2356 lines
58 KiB
C
2356 lines
58 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/*
|
||
|
* linux/drivers/mmc/core/core.c
|
||
|
*
|
||
|
* Copyright (C) 2003-2004 Russell King, All Rights Reserved.
|
||
|
* SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
|
||
|
* Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
|
||
|
* MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
|
||
|
*/
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/completion.h>
|
||
|
#include <linux/device.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/pagemap.h>
|
||
|
#include <linux/err.h>
|
||
|
#include <linux/leds.h>
|
||
|
#include <linux/scatterlist.h>
|
||
|
#include <linux/log2.h>
|
||
|
#include <linux/pm_runtime.h>
|
||
|
#include <linux/pm_wakeup.h>
|
||
|
#include <linux/suspend.h>
|
||
|
#include <linux/fault-inject.h>
|
||
|
#include <linux/random.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/of.h>
|
||
|
|
||
|
#include <linux/mmc/card.h>
|
||
|
#include <linux/mmc/host.h>
|
||
|
#include <linux/mmc/mmc.h>
|
||
|
#include <linux/mmc/sd.h>
|
||
|
#include <linux/mmc/slot-gpio.h>
|
||
|
|
||
|
#define CREATE_TRACE_POINTS
|
||
|
#include <trace/events/mmc.h>
|
||
|
|
||
|
#include "core.h"
|
||
|
#include "card.h"
|
||
|
#include "crypto.h"
|
||
|
#include "bus.h"
|
||
|
#include "host.h"
|
||
|
#include "sdio_bus.h"
|
||
|
#include "pwrseq.h"
|
||
|
|
||
|
#include "mmc_ops.h"
|
||
|
#include "sd_ops.h"
|
||
|
#include "sdio_ops.h"
|
||
|
|
||
|
/* The max erase timeout, used when host->max_busy_timeout isn't specified */
|
||
|
#define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
|
||
|
#define SD_DISCARD_TIMEOUT_MS (250)
|
||
|
|
||
|
static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
|
||
|
|
||
|
/*
|
||
|
* Enabling software CRCs on the data blocks can be a significant (30%)
|
||
|
* performance cost, and for other reasons may not always be desired.
|
||
|
* So we allow it to be disabled.
|
||
|
*/
|
||
|
bool use_spi_crc = 1;
|
||
|
module_param(use_spi_crc, bool, 0);
|
||
|
|
||
|
static int mmc_schedule_delayed_work(struct delayed_work *work,
|
||
|
unsigned long delay)
|
||
|
{
|
||
|
/*
|
||
|
* We use the system_freezable_wq, because of two reasons.
|
||
|
* First, it allows several works (not the same work item) to be
|
||
|
* executed simultaneously. Second, the queue becomes frozen when
|
||
|
* userspace becomes frozen during system PM.
|
||
|
*/
|
||
|
return queue_delayed_work(system_freezable_wq, work, delay);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_FAIL_MMC_REQUEST
|
||
|
|
||
|
/*
|
||
|
* Internal function. Inject random data errors.
|
||
|
* If mmc_data is NULL no errors are injected.
|
||
|
*/
|
||
|
static void mmc_should_fail_request(struct mmc_host *host,
|
||
|
struct mmc_request *mrq)
|
||
|
{
|
||
|
struct mmc_command *cmd = mrq->cmd;
|
||
|
struct mmc_data *data = mrq->data;
|
||
|
static const int data_errors[] = {
|
||
|
-ETIMEDOUT,
|
||
|
-EILSEQ,
|
||
|
-EIO,
|
||
|
};
|
||
|
|
||
|
if (!data)
|
||
|
return;
|
||
|
|
||
|
if ((cmd && cmd->error) || data->error ||
|
||
|
!should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
|
||
|
return;
|
||
|
|
||
|
data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
|
||
|
data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
|
||
|
}
|
||
|
|
||
|
#else /* CONFIG_FAIL_MMC_REQUEST */
|
||
|
|
||
|
static inline void mmc_should_fail_request(struct mmc_host *host,
|
||
|
struct mmc_request *mrq)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
#endif /* CONFIG_FAIL_MMC_REQUEST */
|
||
|
|
||
|
static inline void mmc_complete_cmd(struct mmc_request *mrq)
|
||
|
{
|
||
|
if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
|
||
|
complete_all(&mrq->cmd_completion);
|
||
|
}
|
||
|
|
||
|
void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
|
||
|
{
|
||
|
if (!mrq->cap_cmd_during_tfr)
|
||
|
return;
|
||
|
|
||
|
mmc_complete_cmd(mrq);
|
||
|
|
||
|
pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
|
||
|
mmc_hostname(host), mrq->cmd->opcode);
|
||
|
}
|
||
|
EXPORT_SYMBOL(mmc_command_done);
|
||
|
|
||
|
/**
|
||
|
* mmc_request_done - finish processing an MMC request
|
||
|
* @host: MMC host which completed request
|
||
|
* @mrq: MMC request which request
|
||
|
*
|
||
|
* MMC drivers should call this function when they have completed
|
||
|
* their processing of a request.
