)
{
reg_write(DCT_SECTION, FIELD_PREP(DCT_TABLE_INDEX, 0));
}
static int i3c_hci_send_ccc_cmd(struct i3c_master_controller *m,
struct i3c_ccc_cmd *ccc)
{
struct i3c_hci *hci = to_i3c_hci(m);
struct hci_xfer *xfer;
bool raw = !!(hci->quirks & HCI_QUIRK_RAW_CCC);
bool prefixed = raw && !!(ccc->id & I3C_CCC_DIRECT);
unsigned int nxfers = ccc->ndests + prefixed;
DECLARE_COMPLETION_ONSTACK(done);
int i, last, ret = 0;
DBG("cmd=%#x rnw=%d ndests=%d data[0].len=%d",
ccc->id, ccc->rnw, ccc->ndests, ccc->dests[0].payload.len);
xfer = hci_alloc_xfer(nxfers);
if (!xfer)
return -ENOMEM;
if (prefixed) {
xfer->data = NULL;
xfer->data_len = 0;
xfer->rnw = false;
hci->cmd->prep_ccc(hci, xfer, I3C_BROADCAST_ADDR,
ccc->id, true);
xfer++;
}
for (i = 0; i < nxfers - prefixed; i++) {
xfer[i].data = ccc->dests[i].payload.data;
xfer[i].data_len = ccc->dests[i].payload.len;
xfer[i].rnw = ccc->rnw;
ret = hci->cmd->prep_ccc(hci, &xfer[i], ccc->dests[i].addr,
ccc->id, raw);
if (ret)
goto out;
xfer[i].cmd_desc[0] |= CMD_0_ROC;
}
last = i - 1;
xfer[last].cmd_desc[0] |= CMD_0_TOC;
xfer[last].completion = &done;
if (prefixed)
xfer--;
ret = hci->io->queue_xfer(hci, xfer, nxfers);
if (ret)
goto out;
if (!wait_for_completion_timeout(&done, HZ) &&
hci->io->dequeue_xfer(hci, xfer, nxfers)) {
ret = -ETIME;
goto out;
}
for (i = prefixed; i < nxfers; i++) {
if (ccc->rnw)
ccc->dests[i - prefixed].payload.len =
RESP_DATA_LENGTH(xfer[i].response);
if (RESP_STATUS(xfer[i].response) != RESP_SUCCESS) {
ret = -EIO;
goto out;
}
}
if (ccc->rnw)
DBG("got: %*ph",
ccc->dests[0].payload.len, ccc->dests[0].payload.data);
out:
hci_free_xfer(xfer, nxfers);
return ret;
}
static int i3c_hci_daa(struct i3c_master_controller *m)
{
struct i3c_hci *hci = to_i3c_hci(m);
DBG("");
return hci->cmd->perform_daa(hci);
}
static int i3c_hci_priv_xfers(struct i3c_dev_desc *dev,
struct i3c_priv_xfer *i3c_xfers,
int nxfers)
{
struct i3c_master_controller *m = i3c_dev_get_master(dev);
struct i3c_hci *hci = to_i3c_hci(m);
struct hci_xfer *xfer;
DECLARE_COMPLETION_ONSTACK(done);
unsigned int size_limit;
int i, last, ret = 0;
DBG("nxfers = %d", nxfers);
xfer = hci_alloc_xfer(nxfers);
if (!xfer)
return -ENOMEM;
size_limit = 1U << (16 + FIELD_GET(HC_CAP_MAX_DATA_LENGTH, hci->caps));
for (i = 0; i < nxfers; i++) {
xfer[i].data_len = i3c_xfers[i].len;
ret = -EFBIG;
if (xfer[i].data_len >= size_limit)
goto out;
xfer[i].rnw = i3c_xfers[i].rnw;
if (i3c_xfers[i].rnw) {
xfer[i].data = i3c_xfers[i].data.in;
} else {
/* silence the const qualifier warning with a cast */
xfer[i].data = (void *) i3c_xfers[i].data.out;
}
hci->cmd->prep_i3c_xfer(hci, dev, &xfer[i]);
xfer[i].cmd_desc[0] |= CMD_0_ROC;
}
last = i - 1;
xfer[last].cmd_desc[0] |= CMD_0_TOC;
xfer[last].completion = &done;
ret = hci->io->queue_xfer(hci, xfer, nxfers);
if (ret)
goto out;
if (!wait_for_completion_timeout(&done, HZ) &&
hci->io->dequeue_xfer(hci, xfer, nxfers)) {
ret = -ETIME;
goto out;
}
for (i = 0; i < nxfers; i++) {
if (i3c_xfers[i].rnw)
