linux-zen-server/drivers/media/dvb-frontends/cx24123.c

1140 lines
28 KiB
C
Raw Permalink Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Conexant cx24123/cx24109 - DVB QPSK Satellite demod/tuner driver
*
* Copyright (C) 2005 Steven Toth <stoth@linuxtv.org>
*
* Support for KWorld DVB-S 100 by Vadim Catana <skystar@moldova.cc>
*
* Support for CX24123/CX24113-NIM by Patrick Boettcher <pb@linuxtv.org>
*/
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <asm/div64.h>
#include <media/dvb_frontend.h>
#include "cx24123.h"
#define XTAL 10111000
static int force_band;
module_param(force_band, int, 0644);
MODULE_PARM_DESC(force_band, "Force a specific band select "\
"(1-9, default:off).");
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Activates frontend debugging (default:0)");
#define info(args...) do { printk(KERN_INFO "CX24123: " args); } while (0)
#define err(args...) do { printk(KERN_ERR "CX24123: " args); } while (0)
#define dprintk(args...) \
do { \
if (debug) { \
printk(KERN_DEBUG "CX24123: %s: ", __func__); \
printk(args); \
} \
} while (0)
struct cx24123_state {
struct i2c_adapter *i2c;
const struct cx24123_config *config;
struct dvb_frontend frontend;
/* Some PLL specifics for tuning */
u32 VCAarg;
u32 VGAarg;
u32 bandselectarg;
u32 pllarg;
u32 FILTune;
struct i2c_adapter tuner_i2c_adapter;
u8 demod_rev;
/* The Demod/Tuner can't easily provide these, we cache them */
u32 currentfreq;
u32 currentsymbolrate;
};
/* Various tuner defaults need to be established for a given symbol rate Sps */
static struct cx24123_AGC_val {
u32 symbolrate_low;
u32 symbolrate_high;
u32 VCAprogdata;
u32 VGAprogdata;
u32 FILTune;
} cx24123_AGC_vals[] =
{
{
.symbolrate_low = 1000000,
.symbolrate_high = 4999999,
/* the specs recommend other values for VGA offsets,
but tests show they are wrong */
.VGAprogdata = (1 << 19) | (0x180 << 9) | 0x1e0,
.VCAprogdata = (2 << 19) | (0x07 << 9) | 0x07,
.FILTune = 0x27f /* 0.41 V */
},
{
.symbolrate_low = 5000000,
.symbolrate_high = 14999999,
.VGAprogdata = (1 << 19) | (0x180 << 9) | 0x1e0,
.VCAprogdata = (2 << 19) | (0x07 << 9) | 0x1f,
.FILTune = 0x317 /* 0.90 V */
},
{
.symbolrate_low = 15000000,
.symbolrate_high = 45000000,
.VGAprogdata = (1 << 19) | (0x100 << 9) | 0x180,
.VCAprogdata = (2 << 19) | (0x07 << 9) | 0x3f,
.FILTune = 0x145 /* 2.70 V */
},
};
/*
* Various tuner defaults need to be established for a given frequency kHz.
* fixme: The bounds on the bands do not match the doc in real life.
* fixme: Some of them have been moved, other might need adjustment.
