linux-zen-server/drivers/iio/frequency/ad9523.c

1051 lines
29 KiB
C
Raw Permalink Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* AD9523 SPI Low Jitter Clock Generator
*
* Copyright 2012 Analog Devices Inc.
*/
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <linux/spi/spi.h>
#include <linux/regulator/consumer.h>
#include <linux/gpio/consumer.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/frequency/ad9523.h>
#define AD9523_READ (1 << 15)
#define AD9523_WRITE (0 << 15)
#define AD9523_CNT(x) (((x) - 1) << 13)
#define AD9523_ADDR(x) ((x) & 0xFFF)
#define AD9523_R1B (1 << 16)
#define AD9523_R2B (2 << 16)
#define AD9523_R3B (3 << 16)
#define AD9523_TRANSF_LEN(x) ((x) >> 16)
#define AD9523_SERIAL_PORT_CONFIG (AD9523_R1B | 0x0)
#define AD9523_VERSION_REGISTER (AD9523_R1B | 0x2)
#define AD9523_PART_REGISTER (AD9523_R1B | 0x3)
#define AD9523_READBACK_CTRL (AD9523_R1B | 0x4)
#define AD9523_EEPROM_CUSTOMER_VERSION_ID (AD9523_R2B | 0x6)
#define AD9523_PLL1_REF_A_DIVIDER (AD9523_R2B | 0x11)
#define AD9523_PLL1_REF_B_DIVIDER (AD9523_R2B | 0x13)
#define AD9523_PLL1_REF_TEST_DIVIDER (AD9523_R1B | 0x14)
#define AD9523_PLL1_FEEDBACK_DIVIDER (AD9523_R2B | 0x17)
#define AD9523_PLL1_CHARGE_PUMP_CTRL (AD9523_R2B | 0x19)
#define AD9523_PLL1_INPUT_RECEIVERS_CTRL (AD9523_R1B | 0x1A)
#define AD9523_PLL1_REF_CTRL (AD9523_R1B | 0x1B)
#define AD9523_PLL1_MISC_CTRL (AD9523_R1B | 0x1C)
#define AD9523_PLL1_LOOP_FILTER_CTRL (AD9523_R1B | 0x1D)
#define AD9523_PLL2_CHARGE_PUMP (AD9523_R1B | 0xF0)
#define AD9523_PLL2_FEEDBACK_DIVIDER_AB (AD9523_R1B | 0xF1)
#define AD9523_PLL2_CTRL (AD9523_R1B | 0xF2)
#define AD9523_PLL2_VCO_CTRL (AD9523_R1B | 0xF3)
#define AD9523_PLL2_VCO_DIVIDER (AD9523_R1B | 0xF4)
#define AD9523_PLL2_LOOP_FILTER_CTRL (AD9523_R2B | 0xF6)
#define AD9523_PLL2_R2_DIVIDER (AD9523_R1B | 0xF7)
#define AD9523_CHANNEL_CLOCK_DIST(ch) (AD9523_R3B | (0x192 + 3 * ch))
#define AD9523_PLL1_OUTPUT_CTRL (AD9523_R1B | 0x1BA)
#define AD9523_PLL1_OUTPUT_CHANNEL_CTRL (AD9523_R1B | 0x1BB)
#define AD9523_READBACK_0 (AD9523_R1B | 0x22C)
#define AD9523_READBACK_1 (AD9523_R1B | 0x22D)
#define AD9523_STATUS_SIGNALS (AD9523_R3B | 0x232)
#define AD9523_POWER_DOWN_CTRL (AD9523_R1B | 0x233)
#define AD9523_IO_UPDATE (AD9523_R1B | 0x234)
#define AD9523_EEPROM_DATA_XFER_STATUS (AD9523_R1B | 0xB00)
#define AD9523_EEPROM_ERROR_READBACK (AD9523_R1B | 0xB01)
#define AD9523_EEPROM_CTRL1 (AD9523_R1B | 0xB02)
#define AD9523_EEPROM_CTRL2 (AD9523_R1B | 0xB03)
/* AD9523_SERIAL_PORT_CONFIG */
#define AD9523_SER_CONF_SDO_ACTIVE (1 << 7)
#define AD9523_SER_CONF_SOFT_RESET (1 << 5)
/* AD9523_READBACK_CTRL */
#define AD9523_READBACK_CTRL_READ_BUFFERED (1 << 0)
/* AD9523_PLL1_CHARGE_PUMP_CTRL */
#define AD9523_PLL1_CHARGE_PUMP_CURRENT_nA(x) (((x) / 500) & 0x7F)
#define AD9523_PLL1_CHARGE_PUMP_TRISTATE (1 << 7)
#define AD9523_PLL1_CHARGE_PUMP_MODE_NORMAL (3 << 8)
#define AD9523_PLL1_CHARGE_PUMP_MODE_PUMP_DOWN (2 << 8)
#define AD9523_PLL1_CHARGE_PUMP_MODE_PUMP_UP (1 << 8)
#define AD9523_PLL1_CHARGE_PUMP_MODE_TRISTATE (0 << 8)
#define AD9523_PLL1_BACKLASH_PW_MIN (0 << 10)
#define AD9523_PLL1_BACKLASH_PW_LOW (1 << 10)
#define AD9523_PLL1_BACKLASH_PW_HIGH (2 << 10)
#define AD9523_PLL1_BACKLASH_PW_MAX (3 << 10)
/* AD9523_PLL1_INPUT_RECEIVERS_CTRL */
#define AD9523_PLL1_REF_TEST_RCV_EN (1 << 7)
#define AD9523_PLL1_REFB_DIFF_RCV_EN (1 << 6)
#define AD9523_PLL1_REFA_DIFF_RCV_EN (1 << 5)