i3c_xfers[i].len = RESP_DATA_LENGTH(xfer[i].response);
if (RESP_STATUS(xfer[i].response) != RESP_SUCCESS) {
ret = -EIO;
goto out;
}
}
out:
hci_free_xfer(xfer, nxfers);
return ret;
}
static int i3c_hci_i2c_xfers(struct i2c_dev_desc *dev,
const struct i2c_msg *i2c_xfers, int nxfers)
{
struct i3c_master_controller *m = i2c_dev_get_master(dev);
struct i3c_hci *hci = to_i3c_hci(m);
struct hci_xfer *xfer;
DECLARE_COMPLETION_ONSTACK(done);
int i, last, ret = 0;
DBG("nxfers = %d", nxfers);
xfer = hci_alloc_xfer(nxfers);
if (!xfer)
return -ENOMEM;
for (i = 0; i < nxfers; i++) {
xfer[i].data = i2c_xfers[i].buf;
xfer[i].data_len = i2c_xfers[i].len;
xfer[i].rnw = i2c_xfers[i].flags & I2C_M_RD;
hci->cmd->prep_i2c_xfer(hci, dev, &xfer[i]);
xfer[i].cmd_desc[0] |= CMD_0_ROC;
}
last = i - 1;
xfer[last].cmd_desc[0] |= CMD_0_TOC;
xfer[last].completion = &done;
ret = hci->io->queue_xfer(hci, xfer, nxfers);
if (ret)
goto out;
if (!wait_for_completion_timeout(&done, HZ) &&
hci->io->dequeue_xfer(hci, xfer, nxfers)) {
ret = -ETIME;
goto out;
}
for (i = 0; i < nxfers; i++) {
if (RESP_STATUS(xfer[i].response) != RESP_SUCCESS) {
ret = -EIO;
goto out;
}
}
out:
hci_free_xfer(xfer, nxfers);
return ret;
}
static int i3c_hci_attach_i3c_dev(struct i3c_dev_desc *dev)
{
struct i3c_master_controller *m = i3c_dev_get_master(dev);
struct i3c_hci *hci = to_i3c_hci(m);
struct i3c_hci_dev_data *dev_data;
int ret;
DBG("");
dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
if (!dev_data)
return -ENOMEM;
if (hci->cmd == &mipi_i3c_hci_cmd_v1) {
ret = mipi_i3c_hci_dat_v1.alloc_entry(hci);
if (ret < 0) {
kfree(dev_data);
return ret;
}
mipi_i3c_hci_dat_v1.set_dynamic_addr(hci, ret, dev->info.dyn_addr);
dev_data->dat_idx = ret;
}
i3c_dev_set_master_data(dev, dev_data);
return 0;
}
static int i3c_hci_reattach_i3c_dev(struct i3c_dev_desc *dev, u8 old_dyn_addr)
{
struct i3c_master_controller *m = i3c_dev_get_master(dev);
struct i3c_hci *hci = to_i3c_hci(m);
struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
DBG("");
if (hci->cmd == &mipi_i3c_hci_cmd_v1)
mipi_i3c_hci_dat_v1.set_dynamic_addr(hci, dev_data->dat_idx,
dev->info.dyn_addr);
return 0;
}
static void i3c_hci_detach_i3c_dev(struct i3c_dev_desc *dev)
{
struct i3c_master_controller *m = i3c_dev_get_master(dev);
struct i3c_hci *hci = to_i3c_hci(m);
struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
DBG("");
i3c_dev_set_master_data(dev, NULL);
if (hci->cmd == &mipi_i3c_hci_cmd_v1)
mipi_i3c_hci_dat_v1.free_entry(hci, dev_data->dat_idx);
kfree(dev_data);
}
static int i3c_hci_attach_i2c_dev(struct i2c_dev_desc *dev)
{
struct i3c_master_controller *m = i2c_dev_get_master(dev);
struct i3c_hci *hci = to_i3c_hci(m);
struct i3c_hci_dev_data *dev_data;
int ret;
DBG("");
if (hci->cmd != &mipi_i3c_hci_cmd_v1)
return 0;
dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
if (!dev_data)
return -ENOMEM;
ret = mipi_i3c_hci_dat_v1.alloc_entry(hci);
if (ret < 0) {
kfree(dev_data);
return ret;
}