*/
static struct cx24123_bandselect_val {
u32 freq_low;
u32 freq_high;
u32 VCOdivider;
u32 progdata;
} cx24123_bandselect_vals[] =
{
/* band 1 */
{
.freq_low = 950000,
.freq_high = 1074999,
.VCOdivider = 4,
.progdata = (0 << 19) | (0 << 9) | 0x40,
},
/* band 2 */
{
.freq_low = 1075000,
.freq_high = 1177999,
.VCOdivider = 4,
.progdata = (0 << 19) | (0 << 9) | 0x80,
},
/* band 3 */
{
.freq_low = 1178000,
.freq_high = 1295999,
.VCOdivider = 2,
.progdata = (0 << 19) | (1 << 9) | 0x01,
},
/* band 4 */
{
.freq_low = 1296000,
.freq_high = 1431999,
.VCOdivider = 2,
.progdata = (0 << 19) | (1 << 9) | 0x02,
},
/* band 5 */
{
.freq_low = 1432000,
.freq_high = 1575999,
.VCOdivider = 2,
.progdata = (0 << 19) | (1 << 9) | 0x04,
},
/* band 6 */
{
.freq_low = 1576000,
.freq_high = 1717999,
.VCOdivider = 2,
.progdata = (0 << 19) | (1 << 9) | 0x08,
},
/* band 7 */
{
.freq_low = 1718000,
.freq_high = 1855999,
.VCOdivider = 2,
.progdata = (0 << 19) | (1 << 9) | 0x10,
},
/* band 8 */
{
.freq_low = 1856000,
.freq_high = 2035999,
.VCOdivider = 2,
.progdata = (0 << 19) | (1 << 9) | 0x20,
},
/* band 9 */
{
.freq_low = 2036000,
.freq_high = 2150000,
.VCOdivider = 2,
.progdata = (0 << 19) | (1 << 9) | 0x40,
},
};
static struct {
u8 reg;
u8 data;
} cx24123_regdata[] =
{
{0x00, 0x03}, /* Reset system */
{0x00, 0x00}, /* Clear reset */
{0x03, 0x07}, /* QPSK, DVB, Auto Acquisition (default) */
{0x04, 0x10}, /* MPEG */
{0x05, 0x04}, /* MPEG */
{0x06, 0x31}, /* MPEG (default) */
{0x0b, 0x00}, /* Freq search start point (default) */
{0x0c, 0x00}, /* Demodulator sample gain (default) */
{0x0d, 0x7f}, /* Force driver to shift until the maximum (+-10 MHz) */
{0x0e, 0x03}, /* Default non-inverted, FEC 3/4 (default) */
{0x0f, 0xfe}, /* FEC search mask (all supported codes) */
{0x10, 0x01}, /* Default search inversion, no repeat (default) */
{0x16, 0x00}, /* Enable reading of frequency */
{0x17, 0x01}, /* Enable EsNO Ready Counter */
{0x1c, 0x80}, /* Enable error counter */
{0x20, 0x00}, /* Tuner burst clock rate = 500KHz */
{0x21, 0x15}, /* Tuner burst mode, word length = 0x15 */
{0x28, 0x00}, /* Enable FILTERV with positive pol., DiSEqC 2.x off */
{0x29, 0x00}, /* DiSEqC LNB_DC off */
{0x2a, 0xb0}, /* DiSEqC Parameters (default) */
{0x2b, 0x73}, /* DiSEqC Tone Frequency (default) */
{0x2c, 0x00}, /* DiSEqC Message (0x2c - 0x31) */
{0x2d, 0x00},
{0x2e, 0x00},
{0x2f, 0x00},
{0x30, 0x00},
{0x31, 0x00},
{0x32, 0x8c}, /* DiSEqC Parameters (default) */
{0x33, 0x00}, /* Interrupts off (0x33 - 0x34) */
{0x34, 0x00},
{0x35, 0x03}, /* DiSEqC Tone Amplitude (default) */
{0x36, 0x02}, /* DiSEqC Parameters (default) */
{0x37, 0x3a}, /* DiSEqC Parameters (default) */
{0x3a, 0x00}, /* Enable AGC accumulator (for signal strength) */
{0x44, 0x00}, /* Constellation (default) */
{0x45, 0x00}, /* Symbol count (default) */
{0x46, 0x0d}, /* Symbol rate estimator on (default) */
{0x56, 0xc1}, /* Error Counter = Viterbi BER */
{0x57, 0xff}, /* Error Counter Window (default) */
{0x5c, 0x20}, /* Acquisition AFC Expiration window (default is 0x10) */
{0x67, 0x83}, /* Non-DCII symbol clock */
};
static int cx24123_i2c_writereg(struct cx24123_state *state,
u8 i2c_addr, int reg, int data)
{
u8 buf[] = { reg, data };
struct i2c_msg msg = {
.addr = i2c_addr, .flags = 0, .buf = buf, .len = 2
};
int err;
/* printk(KERN_DEBUG "wr(%02x): %02x %02x\n", i2c_addr, reg, data); */
err = i2c_transfer(state->i2c, &msg, 1);
if (err != 1) {
printk("%s: writereg error(err == %i, reg == 0x%02x, data == 0x%02x)\n",
__func__, err, reg, data);
return err;
}
return 0;
}
static int cx24123_i2c_readreg(struct cx24123_state *state, u8 i2c_addr, u8 reg)
{
int ret;
u8 b = 0;
struct i2c_msg msg[] = {
{ .addr = i2c_addr, .flags = 0, .buf = &reg, .len = 1 },