#define AD9523_PLL1_REFB_RCV_EN (1 << 4)
#define AD9523_PLL1_REFA_RCV_EN (1 << 3)
#define AD9523_PLL1_REFA_REFB_PWR_CTRL_EN (1 << 2)
#define AD9523_PLL1_OSC_IN_CMOS_NEG_INP_EN (1 << 1)
#define AD9523_PLL1_OSC_IN_DIFF_EN (1 << 0)
/* AD9523_PLL1_REF_CTRL */
#define AD9523_PLL1_BYPASS_REF_TEST_DIV_EN (1 << 7)
#define AD9523_PLL1_BYPASS_FEEDBACK_DIV_EN (1 << 6)
#define AD9523_PLL1_ZERO_DELAY_MODE_INT (1 << 5)
#define AD9523_PLL1_ZERO_DELAY_MODE_EXT (0 << 5)
#define AD9523_PLL1_OSC_IN_PLL_FEEDBACK_EN (1 << 4)
#define AD9523_PLL1_ZD_IN_CMOS_NEG_INP_EN (1 << 3)
#define AD9523_PLL1_ZD_IN_DIFF_EN (1 << 2)
#define AD9523_PLL1_REFB_CMOS_NEG_INP_EN (1 << 1)
#define AD9523_PLL1_REFA_CMOS_NEG_INP_EN (1 << 0)
/* AD9523_PLL1_MISC_CTRL */
#define AD9523_PLL1_REFB_INDEP_DIV_CTRL_EN (1 << 7)
#define AD9523_PLL1_OSC_CTRL_FAIL_VCC_BY2_EN (1 << 6)
#define AD9523_PLL1_REF_MODE(x) ((x) << 2)
#define AD9523_PLL1_BYPASS_REFB_DIV (1 << 1)
#define AD9523_PLL1_BYPASS_REFA_DIV (1 << 0)
/* AD9523_PLL1_LOOP_FILTER_CTRL */
#define AD9523_PLL1_LOOP_FILTER_RZERO(x) ((x) & 0xF)
/* AD9523_PLL2_CHARGE_PUMP */
#define AD9523_PLL2_CHARGE_PUMP_CURRENT_nA(x) ((x) / 3500)
/* AD9523_PLL2_FEEDBACK_DIVIDER_AB */
#define AD9523_PLL2_FB_NDIV_A_CNT(x) (((x) & 0x3) << 6)
#define AD9523_PLL2_FB_NDIV_B_CNT(x) (((x) & 0x3F) << 0)
#define AD9523_PLL2_FB_NDIV(a, b) (4 * (b) + (a))
/* AD9523_PLL2_CTRL */
#define AD9523_PLL2_CHARGE_PUMP_MODE_NORMAL (3 << 0)
#define AD9523_PLL2_CHARGE_PUMP_MODE_PUMP_DOWN (2 << 0)
#define AD9523_PLL2_CHARGE_PUMP_MODE_PUMP_UP (1 << 0)
#define AD9523_PLL2_CHARGE_PUMP_MODE_TRISTATE (0 << 0)
#define AD9523_PLL2_BACKLASH_PW_MIN (0 << 2)
#define AD9523_PLL2_BACKLASH_PW_LOW (1 << 2)
#define AD9523_PLL2_BACKLASH_PW_HIGH (2 << 2)
#define AD9523_PLL2_BACKLASH_PW_MAX (3 << 1)
#define AD9523_PLL2_BACKLASH_CTRL_EN (1 << 4)
#define AD9523_PLL2_FREQ_DOUBLER_EN (1 << 5)
#define AD9523_PLL2_LOCK_DETECT_PWR_DOWN_EN (1 << 7)
/* AD9523_PLL2_VCO_CTRL */
#define AD9523_PLL2_VCO_CALIBRATE (1 << 1)
#define AD9523_PLL2_FORCE_VCO_MIDSCALE (1 << 2)
#define AD9523_PLL2_FORCE_REFERENCE_VALID (1 << 3)
#define AD9523_PLL2_FORCE_RELEASE_SYNC (1 << 4)
/* AD9523_PLL2_VCO_DIVIDER */
#define AD9523_PLL2_VCO_DIV_M1(x) ((((x) - 3) & 0x3) << 0)
#define AD9523_PLL2_VCO_DIV_M2(x) ((((x) - 3) & 0x3) << 4)
#define AD9523_PLL2_VCO_DIV_M1_PWR_DOWN_EN (1 << 2)
#define AD9523_PLL2_VCO_DIV_M2_PWR_DOWN_EN (1 << 6)
/* AD9523_PLL2_LOOP_FILTER_CTRL */
#define AD9523_PLL2_LOOP_FILTER_CPOLE1(x) (((x) & 0x7) << 0)
#define AD9523_PLL2_LOOP_FILTER_RZERO(x) (((x) & 0x7) << 3)
#define AD9523_PLL2_LOOP_FILTER_RPOLE2(x) (((x) & 0x7) << 6)
#define AD9523_PLL2_LOOP_FILTER_RZERO_BYPASS_EN (1 << 8)
/* AD9523_PLL2_R2_DIVIDER */
#define AD9523_PLL2_R2_DIVIDER_VAL(x) (((x) & 0x1F) << 0)
/* AD9523_CHANNEL_CLOCK_DIST */
#define AD9523_CLK_DIST_DIV_PHASE(x) (((x) & 0x3F) << 18)
#define AD9523_CLK_DIST_DIV_PHASE_REV(x) ((ret >> 18) & 0x3F)
#define AD9523_CLK_DIST_DIV(x) ((((x) - 1) & 0x3FF) << 8)
#define AD9523_CLK_DIST_DIV_REV(x) (((ret >> 8) & 0x3FF) + 1)
#define AD9523_CLK_DIST_INV_DIV_OUTPUT_EN (1 << 7)
#define AD9523_CLK_DIST_IGNORE_SYNC_EN (1 << 6)
#define AD9523_CLK_DIST_PWR_DOWN_EN (1 << 5)
#define AD9523_CLK_DIST_LOW_PWR_MODE_EN (1 << 4)
#define AD9523_CLK_DIST_DRIVER_MODE(x) (((x) & 0xF) << 0)
/* AD9523_PLL1_OUTPUT_CTRL */
#define AD9523_PLL1_OUTP_CTRL_VCO_DIV_SEL_CH6_M2 (1 << 7)
#define AD9523_PLL1_OUTP_CTRL_VCO_DIV_SEL_CH5_M2 (1 << 6)