mipi_i3c_hci_dat_v1.set_static_addr(hci, ret, dev->addr);
mipi_i3c_hci_dat_v1.set_flags(hci, ret, DAT_0_I2C_DEVICE, 0);
dev_data->dat_idx = ret;
i2c_dev_set_master_data(dev, dev_data);
return 0;
}
static void i3c_hci_detach_i2c_dev(struct i2c_dev_desc *dev)
{
struct i3c_master_controller *m = i2c_dev_get_master(dev);
struct i3c_hci *hci = to_i3c_hci(m);
struct i3c_hci_dev_data *dev_data = i2c_dev_get_master_data(dev);
DBG("");
if (dev_data) {
i2c_dev_set_master_data(dev, NULL);
if (hci->cmd == &mipi_i3c_hci_cmd_v1)
mipi_i3c_hci_dat_v1.free_entry(hci, dev_data->dat_idx);
kfree(dev_data);
}
}
static int i3c_hci_request_ibi(struct i3c_dev_desc *dev,
const struct i3c_ibi_setup *req)
{
struct i3c_master_controller *m = i3c_dev_get_master(dev);
struct i3c_hci *hci = to_i3c_hci(m);
struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
unsigned int dat_idx = dev_data->dat_idx;
if (req->max_payload_len != 0)
mipi_i3c_hci_dat_v1.set_flags(hci, dat_idx, DAT_0_IBI_PAYLOAD, 0);
else
mipi_i3c_hci_dat_v1.clear_flags(hci, dat_idx, DAT_0_IBI_PAYLOAD, 0);
return hci->io->request_ibi(hci, dev, req);
}
static void i3c_hci_free_ibi(struct i3c_dev_desc *dev)
{
struct i3c_master_controller *m = i3c_dev_get_master(dev);
struct i3c_hci *hci = to_i3c_hci(m);
hci->io->free_ibi(hci, dev);
}
static int i3c_hci_enable_ibi(struct i3c_dev_desc *dev)
{
struct i3c_master_controller *m = i3c_dev_get_master(dev);
struct i3c_hci *hci = to_i3c_hci(m);
struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
mipi_i3c_hci_dat_v1.clear_flags(hci, dev_data->dat_idx, DAT_0_SIR_REJECT, 0);
return i3c_master_enec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR);
}
static int i3c_hci_disable_ibi(struct i3c_dev_desc *dev)
{
struct i3c_master_controller *m = i3c_dev_get_master(dev);
struct i3c_hci *hci = to_i3c_hci(m);
struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
mipi_i3c_hci_dat_v1.set_flags(hci, dev_data->dat_idx, DAT_0_SIR_REJECT, 0);
return i3c_master_disec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR);
}
static void i3c_hci_recycle_ibi_slot(struct i3c_dev_desc *dev,
struct i3c_ibi_slot *slot)
{
struct i3c_master_controller *m = i3c_dev_get_master(dev);
struct i3c_hci *hci = to_i3c_hci(m);
hci->io->recycle_ibi_slot(hci, dev, slot);
}
static const struct i3c_master_controller_ops i3c_hci_ops = {
.bus_init = i3c_hci_bus_init,
.bus_cleanup = i3c_hci_bus_cleanup,
.do_daa = i3c_hci_daa,
.send_ccc_cmd = i3c_hci_send_ccc_cmd,
.priv_xfers = i3c_hci_priv_xfers,
.i2c_xfers = i3c_hci_i2c_xfers,
.attach_i3c_dev = i3c_hci_attach_i3c_dev,
.reattach_i3c_dev = i3c_hci_reattach_i3c_dev,
.detach_i3c_dev = i3c_hci_detach_i3c_dev,
.attach_i2c_dev = i3c_hci_attach_i2c_dev,
.detach_i2c_dev = i3c_hci_detach_i2c_dev,
.request_ibi = i3c_hci_request_ibi,
.free_ibi = i3c_hci_free_ibi,
.enable_ibi = i3c_hci_enable_ibi,
.disable_ibi = i3c_hci_disable_ibi,
.recycle_ibi_slot = i3c_hci_recycle_ibi_slot,
};
static irqreturn_t i3c_hci_irq_handler(int irq, void *dev_id)
{
struct i3c_hci *hci = dev_id;