{ .addr = i2c_addr, .flags = I2C_M_RD, .buf = &b, .len = 1 }
};
ret = i2c_transfer(state->i2c, msg, 2);
if (ret != 2) {
err("%s: reg=0x%x (error=%d)\n", __func__, reg, ret);
return ret;
}
/* printk(KERN_DEBUG "rd(%02x): %02x %02x\n", i2c_addr, reg, b); */
return b;
}
#define cx24123_readreg(state, reg) \
cx24123_i2c_readreg(state, state->config->demod_address, reg)
#define cx24123_writereg(state, reg, val) \
cx24123_i2c_writereg(state, state->config->demod_address, reg, val)
static int cx24123_set_inversion(struct cx24123_state *state,
enum fe_spectral_inversion inversion)
{
u8 nom_reg = cx24123_readreg(state, 0x0e);
u8 auto_reg = cx24123_readreg(state, 0x10);
switch (inversion) {
case INVERSION_OFF:
dprintk("inversion off\n");
cx24123_writereg(state, 0x0e, nom_reg & ~0x80);
cx24123_writereg(state, 0x10, auto_reg | 0x80);
break;
case INVERSION_ON:
dprintk("inversion on\n");
cx24123_writereg(state, 0x0e, nom_reg | 0x80);
cx24123_writereg(state, 0x10, auto_reg | 0x80);
break;
case INVERSION_AUTO:
dprintk("inversion auto\n");
cx24123_writereg(state, 0x10, auto_reg & ~0x80);
break;
default:
return -EINVAL;
}
return 0;
}
static int cx24123_get_inversion(struct cx24123_state *state,
enum fe_spectral_inversion *inversion)
{
u8 val;
val = cx24123_readreg(state, 0x1b) >> 7;
if (val == 0) {
dprintk("read inversion off\n");
*inversion = INVERSION_OFF;
} else {
dprintk("read inversion on\n");
*inversion = INVERSION_ON;
}
return 0;
}
static int cx24123_set_fec(struct cx24123_state *state, enum fe_code_rate fec)
{
u8 nom_reg = cx24123_readreg(state, 0x0e) & ~0x07;
if (((int)fec < FEC_NONE) || (fec > FEC_AUTO))
fec = FEC_AUTO;
/* Set the soft decision threshold */
if (fec == FEC_1_2)
cx24123_writereg(state, 0x43,
cx24123_readreg(state, 0x43) | 0x01);
else
cx24123_writereg(state, 0x43,
cx24123_readreg(state, 0x43) & ~0x01);
switch (fec) {
case FEC_1_2:
dprintk("set FEC to 1/2\n");
cx24123_writereg(state, 0x0e, nom_reg | 0x01);
cx24123_writereg(state, 0x0f, 0x02);
break;
case FEC_2_3:
dprintk("set FEC to 2/3\n");
cx24123_writereg(state, 0x0e, nom_reg | 0x02);
cx24123_writereg(state, 0x0f, 0x04);
break;
case FEC_3_4:
dprintk("set FEC to 3/4\n");
cx24123_writereg(state, 0x0e, nom_reg | 0x03);
cx24123_writereg(state, 0x0f, 0x08);
break;
case FEC_4_5:
dprintk("set FEC to 4/5\n");
cx24123_writereg(state, 0x0e, nom_reg | 0x04);
cx24123_writereg(state, 0x0f, 0x10);
break;
case FEC_5_6:
dprintk("set FEC to 5/6\n");
cx24123_writereg(state, 0x0e, nom_reg | 0x05);
cx24123_writereg(state, 0x0f, 0x20);
break;
case FEC_6_7:
dprintk("set FEC to 6/7\n");
cx24123_writereg(state, 0x0e, nom_reg | 0x06);
cx24123_writereg(state, 0x0f, 0x40);
break;
case FEC_7_8:
dprintk("set FEC to 7/8\n");
cx24123_writereg(state, 0x0e, nom_reg | 0x07);
cx24123_writereg(state, 0x0f, 0x80);
break;
case FEC_AUTO:
dprintk("set FEC to auto\n");
cx24123_writereg(state, 0x0f, 0xfe);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int cx24123_get_fec(struct cx24123_state *state, enum fe_code_rate *fec)
{
int ret;
ret = cx24123_readreg(state, 0x1b);
if (ret < 0)
return ret;
ret = ret & 0x07;
switch (ret) {
case 1:
*fec = FEC_1_2;
break;
case 2:
*fec = FEC_2_3;
break;
case 3:
*fec = FEC_3_4;
break;
case 4:
*fec = FEC_4_5;
break;
case 5:
*fec = FEC_5_6;
break;
case 6:
*fec = FEC_6_7;
break;
case 7:
*fec = FEC_7_8;
break;
default:
/* this can happen when there's no lock */
*fec = FEC_NONE;
}
return 0;
}
/* Approximation of closest integer of log2(a/b). It actually gives the
lowest integer i such that 2^i >= round(a/b) */
static u32 cx24123_int_log2(u32 a, u32 b)
{
u32 exp, nearest = 0;
u32 div = a / b;
if (a % b >= b / 2)
++div;
if (div < (1UL << 31)) {
for (exp = 1; div > exp; nearest++)