|
||
|
*/
|
||
|
void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
|
||
|
{
|
||
|
struct mmc_command *cmd = mrq->cmd;
|
||
|
int err = cmd->error;
|
||
|
|
||
|
/* Flag re-tuning needed on CRC errors */
|
||
|
if (!mmc_op_tuning(cmd->opcode) &&
|
||
|
!host->retune_crc_disable &&
|
||
|
(err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
|
||
|
(mrq->data && mrq->data->error == -EILSEQ) ||
|
||
|
(mrq->stop && mrq->stop->error == -EILSEQ)))
|
||
|
mmc_retune_needed(host);
|
||
|
|
||
|
if (err && cmd->retries && mmc_host_is_spi(host)) {
|
||
|
if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
|
||
|
cmd->retries = 0;
|
||
|
}
|
||
|
|
||
|
if (host->ongoing_mrq == mrq)
|
||
|
host->ongoing_mrq = NULL;
|
||
|
|
||
|
mmc_complete_cmd(mrq);
|
||
|
|
||
|
trace_mmc_request_done(host, mrq);
|
||
|
|
||
|
/*
|
||
|
* We list various conditions for the command to be considered
|
||
|
* properly done:
|
||
|
*
|
||
|
* - There was no error, OK fine then
|
||
|
* - We are not doing some kind of retry
|
||
|
* - The card was removed (...so just complete everything no matter
|
||
|
* if there are errors or retries)
|
||
|
*/
|
||
|
if (!err || !cmd->retries || mmc_card_removed(host->card)) {
|
||
|
mmc_should_fail_request(host, mrq);
|
||
|
|
||
|
if (!host->ongoing_mrq)
|
||
|
led_trigger_event(host->led, LED_OFF);
|
||
|
|
||
|
if (mrq->sbc) {
|
||
|
pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
|
||
|
mmc_hostname(host), mrq->sbc->opcode,
|
||
|
mrq->sbc->error,
|
||
|
mrq->sbc->resp[0], mrq->sbc->resp[1],
|
||
|
mrq->sbc->resp[2], mrq->sbc->resp[3]);
|
||
|
}
|
||
|
|
||
|
pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
|
||
|
mmc_hostname(host), cmd->opcode, err,
|
||
|
cmd->resp[0], cmd->resp[1],
|
||
|
cmd->resp[2], cmd->resp[3]);
|
||
|
|
||
|
if (mrq->data) {
|
||
|
pr_debug("%s: %d bytes transferred: %d\n",
|
||
|
mmc_hostname(host),
|
||
|
mrq->data->bytes_xfered, mrq->data->error);
|
||
|
}
|
||
|
|
||
|
if (mrq->stop) {
|
||
|
pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
|
||
|
mmc_hostname(host), mrq->stop->opcode,
|
||
|
mrq->stop->error,
|
||
|
mrq->stop->resp[0], mrq->stop->resp[1],
|
||
|
mrq->stop->resp[2], mrq->stop->resp[3]);
|
||
|
}
|
||
|
}
|
||
|
/*
|
||
|
* Request starter must handle retries - see
|
||
|
* mmc_wait_for_req_done().
|
||
|
*/
|
||
|
if (mrq->done)
|
||
|
mrq->done(mrq);
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(mmc_request_done);
|
||
|
|
||
|
static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
|
||
|
{
|
||
|
int err;
|
||
|
|
||
|
/* Assumes host controller has been runtime resumed by mmc_claim_host */
|
||
|
err = mmc_retune(host);
|
||
|
if (err) {
|
||
|
mrq->cmd->error = err;
|
||
|
mmc_request_done(host, mrq);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* For sdio rw commands we must wait for card busy otherwise some
|
||
|
* sdio devices won't work properly.
|
||
|
* And bypass I/O abort, reset and bus suspend operations.
|
||
|
*/
|
||
|
if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
|
||
|
host->ops->card_busy) {
|
||
|
int tries = 500; /* Wait aprox 500ms at maximum */
|
||
|
|
||
|
while (host->ops->card_busy(host) && --tries)
|
||
|
mmc_delay(1);
|
||
|
|
||
|
if (tries == 0) {
|
||
|
mrq->cmd->error = -EBUSY;
|
||
|
mmc_request_done(host, mrq);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (mrq->cap_cmd_during_tfr) {
|
||
|
host->ongoing_mrq = mrq;
|
||
|
/*
|
||
|
* Retry path could come through here without having waiting on
|
||
|
* cmd_completion, so ensure it is reinitialised.
