linux-zen-server/drivers/infiniband/hw/mthca/mthca_allocator.c

299 lines
7.4 KiB
C
Raw Permalink Normal View History

2023-08-30 17:53:23 +02:00
/*
* Copyright (c) 2004 Topspin Communications. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/bitmap.h>
#include "mthca_dev.h"
/* Trivial bitmap-based allocator */
u32 mthca_alloc(struct mthca_alloc *alloc)
{
unsigned long flags;
u32 obj;
spin_lock_irqsave(&alloc->lock, flags);
obj = find_next_zero_bit(alloc->table, alloc->max, alloc->last);
if (obj >= alloc->max) {
alloc->top = (alloc->top + alloc->max) & alloc->mask;
obj = find_first_zero_bit(alloc->table, alloc->max);
}
if (obj < alloc->max) {
__set_bit(obj, alloc->table);
obj |= alloc->top;
} else
obj = -1;
spin_unlock_irqrestore(&alloc->lock, flags);
return obj;
}
void mthca_free(struct mthca_alloc *alloc, u32 obj)
{
unsigned long flags;
obj &= alloc->max - 1;
spin_lock_irqsave(&alloc->lock, flags);
__clear_bit(obj, alloc->table);
alloc->last = min(alloc->last, obj);
alloc->top = (alloc->top + alloc->max) & alloc->mask;
spin_unlock_irqrestore(&alloc->lock, flags);
}
int mthca_alloc_init(struct mthca_alloc *alloc, u32 num, u32 mask,
u32 reserved)
{
/* num must be a power of 2 */
if (num != 1 << (ffs(num) - 1))
return -EINVAL;
alloc->last = 0;
alloc->top = 0;
alloc->max = num;
alloc->mask = mask;
spin_lock_init(&alloc->lock);
alloc->table = bitmap_zalloc(num, GFP_KERNEL);
if (!alloc->table)
return -ENOMEM;
bitmap_set(alloc->table, 0, reserved);
return 0;
}
void mthca_alloc_cleanup(struct mthca_alloc *alloc)
{
bitmap_free(alloc->table);
}
/*
* Array of pointers with lazy allocation of leaf pages. Callers of
* _get, _set and _clear methods must use a lock or otherwise
* serialize access to the array.
*/
#define MTHCA_ARRAY_MASK (PAGE_SIZE / sizeof (void *) - 1)
void *mthca_array_get(struct mthca_array *array, int index)
{
int p = (index * sizeof (void *)) >> PAGE_SHIFT;
if (array->page_list[p].page)
return array->page_list[p].page[index & MTHCA_ARRAY_MASK];
else
return NULL;
}
int mthca_array_set(struct mthca_array *array, int index, void *value)
{
int p = (index * sizeof (void *)) >> PAGE_SHIFT;
/* Allocate with GFP_ATOMIC because we'll be called with locks held. */
if (!array->page_list[p].page)
array->page_list[p].page = (void **) get_zeroed_page(GFP_ATOMIC);
if (!array->page_list[p].page)
return -ENOMEM;
array->page_list[p].page[index & MTHCA_ARRAY_MASK] = value;
++array->page_list[p].used;
return 0;
}
void mthca_array_clear(struct mthca_array *array, int index)
{
int p = (index * sizeof (void *)) >> PAGE_SHIFT;
if (--array->page_list[p].used == 0) {
free_page((unsigned long) array->page_list[p].page);
array->page_list[p].page = NULL;
} else
array->page_list[p].page[index & MTHCA_ARRAY_MASK] = NULL;
if (array->page_list[p].used < 0)
pr_debug("Array %p index %d page %d with ref count %d < 0\n",
array, index, p, array->page_list[p].used);
}
int mthca_array_init(struct mthca_array *array, int nent)
{
int npage = (nent * sizeof (void *) + PAGE_SIZE - 1) / PAGE_SIZE;
int i;
array->page_list = kmalloc_array(npage, sizeof(*array->page_list),
GFP_KERNEL);
if (!array->page_list)
return -ENOMEM;
for (i = 0; i < npage; ++i) {
array->page_list[i].page = NULL;
array->page_list[i].used = 0;
}
return 0;
}
void mthca_array_cleanup(struct mthca_array *array, int nent)
{
int i;
for (i = 0; i < (nent * sizeof (void *) + PAGE_SIZE - 1) / PAGE_SIZE; ++i)
free_page((unsigned long) array->page_list[i].page);
kfree(array->page_list);
}
/*
* Handling for queue buffers -- we allocate a bunch of memory and
* register it in a memory region at HCA virtual address 0. If the
* requested size is > max_direct, we split the allocation into
* multiple pages, so we don't require too much contiguous memory.