exp += exp;
}
return nearest;
}
static int cx24123_set_symbolrate(struct cx24123_state *state, u32 srate)
{
u64 tmp;
u32 sample_rate, ratio, sample_gain;
u8 pll_mult;
/* check if symbol rate is within limits */
if ((srate > state->frontend.ops.info.symbol_rate_max) ||
(srate < state->frontend.ops.info.symbol_rate_min))
return -EOPNOTSUPP;
/* choose the sampling rate high enough for the required operation,
while optimizing the power consumed by the demodulator */
if (srate < (XTAL*2)/2)
pll_mult = 2;
else if (srate < (XTAL*3)/2)
pll_mult = 3;
else if (srate < (XTAL*4)/2)
pll_mult = 4;
else if (srate < (XTAL*5)/2)
pll_mult = 5;
else if (srate < (XTAL*6)/2)
pll_mult = 6;
else if (srate < (XTAL*7)/2)
pll_mult = 7;
else if (srate < (XTAL*8)/2)
pll_mult = 8;
else
pll_mult = 9;
sample_rate = pll_mult * XTAL;
/* SYSSymbolRate[21:0] = (srate << 23) / sample_rate */
tmp = ((u64)srate) << 23;
do_div(tmp, sample_rate);
ratio = (u32) tmp;
cx24123_writereg(state, 0x01, pll_mult * 6);
cx24123_writereg(state, 0x08, (ratio >> 16) & 0x3f);
cx24123_writereg(state, 0x09, (ratio >> 8) & 0xff);
cx24123_writereg(state, 0x0a, ratio & 0xff);
/* also set the demodulator sample gain */
sample_gain = cx24123_int_log2(sample_rate, srate);
tmp = cx24123_readreg(state, 0x0c) & ~0xe0;
cx24123_writereg(state, 0x0c, tmp | sample_gain << 5);
dprintk("srate=%d, ratio=0x%08x, sample_rate=%i sample_gain=%d\n",
srate, ratio, sample_rate, sample_gain);
return 0;
}
/*
* Based on the required frequency and symbolrate, the tuner AGC has
* to be configured and the correct band selected.
* Calculate those values.
*/
static int cx24123_pll_calculate(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
struct cx24123_state *state = fe->demodulator_priv;
u32 ndiv = 0, adiv = 0, vco_div = 0;
int i = 0;
int pump = 2;
int band = 0;
int num_bands = ARRAY_SIZE(cx24123_bandselect_vals);
struct cx24123_bandselect_val *bsv = NULL;
struct cx24123_AGC_val *agcv = NULL;
/* Defaults for low freq, low rate */
state->VCAarg = cx24123_AGC_vals[0].VCAprogdata;
state->VGAarg = cx24123_AGC_vals[0].VGAprogdata;
state->bandselectarg = cx24123_bandselect_vals[0].progdata;
vco_div = cx24123_bandselect_vals[0].VCOdivider;
/* For the given symbol rate, determine the VCA, VGA and
* FILTUNE programming bits */
for (i = 0; i < ARRAY_SIZE(cx24123_AGC_vals); i++) {
agcv = &cx24123_AGC_vals[i];
if ((agcv->symbolrate_low <= p->symbol_rate) &&
(agcv->symbolrate_high >= p->symbol_rate)) {
state->VCAarg = agcv->VCAprogdata;
state->VGAarg = agcv->VGAprogdata;
state->FILTune = agcv->FILTune;
}
}
/* determine the band to use */
if (force_band < 1 || force_band > num_bands) {
for (i = 0; i < num_bands; i++) {
bsv = &cx24123_bandselect_vals[i];
if ((bsv->freq_low <= p->frequency) &&
(bsv->freq_high >= p->frequency))
band = i;
}
} else
band = force_band - 1;
state->bandselectarg = cx24123_bandselect_vals[band].progdata;
vco_div = cx24123_bandselect_vals[band].VCOdivider;
/* determine the charge pump current */
if (p->frequency < (cx24123_bandselect_vals[band].freq_low +
cx24123_bandselect_vals[band].freq_high) / 2)
pump = 0x01;
else
pump = 0x02;
/* Determine the N/A dividers for the requested lband freq (in kHz). */
/* Note: the reference divider R=10, frequency is in KHz,
* XTAL is in Hz */
ndiv = (((p->frequency * vco_div * 10) /
(2 * XTAL / 1000)) / 32) & 0x1ff;
adiv = (((p->frequency * vco_div * 10) /
(2 * XTAL / 1000)) % 32) & 0x1f;
if (adiv == 0 && ndiv > 0)
ndiv--;
/* control bits 11, refdiv 11, charge pump polarity 1,
* charge pump current, ndiv, adiv */
state->pllarg = (3 << 19) | (3 << 17) | (1 << 16) |
(pump << 14) | (ndiv << 5) | adiv;
return 0;
}
/*
* Tuner data is 21 bits long, must be left-aligned in data.