irqreturn_t result = IRQ_NONE;
u32 val;
val = reg_read(INTR_STATUS);
DBG("INTR_STATUS = %#x", val);
if (val) {
reg_write(INTR_STATUS, val);
} else {
/* v1.0 does not have PIO cascaded notification bits */
val |= INTR_HC_PIO;
}
if (val & INTR_HC_RESET_CANCEL) {
DBG("cancelled reset");
val &= ~INTR_HC_RESET_CANCEL;
}
if (val & INTR_HC_INTERNAL_ERR) {
dev_err(&hci->master.dev, "Host Controller Internal Error\n");
val &= ~INTR_HC_INTERNAL_ERR;
}
if (val & INTR_HC_PIO) {
hci->io->irq_handler(hci, 0);
val &= ~INTR_HC_PIO;
}
if (val & INTR_HC_RINGS) {
hci->io->irq_handler(hci, val & INTR_HC_RINGS);
val &= ~INTR_HC_RINGS;
}
if (val)
dev_err(&hci->master.dev, "unexpected INTR_STATUS %#x\n", val);
else
result = IRQ_HANDLED;
return result;
}
static int i3c_hci_init(struct i3c_hci *hci)
{
u32 regval, offset;
int ret;
/* Validate HCI hardware version */
regval = reg_read(HCI_VERSION);
hci->version_major = (regval >> 8) & 0xf;
hci->version_minor = (regval >> 4) & 0xf;
hci->revision = regval & 0xf;
dev_notice(&hci->master.dev, "MIPI I3C HCI v%u.%u r%02u\n",
hci->version_major, hci->version_minor, hci->revision);
/* known versions */
switch (regval & ~0xf) {
case 0x100: /* version 1.0 */
case 0x110: /* version 1.1 */
case 0x200: /* version 2.0 */
break;
default:
dev_err(&hci->master.dev, "unsupported HCI version\n");
return -EPROTONOSUPPORT;
}
hci->caps = reg_read(HC_CAPABILITIES);
DBG("caps = %#x", hci->caps);
regval = reg_read(DAT_SECTION);
offset = FIELD_GET(DAT_TABLE_OFFSET, regval);
hci->DAT_regs = offset ? hci->base_regs + offset : NULL;
hci->DAT_entries = FIELD_GET(DAT_TABLE_SIZE, regval);
hci->DAT_entry_size = FIELD_GET(DAT_ENTRY_SIZE, regval);
dev_info(&hci->master.dev, "DAT: %u %u-bytes entries at offset %#x\n",
hci->DAT_entries, hci->DAT_entry_size * 4, offset);
regval = reg_read(DCT_SECTION);
offset = FIELD_GET(DCT_TABLE_OFFSET, regval);
hci->DCT_regs = offset ? hci->base_regs + offset : NULL;
hci->DCT_entries = FIELD_GET(DCT_TABLE_SIZE, regval);
hci->DCT_entry_size = FIELD_GET(DCT_ENTRY_SIZE, regval);
dev_info(&hci->master.dev, "DCT: %u %u-bytes entries at offset %#x\n",
hci->DCT_entries, hci->DCT_entry_size * 4, offset);
regval = reg_read(RING_HEADERS_SECTION);
offset = FIELD_GET(RING_HEADERS_OFFSET, regval);
hci->RHS_regs = offset ? hci->base_regs + offset : NULL;
dev_info(&hci->master.dev, "Ring Headers at offset %#x\n", offset);
regval = reg_read(PIO_SECTION);
offset = FIELD_GET(PIO_REGS_OFFSET, regval);
hci->PIO_regs = offset ? hci->base_regs + offset : NULL;
dev_info(&hci->master.dev, "PIO section at offset %#x\n", offset);
regval = reg_read(EXT_CAPS_SECTION);
offset = FIELD_GET(EXT_CAPS_OFFSET, regval);
hci->EXTCAPS_regs = offset ? hci->base_regs + offset : NULL;
dev_info(&hci->master.dev, "Extended Caps at offset %#x\n", offset);
ret = i3c_hci_parse_ext_caps(hci);
if (ret)
return ret;
/*
* Now let's reset the hardware.
* SOFT_RST must be clear before we write to it.
* Then we must wait until it clears again.