|
||
|
*/
|
||
|
reinit_completion(&mrq->cmd_completion);
|
||
|
}
|
||
|
|
||
|
trace_mmc_request_start(host, mrq);
|
||
|
|
||
|
if (host->cqe_on)
|
||
|
host->cqe_ops->cqe_off(host);
|
||
|
|
||
|
host->ops->request(host, mrq);
|
||
|
}
|
||
|
|
||
|
static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
|
||
|
bool cqe)
|
||
|
{
|
||
|
if (mrq->sbc) {
|
||
|
pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
|
||
|
mmc_hostname(host), mrq->sbc->opcode,
|
||
|
mrq->sbc->arg, mrq->sbc->flags);
|
||
|
}
|
||
|
|
||
|
if (mrq->cmd) {
|
||
|
pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
|
||
|
mmc_hostname(host), cqe ? "CQE direct " : "",
|
||
|
mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
|
||
|
} else if (cqe) {
|
||
|
pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
|
||
|
mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
|
||
|
}
|
||
|
|
||
|
if (mrq->data) {
|
||
|
pr_debug("%s: blksz %d blocks %d flags %08x "
|
||
|
"tsac %d ms nsac %d\n",
|
||
|
mmc_hostname(host), mrq->data->blksz,
|
||
|
mrq->data->blocks, mrq->data->flags,
|
||
|
mrq->data->timeout_ns / 1000000,
|
||
|
mrq->data->timeout_clks);
|
||
|
}
|
||
|
|
||
|
if (mrq->stop) {
|
||
|
pr_debug("%s: CMD%u arg %08x flags %08x\n",
|
||
|
mmc_hostname(host), mrq->stop->opcode,
|
||
|
mrq->stop->arg, mrq->stop->flags);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
|
||
|
{
|
||
|
unsigned int i, sz = 0;
|
||
|
struct scatterlist *sg;
|
||
|
|
||
|
if (mrq->cmd) {
|
||
|
mrq->cmd->error = 0;
|
||
|
mrq->cmd->mrq = mrq;
|
||
|
mrq->cmd->data = mrq->data;
|
||
|
}
|
||
|
if (mrq->sbc) {
|
||
|
mrq->sbc->error = 0;
|
||
|
mrq->sbc->mrq = mrq;
|
||
|
}
|
||
|
if (mrq->data) {
|
||
|
if (mrq->data->blksz > host->max_blk_size ||
|
||
|
mrq->data->blocks > host->max_blk_count ||
|
||
|
mrq->data->blocks * mrq->data->blksz > host->max_req_size)
|
||
|
return -EINVAL;
|
||
|
|
||
|
for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
|
||
|
sz += sg->length;
|
||
|
if (sz != mrq->data->blocks * mrq->data->blksz)
|
||
|
return -EINVAL;
|
||
|
|
||
|
mrq->data->error = 0;
|
||
|
mrq->data->mrq = mrq;
|
||
|
if (mrq->stop) {
|
||
|
mrq->data->stop = mrq->stop;
|
||
|
mrq->stop->error = 0;
|
||
|
mrq->stop->mrq = mrq;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
|
||
|
{
|
||
|
int err;
|
||
|
|
||
|
init_completion(&mrq->cmd_completion);
|
||
|
|
||
|
mmc_retune_hold(host);
|
||
|
|
||
|
if (mmc_card_removed(host->card))
|
||
|
return -ENOMEDIUM;
|
||
|
|
||
|
mmc_mrq_pr_debug(host, mrq, false);
|
||
|
|
||
|
WARN_ON(!host->claimed);
|
||
|
|
||
|
err = mmc_mrq_prep(host, mrq);
|
||
|
if (err)
|
||
|
return err;
|
||
|
|
||
|
led_trigger_event(host->led, LED_FULL);
|
||
|
__mmc_start_request(host, mrq);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL(mmc_start_request);
|
||
|
|
||
|
static void mmc_wait_done(struct mmc_request *mrq)
|
||
|
{
|
||
|
complete(&mrq->completion);
|
||
|
}
|
||
|
|
||
|
static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
|
||
|
{
|
||
|
struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
|
||
|
|
||
|
/*
|
||
|
* If there is an ongoing transfer, wait for the command line to become
|
||
|
* available.