*/
int mthca_buf_alloc(struct mthca_dev *dev, int size, int max_direct,
union mthca_buf *buf, int *is_direct, struct mthca_pd *pd,
int hca_write, struct mthca_mr *mr)
{
int err = -ENOMEM;
int npages, shift;
u64 *dma_list = NULL;
dma_addr_t t;
int i;
if (size <= max_direct) {
*is_direct = 1;
npages = 1;
shift = get_order(size) + PAGE_SHIFT;
buf->direct.buf = dma_alloc_coherent(&dev->pdev->dev,
size, &t, GFP_KERNEL);
if (!buf->direct.buf)
return -ENOMEM;
dma_unmap_addr_set(&buf->direct, mapping, t);
while (t & ((1 << shift) - 1)) {
--shift;
npages *= 2;
}
dma_list = kmalloc_array(npages, sizeof(*dma_list),
GFP_KERNEL);
if (!dma_list)
goto err_free;
for (i = 0; i < npages; ++i)
dma_list[i] = t + i * (1 << shift);
} else {
*is_direct = 0;
npages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
shift = PAGE_SHIFT;
dma_list = kmalloc_array(npages, sizeof(*dma_list),
GFP_KERNEL);
if (!dma_list)
return -ENOMEM;
buf->page_list = kmalloc_array(npages,
sizeof(*buf->page_list),
GFP_KERNEL);
if (!buf->page_list)
goto err_out;
for (i = 0; i < npages; ++i)
buf->page_list[i].buf = NULL;
for (i = 0; i < npages; ++i) {
buf->page_list[i].buf =
dma_alloc_coherent(&dev->pdev->dev, PAGE_SIZE,
&t, GFP_KERNEL);
if (!buf->page_list[i].buf)
goto err_free;
dma_list[i] = t;
dma_unmap_addr_set(&buf->page_list[i], mapping, t);
clear_page(buf->page_list[i].buf);
}
}
err = mthca_mr_alloc_phys(dev, pd->pd_num,
dma_list, shift, npages,
0, size,
MTHCA_MPT_FLAG_LOCAL_READ |
(hca_write ? MTHCA_MPT_FLAG_LOCAL_WRITE : 0),
mr);
if (err)
goto err_free;
kfree(dma_list);
return 0;
err_free:
mthca_buf_free(dev, size, buf, *is_direct, NULL);
err_out:
kfree(dma_list);
return err;
}
void mthca_buf_free(struct mthca_dev *dev, int size, union mthca_buf *buf,
int is_direct, struct mthca_mr *mr)
{
int i;
if (mr)
mthca_free_mr(dev, mr);
if (is_direct)
dma_free_coherent(&dev->pdev->dev, size, buf->direct.buf,
dma_unmap_addr(&buf->direct, mapping));
else {
for (i = 0; i < (size + PAGE_SIZE - 1) / PAGE_SIZE; ++i)
dma_free_coherent(&dev->pdev->dev, PAGE_SIZE,
buf->page_list[i].buf,
dma_unmap_addr(&buf->page_list[i],
mapping));
kfree(buf->page_list);
}
}