#define AD9523_PLL1_OUTP_CTRL_VCO_DIV_SEL_CH4_M2 (1 << 5)
#define AD9523_PLL1_OUTP_CTRL_CMOS_DRV_WEAK (1 << 4)
#define AD9523_PLL1_OUTP_CTRL_OUTPUT_DIV_1 (0 << 0)
#define AD9523_PLL1_OUTP_CTRL_OUTPUT_DIV_2 (1 << 0)
#define AD9523_PLL1_OUTP_CTRL_OUTPUT_DIV_4 (2 << 0)
#define AD9523_PLL1_OUTP_CTRL_OUTPUT_DIV_8 (4 << 0)
#define AD9523_PLL1_OUTP_CTRL_OUTPUT_DIV_16 (8 << 0)
/* AD9523_PLL1_OUTPUT_CHANNEL_CTRL */
#define AD9523_PLL1_OUTP_CH_CTRL_OUTPUT_PWR_DOWN_EN (1 << 7)
#define AD9523_PLL1_OUTP_CH_CTRL_VCO_DIV_SEL_CH9_M2 (1 << 6)
#define AD9523_PLL1_OUTP_CH_CTRL_VCO_DIV_SEL_CH8_M2 (1 << 5)
#define AD9523_PLL1_OUTP_CH_CTRL_VCO_DIV_SEL_CH7_M2 (1 << 4)
#define AD9523_PLL1_OUTP_CH_CTRL_VCXO_SRC_SEL_CH3 (1 << 3)
#define AD9523_PLL1_OUTP_CH_CTRL_VCXO_SRC_SEL_CH2 (1 << 2)
#define AD9523_PLL1_OUTP_CH_CTRL_VCXO_SRC_SEL_CH1 (1 << 1)
#define AD9523_PLL1_OUTP_CH_CTRL_VCXO_SRC_SEL_CH0 (1 << 0)
/* AD9523_READBACK_0 */
#define AD9523_READBACK_0_STAT_PLL2_REF_CLK (1 << 7)
#define AD9523_READBACK_0_STAT_PLL2_FB_CLK (1 << 6)
#define AD9523_READBACK_0_STAT_VCXO (1 << 5)
#define AD9523_READBACK_0_STAT_REF_TEST (1 << 4)
#define AD9523_READBACK_0_STAT_REFB (1 << 3)
#define AD9523_READBACK_0_STAT_REFA (1 << 2)
#define AD9523_READBACK_0_STAT_PLL2_LD (1 << 1)
#define AD9523_READBACK_0_STAT_PLL1_LD (1 << 0)
/* AD9523_READBACK_1 */
#define AD9523_READBACK_1_HOLDOVER_ACTIVE (1 << 3)
#define AD9523_READBACK_1_AUTOMODE_SEL_REFB (1 << 2)
#define AD9523_READBACK_1_VCO_CALIB_IN_PROGRESS (1 << 0)
/* AD9523_STATUS_SIGNALS */
#define AD9523_STATUS_SIGNALS_SYNC_MAN_CTRL (1 << 16)
#define AD9523_STATUS_MONITOR_01_PLL12_LOCKED (0x302)
/* AD9523_POWER_DOWN_CTRL */
#define AD9523_POWER_DOWN_CTRL_PLL1_PWR_DOWN (1 << 2)
#define AD9523_POWER_DOWN_CTRL_PLL2_PWR_DOWN (1 << 1)
#define AD9523_POWER_DOWN_CTRL_DIST_PWR_DOWN (1 << 0)
/* AD9523_IO_UPDATE */
#define AD9523_IO_UPDATE_EN (1 << 0)
/* AD9523_EEPROM_DATA_XFER_STATUS */
#define AD9523_EEPROM_DATA_XFER_IN_PROGRESS (1 << 0)
/* AD9523_EEPROM_ERROR_READBACK */
#define AD9523_EEPROM_ERROR_READBACK_FAIL (1 << 0)
/* AD9523_EEPROM_CTRL1 */
#define AD9523_EEPROM_CTRL1_SOFT_EEPROM (1 << 1)
#define AD9523_EEPROM_CTRL1_EEPROM_WRITE_PROT_DIS (1 << 0)
/* AD9523_EEPROM_CTRL2 */
#define AD9523_EEPROM_CTRL2_REG2EEPROM (1 << 0)
#define AD9523_NUM_CHAN 14
#define AD9523_NUM_CHAN_ALT_CLK_SRC 10
/* Helpers to avoid excess line breaks */
#define AD_IFE(_pde, _a, _b) ((pdata->_pde) ? _a : _b)
#define AD_IF(_pde, _a) AD_IFE(_pde, _a, 0)
enum {
AD9523_STAT_PLL1_LD,
AD9523_STAT_PLL2_LD,
AD9523_STAT_REFA,
AD9523_STAT_REFB,
AD9523_STAT_REF_TEST,
AD9523_STAT_VCXO,
AD9523_STAT_PLL2_FB_CLK,
AD9523_STAT_PLL2_REF_CLK,
AD9523_SYNC,
AD9523_EEPROM,
};
enum {
AD9523_VCO1,
AD9523_VCO2,
AD9523_VCXO,
AD9523_NUM_CLK_SRC,
};
struct ad9523_state {
struct spi_device *spi;
struct ad9523_platform_data *pdata;
struct iio_chan_spec ad9523_channels[AD9523_NUM_CHAN];
struct gpio_desc *pwrdown_gpio;
struct gpio_desc *reset_gpio;
struct gpio_desc *sync_gpio;
unsigned long vcxo_freq;
unsigned long vco_freq;
unsigned long vco_out_freq[AD9523_NUM_CLK_SRC];
unsigned char vco_out_map[AD9523_NUM_CHAN_ALT_CLK_SRC];
/*
* Lock for accessing device registers. Some operations require
* multiple consecutive R/W operations, during which the device
* shouldn't be interrupted. The buffers are also shared across
* all operations so need to be protected on stand alone reads and
* writes.