* Tuner cx24109 is written through a dedicated 3wire interface
* on the demod chip.
*/
static int cx24123_pll_writereg(struct dvb_frontend *fe, u32 data)
{
struct cx24123_state *state = fe->demodulator_priv;
unsigned long timeout;
dprintk("pll writereg called, data=0x%08x\n", data);
/* align the 21 bytes into to bit23 boundary */
data = data << 3;
/* Reset the demod pll word length to 0x15 bits */
cx24123_writereg(state, 0x21, 0x15);
/* write the msb 8 bits, wait for the send to be completed */
timeout = jiffies + msecs_to_jiffies(40);
cx24123_writereg(state, 0x22, (data >> 16) & 0xff);
while ((cx24123_readreg(state, 0x20) & 0x40) == 0) {
if (time_after(jiffies, timeout)) {
err("%s: demodulator is not responding, "\
"possibly hung, aborting.\n", __func__);
return -EREMOTEIO;
}
msleep(10);
}
/* send another 8 bytes, wait for the send to be completed */
timeout = jiffies + msecs_to_jiffies(40);
cx24123_writereg(state, 0x22, (data >> 8) & 0xff);
while ((cx24123_readreg(state, 0x20) & 0x40) == 0) {
if (time_after(jiffies, timeout)) {
err("%s: demodulator is not responding, "\
"possibly hung, aborting.\n", __func__);
return -EREMOTEIO;
}
msleep(10);
}
/* send the lower 5 bits of this byte, padded with 3 LBB,
* wait for the send to be completed */
timeout = jiffies + msecs_to_jiffies(40);
cx24123_writereg(state, 0x22, (data) & 0xff);
while ((cx24123_readreg(state, 0x20) & 0x80)) {
if (time_after(jiffies, timeout)) {
err("%s: demodulator is not responding," \
"possibly hung, aborting.\n", __func__);
return -EREMOTEIO;
}
msleep(10);
}
/* Trigger the demod to configure the tuner */
cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) | 2);
cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) & 0xfd);
return 0;
}
static int cx24123_pll_tune(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
struct cx24123_state *state = fe->demodulator_priv;
u8 val;
dprintk("frequency=%i\n", p->frequency);
if (cx24123_pll_calculate(fe) != 0) {
err("%s: cx24123_pll_calculate failed\n", __func__);
return -EINVAL;
}
/* Write the new VCO/VGA */
cx24123_pll_writereg(fe, state->VCAarg);
cx24123_pll_writereg(fe, state->VGAarg);
/* Write the new bandselect and pll args */
cx24123_pll_writereg(fe, state->bandselectarg);
cx24123_pll_writereg(fe, state->pllarg);
/* set the FILTUNE voltage */
val = cx24123_readreg(state, 0x28) & ~0x3;
cx24123_writereg(state, 0x27, state->FILTune >> 2);
cx24123_writereg(state, 0x28, val | (state->FILTune & 0x3));
dprintk("pll tune VCA=%d, band=%d, pll=%d\n", state->VCAarg,
state->bandselectarg, state->pllarg);
return 0;
}
/*
* 0x23:
* [7:7] = BTI enabled
* [6:6] = I2C repeater enabled
* [5:5] = I2C repeater start
* [0:0] = BTI start
*/
/* mode == 1 -> i2c-repeater, 0 -> bti */
static int cx24123_repeater_mode(struct cx24123_state *state, u8 mode, u8 start)
{
u8 r = cx24123_readreg(state, 0x23) & 0x1e;
if (mode)
r |= (1 << 6) | (start << 5);
else
r |= (1 << 7) | (start);
return cx24123_writereg(state, 0x23, r);
}
static int cx24123_initfe(struct dvb_frontend *fe)
{
struct cx24123_state *state = fe->demodulator_priv;
int i;
dprintk("init frontend\n");
/* Configure the demod to a good set of defaults */
for (i = 0; i < ARRAY_SIZE(cx24123_regdata); i++)
cx24123_writereg(state, cx24123_regdata[i].reg,
cx24123_regdata[i].data);
/* Set the LNB polarity */
if (state->config->lnb_polarity)
cx24123_writereg(state, 0x32,
cx24123_readreg(state, 0x32) | 0x02);
if (state->config->dont_use_pll)
cx24123_repeater_mode(state, 1, 0);
return 0;
}
static int cx24123_set_voltage(struct dvb_frontend *fe,