*/
ret = readx_poll_timeout(reg_read, RESET_CONTROL, regval,
!(regval & SOFT_RST), 1, 10000);
if (ret)
return -ENXIO;
reg_write(RESET_CONTROL, SOFT_RST);
ret = readx_poll_timeout(reg_read, RESET_CONTROL, regval,
!(regval & SOFT_RST), 1, 10000);
if (ret)
return -ENXIO;
/* Disable all interrupts and allow all signal updates */
reg_write(INTR_SIGNAL_ENABLE, 0x0);
reg_write(INTR_STATUS_ENABLE, 0xffffffff);
/* Make sure our data ordering fits the host's */
regval = reg_read(HC_CONTROL);
if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) {
if (!(regval & HC_CONTROL_DATA_BIG_ENDIAN)) {
regval |= HC_CONTROL_DATA_BIG_ENDIAN;
reg_write(HC_CONTROL, regval);
regval = reg_read(HC_CONTROL);
if (!(regval & HC_CONTROL_DATA_BIG_ENDIAN)) {
dev_err(&hci->master.dev, "cannot set BE mode\n");
return -EOPNOTSUPP;
}
}
} else {
if (regval & HC_CONTROL_DATA_BIG_ENDIAN) {
regval &= ~HC_CONTROL_DATA_BIG_ENDIAN;
reg_write(HC_CONTROL, regval);
regval = reg_read(HC_CONTROL);
if (regval & HC_CONTROL_DATA_BIG_ENDIAN) {
dev_err(&hci->master.dev, "cannot clear BE mode\n");
return -EOPNOTSUPP;
}
}
}
/* Select our command descriptor model */
switch (FIELD_GET(HC_CAP_CMD_SIZE, hci->caps)) {
case 0:
hci->cmd = &mipi_i3c_hci_cmd_v1;
break;
case 1:
hci->cmd = &mipi_i3c_hci_cmd_v2;
break;
default:
dev_err(&hci->master.dev, "wrong CMD_SIZE capability value\n");
return -EINVAL;
}
/* Try activating DMA operations first */
if (hci->RHS_regs) {
reg_clear(HC_CONTROL, HC_CONTROL_PIO_MODE);
if (reg_read(HC_CONTROL) & HC_CONTROL_PIO_MODE) {
dev_err(&hci->master.dev, "PIO mode is stuck\n");
ret = -EIO;
} else {
hci->io = &mipi_i3c_hci_dma;
dev_info(&hci->master.dev, "Using DMA\n");
}
}
/* If no DMA, try PIO */
if (!hci->io && hci->PIO_regs) {
reg_set(HC_CONTROL, HC_CONTROL_PIO_MODE);
if (!(reg_read(HC_CONTROL) & HC_CONTROL_PIO_MODE)) {
dev_err(&hci->master.dev, "DMA mode is stuck\n");
ret = -EIO;
} else {
hci->io = &mipi_i3c_hci_pio;
dev_info(&hci->master.dev, "Using PIO\n");
}
}
if (!hci->io) {
dev_err(&hci->master.dev, "neither DMA nor PIO can be used\n");
if (!ret)
ret = -EINVAL;
return ret;
}
return 0;
}
static int i3c_hci_probe(struct platform_device *pdev)
{
struct i3c_hci *hci;
int irq, ret;
hci = devm_kzalloc(&pdev->dev, sizeof(*hci), GFP_KERNEL);
if (!hci)
return -ENOMEM;
hci->base_regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(hci->base_regs))
return PTR_ERR(hci->base_regs);
platform_set_drvdata(pdev, hci);
/* temporary for dev_printk's, to be replaced in i3c_master_register */
hci->master.dev.init_name = dev_name(&pdev->dev);
ret = i3c_hci_init(hci);
if (ret)
return ret;
irq = platform_get_irq(pdev, 0);
ret = devm_request_irq(&pdev->dev, irq, i3c_hci_irq_handler,
0, NULL, hci);
if (ret)
return ret;
ret = i3c_master_register(&hci->master, &pdev->dev,
&i3c_hci_ops, false);
if (ret)
return ret;
return 0;
}
static int i3c_hci_remove(struct platform_device *pdev)
{
struct i3c_hci *hci = platform_get_drvdata(pdev);
return i3c_master_unregister(&hci->master);
}
static const __maybe_unused struct of_device_id i3c_hci_of_match[] = {
{ .compatible = "mipi-i3c-hci", },
{},
};
MODULE_DEVICE_TABLE(of, i3c_hci_of_match);
static struct platform_driver i3c_hci_driver = {
.probe = i3c_hci_probe,
.remove = i3c_hci_remove,
.driver = {
.name = "mipi-i3c-hci",
.of_match_table = of_match_ptr(i3c_hci_of_match),
},
};
module_platform_driver(i3c_hci_driver);
MODULE_AUTHOR("Nicolas Pitre <npitre@baylibre.com>");
MODULE_DESCRIPTION("MIPI I3C HCI driver");
MODULE_LICENSE("Dual BSD/GPL");