*/
struct mutex lock;
/*
* DMA (thus cache coherency maintenance) may require that
* transfer buffers live in their own cache lines.
*/
union {
__be32 d32;
u8 d8[4];
} data[2] __aligned(IIO_DMA_MINALIGN);
};
static int ad9523_read(struct iio_dev *indio_dev, unsigned int addr)
{
struct ad9523_state *st = iio_priv(indio_dev);
int ret;
/* We encode the register size 1..3 bytes into the register address.
* On transfer we get the size from the register datum, and make sure
* the result is properly aligned.
*/
struct spi_transfer t[] = {
{
.tx_buf = &st->data[0].d8[2],
.len = 2,
}, {
.rx_buf = &st->data[1].d8[4 - AD9523_TRANSF_LEN(addr)],
.len = AD9523_TRANSF_LEN(addr),
},
};
st->data[0].d32 = cpu_to_be32(AD9523_READ |
AD9523_CNT(AD9523_TRANSF_LEN(addr)) |
AD9523_ADDR(addr));
ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t));
if (ret < 0)
dev_err(&indio_dev->dev, "read failed (%d)", ret);
else
ret = be32_to_cpu(st->data[1].d32) & (0xFFFFFF >>
(8 * (3 - AD9523_TRANSF_LEN(addr))));
return ret;
};
static int ad9523_write(struct iio_dev *indio_dev,
unsigned int addr, unsigned int val)
{
struct ad9523_state *st = iio_priv(indio_dev);
int ret;
struct spi_transfer t[] = {
{
.tx_buf = &st->data[0].d8[2],
.len = 2,
}, {
.tx_buf = &st->data[1].d8[4 - AD9523_TRANSF_LEN(addr)],
.len = AD9523_TRANSF_LEN(addr),
},
};
st->data[0].d32 = cpu_to_be32(AD9523_WRITE |
AD9523_CNT(AD9523_TRANSF_LEN(addr)) |
AD9523_ADDR(addr));
st->data[1].d32 = cpu_to_be32(val);
ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t));
if (ret < 0)
dev_err(&indio_dev->dev, "write failed (%d)", ret);
return ret;
}
static int ad9523_io_update(struct iio_dev *indio_dev)
{
return ad9523_write(indio_dev, AD9523_IO_UPDATE, AD9523_IO_UPDATE_EN);
}
static int ad9523_vco_out_map(struct iio_dev *indio_dev,
unsigned int ch, unsigned int out)
{
struct ad9523_state *st = iio_priv(indio_dev);
int ret;
unsigned int mask;
switch (ch) {
case 0 ... 3:
ret = ad9523_read(indio_dev, AD9523_PLL1_OUTPUT_CHANNEL_CTRL);
if (ret < 0)
break;
mask = AD9523_PLL1_OUTP_CH_CTRL_VCXO_SRC_SEL_CH0 << ch;
if (out) {
ret |= mask;
out = 2;
} else {
ret &= ~mask;
}
ret = ad9523_write(indio_dev,
AD9523_PLL1_OUTPUT_CHANNEL_CTRL, ret);
break;
case 4 ... 6:
ret = ad9523_read(indio_dev, AD9523_PLL1_OUTPUT_CTRL);
if (ret < 0)
break;
mask = AD9523_PLL1_OUTP_CTRL_VCO_DIV_SEL_CH4_M2 << (ch - 4);
if (out)
ret |= mask;
else
ret &= ~mask;
ret = ad9523_write(indio_dev, AD9523_PLL1_OUTPUT_CTRL, ret);
break;
case 7 ... 9:
ret = ad9523_read(indio_dev, AD9523_PLL1_OUTPUT_CHANNEL_CTRL);
if (ret < 0)
break;
mask = AD9523_PLL1_OUTP_CH_CTRL_VCO_DIV_SEL_CH7_M2 << (ch - 7);
if (out)
ret |= mask;
else
ret &= ~mask;
ret = ad9523_write(indio_dev,
AD9523_PLL1_OUTPUT_CHANNEL_CTRL, ret);
break;
default:
return 0;
}
st->vco_out_map[ch] = out;
return ret;
}
static int ad9523_set_clock_provider(struct iio_dev *indio_dev,
unsigned int ch, unsigned long freq)
{
struct ad9523_state *st = iio_priv(indio_dev);
long tmp1, tmp2;
bool use_alt_clk_src;
switch (ch) {
case 0 ... 3:
use_alt_clk_src = (freq == st->vco_out_freq[AD9523_VCXO]);
break;
case 4 ... 9:
tmp1 = st->vco_out_freq[AD9523_VCO1] / freq;
tmp2 = st->vco_out_freq[AD9523_VCO2] / freq;
tmp1 *= freq;
tmp2 *= freq;
use_alt_clk_src = (abs(tmp1 - freq) > abs(tmp2 - freq));
break;
default:
/* Ch 10..14: No action required, return success */
return 0;
}
return ad9523_vco_out_map(indio_dev, ch, use_alt_clk_src);
}
static int ad9523_store_eeprom(struct iio_dev *indio_dev)
{
int ret, tmp;
ret = ad9523_write(indio_dev, AD9523_EEPROM_CTRL1,
AD9523_EEPROM_CTRL1_EEPROM_WRITE_PROT_DIS);