enum fe_sec_voltage voltage)
{
struct cx24123_state *state = fe->demodulator_priv;
u8 val;
val = cx24123_readreg(state, 0x29) & ~0x40;
switch (voltage) {
case SEC_VOLTAGE_13:
dprintk("setting voltage 13V\n");
return cx24123_writereg(state, 0x29, val & 0x7f);
case SEC_VOLTAGE_18:
dprintk("setting voltage 18V\n");
return cx24123_writereg(state, 0x29, val | 0x80);
case SEC_VOLTAGE_OFF:
/* already handled in cx88-dvb */
return 0;
default:
return -EINVAL;
}
return 0;
}
/* wait for diseqc queue to become ready (or timeout) */
static void cx24123_wait_for_diseqc(struct cx24123_state *state)
{
unsigned long timeout = jiffies + msecs_to_jiffies(200);
while (!(cx24123_readreg(state, 0x29) & 0x40)) {
if (time_after(jiffies, timeout)) {
err("%s: diseqc queue not ready, " \
"command may be lost.\n", __func__);
break;
}
msleep(10);
}
}
static int cx24123_send_diseqc_msg(struct dvb_frontend *fe,
struct dvb_diseqc_master_cmd *cmd)
{
struct cx24123_state *state = fe->demodulator_priv;
int i, val, tone;
dprintk("\n");
/* stop continuous tone if enabled */
tone = cx24123_readreg(state, 0x29);
if (tone & 0x10)
cx24123_writereg(state, 0x29, tone & ~0x50);
/* wait for diseqc queue ready */
cx24123_wait_for_diseqc(state);
/* select tone mode */
cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) & 0xfb);
for (i = 0; i < cmd->msg_len; i++)
cx24123_writereg(state, 0x2C + i, cmd->msg[i]);
val = cx24123_readreg(state, 0x29);
cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40) |
((cmd->msg_len-3) & 3));
/* wait for diseqc message to finish sending */
cx24123_wait_for_diseqc(state);
/* restart continuous tone if enabled */
if (tone & 0x10)
cx24123_writereg(state, 0x29, tone & ~0x40);
return 0;
}
static int cx24123_diseqc_send_burst(struct dvb_frontend *fe,
enum fe_sec_mini_cmd burst)
{
struct cx24123_state *state = fe->demodulator_priv;
int val, tone;
dprintk("\n");
/* stop continuous tone if enabled */
tone = cx24123_readreg(state, 0x29);
if (tone & 0x10)
cx24123_writereg(state, 0x29, tone & ~0x50);
/* wait for diseqc queue ready */
cx24123_wait_for_diseqc(state);
/* select tone mode */
cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) | 0x4);
msleep(30);
val = cx24123_readreg(state, 0x29);
if (burst == SEC_MINI_A)
cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x00));
else if (burst == SEC_MINI_B)
cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x08));
else
return -EINVAL;
cx24123_wait_for_diseqc(state);
cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) & 0xfb);
/* restart continuous tone if enabled */
if (tone & 0x10)
cx24123_writereg(state, 0x29, tone & ~0x40);
return 0;
}
static int cx24123_read_status(struct dvb_frontend *fe, enum fe_status *status)
{
struct cx24123_state *state = fe->demodulator_priv;
int sync = cx24123_readreg(state, 0x14);
*status = 0;
if (state->config->dont_use_pll) {
u32 tun_status = 0;
if (fe->ops.tuner_ops.get_status)
fe->ops.tuner_ops.get_status(fe, &tun_status);
if (tun_status & TUNER_STATUS_LOCKED)
*status |= FE_HAS_SIGNAL;
} else {
int lock = cx24123_readreg(state, 0x20);
if (lock & 0x01)
*status |= FE_HAS_SIGNAL;
}
if (sync & 0x02)
*status |= FE_HAS_CARRIER; /* Phase locked */
if (sync & 0x04)
*status |= FE_HAS_VITERBI;
/* Reed-Solomon Status */
if (sync & 0x08)
*status |= FE_HAS_SYNC;
if (sync & 0x80)
*status |= FE_HAS_LOCK; /*Full Sync */
return 0;
}
/*
* Configured to return the measurement of errors in blocks,
* because no UCBLOCKS value is available, so this value doubles up
* to satisfy both measurements.