if (ret < 0)
return ret;
ret = ad9523_write(indio_dev, AD9523_EEPROM_CTRL2,
AD9523_EEPROM_CTRL2_REG2EEPROM);
if (ret < 0)
return ret;
tmp = 4;
do {
msleep(20);
ret = ad9523_read(indio_dev,
AD9523_EEPROM_DATA_XFER_STATUS);
if (ret < 0)
return ret;
} while ((ret & AD9523_EEPROM_DATA_XFER_IN_PROGRESS) && tmp--);
ret = ad9523_write(indio_dev, AD9523_EEPROM_CTRL1, 0);
if (ret < 0)
return ret;
ret = ad9523_read(indio_dev, AD9523_EEPROM_ERROR_READBACK);
if (ret < 0)
return ret;
if (ret & AD9523_EEPROM_ERROR_READBACK_FAIL) {
dev_err(&indio_dev->dev, "Verify EEPROM failed");
ret = -EIO;
}
return ret;
}
static int ad9523_sync(struct iio_dev *indio_dev)
{
int ret, tmp;
ret = ad9523_read(indio_dev, AD9523_STATUS_SIGNALS);
if (ret < 0)
return ret;
tmp = ret;
tmp |= AD9523_STATUS_SIGNALS_SYNC_MAN_CTRL;
ret = ad9523_write(indio_dev, AD9523_STATUS_SIGNALS, tmp);
if (ret < 0)
return ret;
ad9523_io_update(indio_dev);
tmp &= ~AD9523_STATUS_SIGNALS_SYNC_MAN_CTRL;
ret = ad9523_write(indio_dev, AD9523_STATUS_SIGNALS, tmp);
if (ret < 0)
return ret;
return ad9523_io_update(indio_dev);
}
static ssize_t ad9523_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
struct ad9523_state *st = iio_priv(indio_dev);
bool state;
int ret;
ret = kstrtobool(buf, &state);
if (ret < 0)
return ret;
if (!state)
return len;
mutex_lock(&st->lock);
switch ((u32)this_attr->address) {
case AD9523_SYNC:
ret = ad9523_sync(indio_dev);
break;
case AD9523_EEPROM:
ret = ad9523_store_eeprom(indio_dev);
break;
default:
ret = -ENODEV;
}
mutex_unlock(&st->lock);
return ret ? ret : len;
}
static ssize_t ad9523_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
struct ad9523_state *st = iio_priv(indio_dev);
int ret;
mutex_lock(&st->lock);
ret = ad9523_read(indio_dev, AD9523_READBACK_0);
if (ret >= 0) {
ret = sysfs_emit(buf, "%d\n", !!(ret & (1 <<
(u32)this_attr->address)));
}
mutex_unlock(&st->lock);
return ret;
}
static IIO_DEVICE_ATTR(pll1_locked, S_IRUGO,
ad9523_show,
NULL,
AD9523_STAT_PLL1_LD);
static IIO_DEVICE_ATTR(pll2_locked, S_IRUGO,
ad9523_show,
NULL,
AD9523_STAT_PLL2_LD);
static IIO_DEVICE_ATTR(pll1_reference_clk_a_present, S_IRUGO,
ad9523_show,
NULL,
AD9523_STAT_REFA);
static IIO_DEVICE_ATTR(pll1_reference_clk_b_present, S_IRUGO,
ad9523_show,
NULL,
AD9523_STAT_REFB);
static IIO_DEVICE_ATTR(pll1_reference_clk_test_present, S_IRUGO,
ad9523_show,
NULL,
AD9523_STAT_REF_TEST);
static IIO_DEVICE_ATTR(vcxo_clk_present, S_IRUGO,
ad9523_show,
NULL,
AD9523_STAT_VCXO);
static IIO_DEVICE_ATTR(pll2_feedback_clk_present, S_IRUGO,
ad9523_show,
NULL,
AD9523_STAT_PLL2_FB_CLK);
static IIO_DEVICE_ATTR(pll2_reference_clk_present, S_IRUGO,
ad9523_show,
NULL,
AD9523_STAT_PLL2_REF_CLK);
static IIO_DEVICE_ATTR(sync_dividers, S_IWUSR,
NULL,
ad9523_store,
AD9523_SYNC);
static IIO_DEVICE_ATTR(store_eeprom, S_IWUSR,
NULL,
ad9523_store,
AD9523_EEPROM);
static struct attribute *ad9523_attributes[] = {
&iio_dev_attr_sync_dividers.dev_attr.attr,
&iio_dev_attr_store_eeprom.dev_attr.attr,
&iio_dev_attr_pll2_feedback_clk_present.dev_attr.attr,
&iio_dev_attr_pll2_reference_clk_present.dev_attr.attr,
&iio_dev_attr_pll1_reference_clk_a_present.dev_attr.attr,
&iio_dev_attr_pll1_reference_clk_b_present.dev_attr.attr,
&iio_dev_attr_pll1_reference_clk_test_present.dev_attr.attr,
&iio_dev_attr_vcxo_clk_present.dev_attr.attr,
&iio_dev_attr_pll1_locked.dev_attr.attr,
&iio_dev_attr_pll2_locked.dev_attr.attr,
NULL,
};
static const struct attribute_group ad9523_attribute_group = {
.attrs = ad9523_attributes,
};
static int ad9523_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val,
int *val2,
long m)
{
struct ad9523_state *st = iio_priv(indio_dev);
unsigned int code;
int ret;
mutex_lock(&st->lock);
ret = ad9523_read(indio_dev, AD9523_CHANNEL_CLOCK_DIST(chan->channel));
mutex_unlock(&st->lock);
if (ret < 0)
return ret;
switch (m) {
case IIO_CHAN_INFO_RAW:
*val = !(ret & AD9523_CLK_DIST_PWR_DOWN_EN);
return IIO_VAL_INT;
case IIO_CHAN_INFO_FREQUENCY:
*val = st->vco_out_freq[st->vco_out_map[chan->channel]] /
AD9523_CLK_DIST_DIV_REV(ret);
return IIO_VAL_INT;
case IIO_CHAN_INFO_PHASE:
code = (AD9523_CLK_DIST_DIV_PHASE_REV(ret) * 3141592) /
AD9523_CLK_DIST_DIV_REV(ret);
*val = code / 1000000;
*val2 = code % 1000000;
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
};
static int ad9523_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val,
int val2,
long mask)
{
struct ad9523_state *st = iio_priv(indio_dev);
unsigned int reg;
int ret, tmp, code;
mutex_lock(&st->lock);
ret = ad9523_read(indio_dev, AD9523_CHANNEL_CLOCK_DIST(chan->channel));
if (ret < 0)
goto out;
reg = ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
if (val)
reg &= ~AD9523_CLK_DIST_PWR_DOWN_EN;
else
reg |= AD9523_CLK_DIST_PWR_DOWN_EN;
break;
case IIO_CHAN_INFO_FREQUENCY:
if (val <= 0) {
ret = -EINVAL;
goto out;
}
ret = ad9523_set_clock_provider(indio_dev, chan->channel, val);
if (ret < 0)
goto out;
tmp = st->vco_out_freq[st->vco_out_map[chan->channel]] / val;
tmp = clamp(tmp, 1, 1024);
reg &= ~(0x3FF << 8);
reg |= AD9523_CLK_DIST_DIV(tmp);
break;
case IIO_CHAN_INFO_PHASE:
code = val * 1000000 + val2 % 1000000;
tmp = (code * AD9523_CLK_DIST_DIV_REV(ret)) / 3141592;
tmp = clamp(tmp, 0, 63);
reg &= ~AD9523_CLK_DIST_DIV_PHASE(~0);
reg |= AD9523_CLK_DIST_DIV_PHASE(tmp);
break;
default:
ret = -EINVAL;
goto out;
}
ret = ad9523_write(indio_dev, AD9523_CHANNEL_CLOCK_DIST(chan->channel),
reg);
if (ret < 0)
goto out;
ad9523_io_update(indio_dev);
out:
mutex_unlock(&st->lock);
return ret;
}
static int ad9523_reg_access(struct iio_dev *indio_dev,
unsigned int reg, unsigned int writeval,
unsigned int *readval)
{
struct ad9523_state *st = iio_priv(indio_dev);
int ret;
mutex_lock(&st->lock);
if (readval == NULL) {
ret = ad9523_write(indio_dev, reg | AD9523_R1B, writeval);
ad9523_io_update(indio_dev);
} else {
ret = ad9523_read(indio_dev, reg | AD9523_R1B);
if (ret < 0)
goto out_unlock;
*readval = ret;
ret = 0;
}
out_unlock:
mutex_unlock(&st->lock);
return ret;
}
static const struct iio_info ad9523_info = {
.read_raw = &ad9523_read_raw,
.write_raw = &ad9523_write_raw,
.debugfs_reg_access = &ad9523_reg_access,
.attrs = &ad9523_attribute_group,
};
static int ad9523_setup(struct iio_dev *indio_dev)
{
struct ad9523_state *st = iio_priv(indio_dev);
struct ad9523_platform_data *pdata = st->pdata;
struct ad9523_channel_spec *chan;
unsigned long active_mask = 0;
int ret, i;
ret = ad9523_write(indio_dev, AD9523_SERIAL_PORT_CONFIG,
AD9523_SER_CONF_SOFT_RESET |
(st->spi->mode & SPI_3WIRE ? 0 :
AD9523_SER_CONF_SDO_ACTIVE));
if (ret < 0)
return ret;
ret = ad9523_write(indio_dev, AD9523_READBACK_CTRL,
AD9523_READBACK_CTRL_READ_BUFFERED);
if (ret < 0)
return ret;
ret = ad9523_io_update(indio_dev);
if (ret < 0)
return ret;
/*
* PLL1 Setup
*/
ret = ad9523_write(indio_dev, AD9523_PLL1_REF_A_DIVIDER,
pdata->refa_r_div);
if (ret < 0)
return ret;
ret = ad9523_write(indio_dev, AD9523_PLL1_REF_B_DIVIDER,
pdata->refb_r_div);
if (ret < 0)
return ret;
ret = ad9523_write(indio_dev, AD9523_PLL1_FEEDBACK_DIVIDER,
pdata->pll1_feedback_div);
if (ret < 0)
return ret;
ret = ad9523_write(indio_dev, AD9523_PLL1_CHARGE_PUMP_CTRL,
AD9523_PLL1_CHARGE_PUMP_CURRENT_nA(pdata->