*/
static int cx24123_read_ber(struct dvb_frontend *fe, u32 *ber)
{
struct cx24123_state *state = fe->demodulator_priv;
/* The true bit error rate is this value divided by
the window size (set as 256 * 255) */
*ber = ((cx24123_readreg(state, 0x1c) & 0x3f) << 16) |
(cx24123_readreg(state, 0x1d) << 8 |
cx24123_readreg(state, 0x1e));
dprintk("BER = %d\n", *ber);
return 0;
}
static int cx24123_read_signal_strength(struct dvb_frontend *fe,
u16 *signal_strength)
{
struct cx24123_state *state = fe->demodulator_priv;
/* larger = better */
*signal_strength = cx24123_readreg(state, 0x3b) << 8;
dprintk("Signal strength = %d\n", *signal_strength);
return 0;
}
static int cx24123_read_snr(struct dvb_frontend *fe, u16 *snr)
{
struct cx24123_state *state = fe->demodulator_priv;
/* Inverted raw Es/N0 count, totally bogus but better than the
BER threshold. */
*snr = 65535 - (((u16)cx24123_readreg(state, 0x18) << 8) |
(u16)cx24123_readreg(state, 0x19));
dprintk("read S/N index = %d\n", *snr);
return 0;
}
static int cx24123_set_frontend(struct dvb_frontend *fe)
{
struct cx24123_state *state = fe->demodulator_priv;
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
dprintk("\n");
if (state->config->set_ts_params)
state->config->set_ts_params(fe, 0);
state->currentfreq = p->frequency;
state->currentsymbolrate = p->symbol_rate;
cx24123_set_inversion(state, p->inversion);
cx24123_set_fec(state, p->fec_inner);
cx24123_set_symbolrate(state, p->symbol_rate);
if (!state->config->dont_use_pll)
cx24123_pll_tune(fe);
else if (fe->ops.tuner_ops.set_params)
fe->ops.tuner_ops.set_params(fe);
else
err("it seems I don't have a tuner...");
/* Enable automatic acquisition and reset cycle */
cx24123_writereg(state, 0x03, (cx24123_readreg(state, 0x03) | 0x07));
cx24123_writereg(state, 0x00, 0x10);
cx24123_writereg(state, 0x00, 0);
if (state->config->agc_callback)
state->config->agc_callback(fe);
return 0;
}
static int cx24123_get_frontend(struct dvb_frontend *fe,
struct dtv_frontend_properties *p)
{
struct cx24123_state *state = fe->demodulator_priv;
dprintk("\n");
if (cx24123_get_inversion(state, &p->inversion) != 0) {
err("%s: Failed to get inversion status\n", __func__);
return -EREMOTEIO;
}
if (cx24123_get_fec(state, &p->fec_inner) != 0) {
err("%s: Failed to get fec status\n", __func__);
return -EREMOTEIO;
}
p->frequency = state->currentfreq;
p->symbol_rate = state->currentsymbolrate;
return 0;
}
static int cx24123_set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone)
{
struct cx24123_state *state = fe->demodulator_priv;
u8 val;
/* wait for diseqc queue ready */
cx24123_wait_for_diseqc(state);
val = cx24123_readreg(state, 0x29) & ~0x40;
switch (tone) {
case SEC_TONE_ON:
dprintk("setting tone on\n");
return cx24123_writereg(state, 0x29, val | 0x10);
case SEC_TONE_OFF:
dprintk("setting tone off\n");
return cx24123_writereg(state, 0x29, val & 0xef);
default:
err("CASE reached default with tone=%d\n", tone);
return -EINVAL;
}
return 0;
}
static int cx24123_tune(struct dvb_frontend *fe,
bool re_tune,
unsigned int mode_flags,
unsigned int *delay,
enum fe_status *status)
{
int retval = 0;
if (re_tune)
retval = cx24123_set_frontend(fe);
if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
cx24123_read_status(fe, status);
*delay = HZ/10;
return retval;
}
static enum dvbfe_algo cx24123_get_algo(struct dvb_frontend *fe)
{
return DVBFE_ALGO_HW;
}
static void cx24123_release(struct dvb_frontend *fe)