pll1_charge_pump_current_nA) |
AD9523_PLL1_CHARGE_PUMP_MODE_NORMAL |
AD9523_PLL1_BACKLASH_PW_MIN);
if (ret < 0)
return ret;
ret = ad9523_write(indio_dev, AD9523_PLL1_INPUT_RECEIVERS_CTRL,
AD_IF(refa_diff_rcv_en, AD9523_PLL1_REFA_RCV_EN) |
AD_IF(refb_diff_rcv_en, AD9523_PLL1_REFB_RCV_EN) |
AD_IF(osc_in_diff_en, AD9523_PLL1_OSC_IN_DIFF_EN) |
AD_IF(osc_in_cmos_neg_inp_en,
AD9523_PLL1_OSC_IN_CMOS_NEG_INP_EN) |
AD_IF(refa_diff_rcv_en, AD9523_PLL1_REFA_DIFF_RCV_EN) |
AD_IF(refb_diff_rcv_en, AD9523_PLL1_REFB_DIFF_RCV_EN));
if (ret < 0)
return ret;
ret = ad9523_write(indio_dev, AD9523_PLL1_REF_CTRL,
AD_IF(zd_in_diff_en, AD9523_PLL1_ZD_IN_DIFF_EN) |
AD_IF(zd_in_cmos_neg_inp_en,
AD9523_PLL1_ZD_IN_CMOS_NEG_INP_EN) |
AD_IF(zero_delay_mode_internal_en,
AD9523_PLL1_ZERO_DELAY_MODE_INT) |
AD_IF(osc_in_feedback_en, AD9523_PLL1_OSC_IN_PLL_FEEDBACK_EN) |
AD_IF(refa_cmos_neg_inp_en, AD9523_PLL1_REFA_CMOS_NEG_INP_EN) |
AD_IF(refb_cmos_neg_inp_en, AD9523_PLL1_REFB_CMOS_NEG_INP_EN));
if (ret < 0)
return ret;
ret = ad9523_write(indio_dev, AD9523_PLL1_MISC_CTRL,
AD9523_PLL1_REFB_INDEP_DIV_CTRL_EN |
AD9523_PLL1_REF_MODE(pdata->ref_mode));
if (ret < 0)
return ret;
ret = ad9523_write(indio_dev, AD9523_PLL1_LOOP_FILTER_CTRL,
AD9523_PLL1_LOOP_FILTER_RZERO(pdata->pll1_loop_filter_rzero));
if (ret < 0)
return ret;
/*
* PLL2 Setup
*/
ret = ad9523_write(indio_dev, AD9523_PLL2_CHARGE_PUMP,
AD9523_PLL2_CHARGE_PUMP_CURRENT_nA(pdata->
pll2_charge_pump_current_nA));
if (ret < 0)
return ret;
ret = ad9523_write(indio_dev, AD9523_PLL2_FEEDBACK_DIVIDER_AB,
AD9523_PLL2_FB_NDIV_A_CNT(pdata->pll2_ndiv_a_cnt) |
AD9523_PLL2_FB_NDIV_B_CNT(pdata->pll2_ndiv_b_cnt));
if (ret < 0)
return ret;
ret = ad9523_write(indio_dev, AD9523_PLL2_CTRL,
AD9523_PLL2_CHARGE_PUMP_MODE_NORMAL |
AD9523_PLL2_BACKLASH_CTRL_EN |
AD_IF(pll2_freq_doubler_en, AD9523_PLL2_FREQ_DOUBLER_EN));
if (ret < 0)
return ret;
st->vco_freq = div_u64((unsigned long long)pdata->vcxo_freq *
(pdata->pll2_freq_doubler_en ? 2 : 1) *
AD9523_PLL2_FB_NDIV(pdata->pll2_ndiv_a_cnt,
pdata->pll2_ndiv_b_cnt),
pdata->pll2_r2_div);
ret = ad9523_write(indio_dev, AD9523_PLL2_VCO_CTRL,
AD9523_PLL2_VCO_CALIBRATE);
if (ret < 0)
return ret;
ret = ad9523_write(indio_dev, AD9523_PLL2_VCO_DIVIDER,
AD9523_PLL2_VCO_DIV_M1(pdata->pll2_vco_div_m1) |
AD9523_PLL2_VCO_DIV_M2(pdata->pll2_vco_div_m2) |
AD_IFE(pll2_vco_div_m1, 0,
AD9523_PLL2_VCO_DIV_M1_PWR_DOWN_EN) |
AD_IFE(pll2_vco_div_m2, 0,
AD9523_PLL2_VCO_DIV_M2_PWR_DOWN_EN));
if (ret < 0)
return ret;
if (pdata->pll2_vco_div_m1)
st->vco_out_freq[AD9523_VCO1] =
st->vco_freq / pdata->pll2_vco_div_m1;
if (pdata->pll2_vco_div_m2)
st->vco_out_freq[AD9523_VCO2] =
st->vco_freq / pdata->pll2_vco_div_m2;
st->vco_out_freq[AD9523_VCXO] = pdata->vcxo_freq;
ret = ad9523_write(indio_dev, AD9523_PLL2_R2_DIVIDER,
AD9523_PLL2_R2_DIVIDER_VAL(pdata->pll2_r2_div));
if (ret < 0)
return ret;
ret = ad9523_write(indio_dev, AD9523_PLL2_LOOP_FILTER_CTRL,
AD9523_PLL2_LOOP_FILTER_CPOLE1(pdata->cpole1) |
AD9523_PLL2_LOOP_FILTER_RZERO(pdata->rzero) |
AD9523_PLL2_LOOP_FILTER_RPOLE2(pdata->rpole2) |
AD_IF(rzero_bypass_en,
AD9523_PLL2_LOOP_FILTER_RZERO_BYPASS_EN));
if (ret < 0)
return ret;
for (i = 0; i < pdata->num_channels; i++) {
chan = &pdata->channels[i];
if (chan->channel_num < AD9523_NUM_CHAN) {
__set_bit(chan->channel_num, &active_mask);
ret = ad9523_write(indio_dev,
AD9523_CHANNEL_CLOCK_DIST(chan->channel_num),
AD9523_CLK_DIST_DRIVER_MODE(chan->driver_mode) |
AD9523_CLK_DIST_DIV(chan->channel_divider) |
AD9523_CLK_DIST_DIV_PHASE(chan->divider_phase) |
(chan->sync_ignore_en ?
AD9523_CLK_DIST_IGNORE_SYNC_EN : 0) |
(chan->divider_output_invert_en ?
AD9523_CLK_DIST_INV_DIV_OUTPUT_EN : 0) |
(chan->low_power_mode_en ?
AD9523_CLK_DIST_LOW_PWR_MODE_EN : 0) |
(chan->output_dis ?
AD9523_CLK_DIST_PWR_DOWN_EN : 0));
if (ret < 0)
return ret;
ret = ad9523_vco_out_map(indio_dev, chan->channel_num,
chan->use_alt_clock_src);
if (ret < 0)
return ret;
st->ad9523_channels[i].type = IIO_ALTVOLTAGE;
st->ad9523_channels[i].output = 1;
st->ad9523_channels[i].indexed = 1;
st->ad9523_channels[i].channel = chan->channel_num;
st->ad9523_channels[i].extend_name =
chan->extended_name;
st->ad9523_channels[i].info_mask_separate =
BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_PHASE) |
BIT(IIO_CHAN_INFO_FREQUENCY);
}
}
for_each_clear_bit(i, &active_mask, AD9523_NUM_CHAN) {
ret = ad9523_write(indio_dev,
AD9523_CHANNEL_CLOCK_DIST(i),
AD9523_CLK_DIST_DRIVER_MODE(TRISTATE) |
AD9523_CLK_DIST_PWR_DOWN_EN);
if (ret < 0)
return ret;
}
ret = ad9523_write(indio_dev, AD9523_POWER_DOWN_CTRL, 0);
if (ret < 0)
return ret;
ret = ad9523_write(indio_dev, AD9523_STATUS_SIGNALS,
AD9523_STATUS_MONITOR_01_PLL12_LOCKED);
if (ret < 0)
return ret;
ret = ad9523_io_update(indio_dev);
if (ret < 0)
return ret;
return 0;
}
static int ad9523_probe(struct spi_device *spi)
{
struct ad9523_platform_data *pdata = spi->dev.platform_data;
struct iio_dev *indio_dev;
struct ad9523_state *st;
int ret;
if (!pdata) {
dev_err(&spi->dev, "no platform data?\n");
return -EINVAL;
}
indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
if (indio_dev == NULL)
return -ENOMEM;
st = iio_priv(indio_dev);
mutex_init(&st->lock);
ret = devm_regulator_get_enable(&spi->dev, "vcc");
if (ret)
return ret;
st->pwrdown_gpio = devm_gpiod_get_optional(&spi->dev, "powerdown",
GPIOD_OUT_HIGH);
if (IS_ERR(st->pwrdown_gpio))
return PTR_ERR(st->pwrdown_gpio);
st->reset_gpio = devm_gpiod_get_optional(&spi->dev, "reset",
GPIOD_OUT_LOW);
if (IS_ERR(st->reset_gpio))
return PTR_ERR(st->reset_gpio);
if (st->reset_gpio) {
udelay(1);
gpiod_direction_output(st->reset_gpio, 1);
}
st->sync_gpio = devm_gpiod_get_optional(&spi->dev, "sync",
GPIOD_OUT_HIGH);
if (IS_ERR(st->sync_gpio))
return PTR_ERR(st->sync_gpio);
spi_set_drvdata(spi, indio_dev);
st->spi = spi;
st->pdata = pdata;
indio_dev->name = (pdata->name[0] != 0) ? pdata->name :
spi_get_device_id(spi)->name;
indio_dev->info = &ad9523_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = st->ad9523_channels;
indio_dev->num_channels = pdata->num_channels;
ret = ad9523_setup(indio_dev);
if (ret < 0)
return ret;
return devm_iio_device_register(&spi->dev, indio_dev);
}
static const struct spi_device_id ad9523_id[] = {
{"ad9523-1", 9523},
{}
};
MODULE_DEVICE_TABLE(spi, ad9523_id);
static struct spi_driver ad9523_driver = {
.driver = {
.name = "ad9523",
},
.probe = ad9523_probe,
.id_table = ad9523_id,
};
module_spi_driver(ad9523_driver);
MODULE_AUTHOR("Michael Hennerich <michael.hennerich@analog.com>");
MODULE_DESCRIPTION("Analog Devices AD9523 CLOCKDIST/PLL");
MODULE_LICENSE("GPL v2");