{
struct cx24123_state *state = fe->demodulator_priv;
dprintk("\n");
i2c_del_adapter(&state->tuner_i2c_adapter);
kfree(state);
}
static int cx24123_tuner_i2c_tuner_xfer(struct i2c_adapter *i2c_adap,
struct i2c_msg msg[], int num)
{
struct cx24123_state *state = i2c_get_adapdata(i2c_adap);
/* this repeater closes after the first stop */
cx24123_repeater_mode(state, 1, 1);
return i2c_transfer(state->i2c, msg, num);
}
static u32 cx24123_tuner_i2c_func(struct i2c_adapter *adapter)
{
return I2C_FUNC_I2C;
}
static const struct i2c_algorithm cx24123_tuner_i2c_algo = {
.master_xfer = cx24123_tuner_i2c_tuner_xfer,
.functionality = cx24123_tuner_i2c_func,
};
struct i2c_adapter *
cx24123_get_tuner_i2c_adapter(struct dvb_frontend *fe)
{
struct cx24123_state *state = fe->demodulator_priv;
return &state->tuner_i2c_adapter;
}
EXPORT_SYMBOL(cx24123_get_tuner_i2c_adapter);
static const struct dvb_frontend_ops cx24123_ops;
struct dvb_frontend *cx24123_attach(const struct cx24123_config *config,
struct i2c_adapter *i2c)
{
/* allocate memory for the internal state */
struct cx24123_state *state =
kzalloc(sizeof(struct cx24123_state), GFP_KERNEL);
dprintk("\n");
if (state == NULL) {
err("Unable to kzalloc\n");
goto error;
}
/* setup the state */
state->config = config;
state->i2c = i2c;
/* check if the demod is there */
state->demod_rev = cx24123_readreg(state, 0x00);
switch (state->demod_rev) {
case 0xe1:
info("detected CX24123C\n");
break;
case 0xd1:
info("detected CX24123\n");
break;
default:
err("wrong demod revision: %x\n", state->demod_rev);
goto error;
}
/* create dvb_frontend */
memcpy(&state->frontend.ops, &cx24123_ops,
sizeof(struct dvb_frontend_ops));
state->frontend.demodulator_priv = state;
/* create tuner i2c adapter */
if (config->dont_use_pll)
cx24123_repeater_mode(state, 1, 0);
strscpy(state->tuner_i2c_adapter.name, "CX24123 tuner I2C bus",
sizeof(state->tuner_i2c_adapter.name));
state->tuner_i2c_adapter.algo = &cx24123_tuner_i2c_algo;
state->tuner_i2c_adapter.algo_data = NULL;
state->tuner_i2c_adapter.dev.parent = i2c->dev.parent;
i2c_set_adapdata(&state->tuner_i2c_adapter, state);
if (i2c_add_adapter(&state->tuner_i2c_adapter) < 0) {
err("tuner i2c bus could not be initialized\n");
goto error;
}
return &state->frontend;
error:
kfree(state);
return NULL;
}
EXPORT_SYMBOL(cx24123_attach);
static const struct dvb_frontend_ops cx24123_ops = {
.delsys = { SYS_DVBS },
.info = {
.name = "Conexant CX24123/CX24109",
.frequency_min_hz = 950 * MHz,
.frequency_max_hz = 2150 * MHz,
.frequency_stepsize_hz = 1011 * kHz,
.frequency_tolerance_hz = 5 * MHz,
.symbol_rate_min = 1000000,
.symbol_rate_max = 45000000,
.caps = FE_CAN_INVERSION_AUTO |
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_RECOVER
},
.release = cx24123_release,
.init = cx24123_initfe,
.set_frontend = cx24123_set_frontend,
.get_frontend = cx24123_get_frontend,
.read_status = cx24123_read_status,
.read_ber = cx24123_read_ber,
.read_signal_strength = cx24123_read_signal_strength,
.read_snr = cx24123_read_snr,
.diseqc_send_master_cmd = cx24123_send_diseqc_msg,
.diseqc_send_burst = cx24123_diseqc_send_burst,
.set_tone = cx24123_set_tone,
.set_voltage = cx24123_set_voltage,
.tune = cx24123_tune,
.get_frontend_algo = cx24123_get_algo,
};
MODULE_DESCRIPTION("DVB Frontend module for Conexant " \
"CX24123/CX24109/CX24113 hardware");
MODULE_AUTHOR("Steven Toth");
MODULE_LICENSE("GPL");