|
||
|
*/
|
||
|
if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
|
||
|
wait_for_completion(&ongoing_mrq->cmd_completion);
|
||
|
}
|
||
|
|
||
|
static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
|
||
|
{
|
||
|
int err;
|
||
|
|
||
|
mmc_wait_ongoing_tfr_cmd(host);
|
||
|
|
||
|
init_completion(&mrq->completion);
|
||
|
mrq->done = mmc_wait_done;
|
||
|
|
||
|
err = mmc_start_request(host, mrq);
|
||
|
if (err) {
|
||
|
mrq->cmd->error = err;
|
||
|
mmc_complete_cmd(mrq);
|
||
|
complete(&mrq->completion);
|
||
|
}
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
|
||
|
{
|
||
|
struct mmc_command *cmd;
|
||
|
|
||
|
while (1) {
|
||
|
wait_for_completion(&mrq->completion);
|
||
|
|
||
|
cmd = mrq->cmd;
|
||
|
|
||
|
if (!cmd->error || !cmd->retries ||
|
||
|
mmc_card_removed(host->card))
|
||
|
break;
|
||
|
|
||
|
mmc_retune_recheck(host);
|
||
|
|
||
|
pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
|
||
|
mmc_hostname(host), cmd->opcode, cmd->error);
|
||
|
cmd->retries--;
|
||
|
cmd->error = 0;
|
||
|
__mmc_start_request(host, mrq);
|
||
|
}
|
||
|
|
||
|
mmc_retune_release(host);
|
||
|
}
|
||
|
EXPORT_SYMBOL(mmc_wait_for_req_done);
|
||
|
|
||
|
/*
|
||
|
* mmc_cqe_start_req - Start a CQE request.
|
||
|
* @host: MMC host to start the request
|
||
|
* @mrq: request to start
|
||
|
*
|
||
|
* Start the request, re-tuning if needed and it is possible. Returns an error
|
||
|
* code if the request fails to start or -EBUSY if CQE is busy.
|
||
|
*/
|
||
|
int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
|
||
|
{
|
||
|
int err;
|
||
|
|
||
|
/*
|
||
|
* CQE cannot process re-tuning commands. Caller must hold retuning
|
||
|
* while CQE is in use. Re-tuning can happen here only when CQE has no
|
||
|
* active requests i.e. this is the first. Note, re-tuning will call
|
||
|
* ->cqe_off().
|
||
|
*/
|
||
|
err = mmc_retune(host);
|
||
|
if (err)
|
||
|
goto out_err;
|
||
|
|
||
|
mrq->host = host;
|
||
|
|
||
|
mmc_mrq_pr_debug(host, mrq, true);
|
||
|
|
||
|
err = mmc_mrq_prep(host, mrq);
|
||
|
if (err)
|
||
|
goto out_err;
|
||
|
|
||
|
err = host->cqe_ops->cqe_request(host, mrq);
|
||
|
if (err)
|
||
|
goto out_err;
|
||
|
|
||
|
trace_mmc_request_start(host, mrq);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
out_err:
|
||
|
if (mrq->cmd) {
|
||
|
pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
|
||
|
mmc_hostname(host), mrq->cmd->opcode, err);
|
||
|
} else {
|
||
|
pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
|
||
|
mmc_hostname(host), mrq->tag, err);
|
||
|
}
|
||
|
return err;
|
||
|
}
|
||
|
EXPORT_SYMBOL(mmc_cqe_start_req);
|
||
|
|
||
|
/**
|
||
|
* mmc_cqe_request_done - CQE has finished processing an MMC request
|
||
|
* @host: MMC host which completed request
|
||
|
* @mrq: MMC request which completed
|
||
|
*
|
||
|
* CQE drivers should call this function when they have completed
|
||
|
* their processing of a request.
|
||
|
*/
|
||
|
void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
|
||
|
{
|
||
|
mmc_should_fail_request(host, mrq);
|
||
|
|
||
|
/* Flag re-tuning needed on CRC errors */
|
||
|
if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
|
||
|
(mrq->data && mrq->data->error == -EILSEQ))
|
||
|
mmc_retune_needed(host);
|
||
|
|
||
|
trace_mmc_request_done(host, mrq);
|
||
|
|
||
|
if (mrq->cmd) {
|
||
|
pr_debug("%s: CQE req done (direct CMD%u): %d\n",
|
||
|
mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
|
||
|
} else {
|
||
|
pr_debug("%s: CQE transfer done tag %d\n",
|
||
|
mmc_hostname(host), mrq->tag);
|
||
|
}
|
||
|
|
||
|
if (mrq->data) {
|
||
|
pr_debug("%s: %d bytes transferred: %d\n",
|
||
|
mmc_hostname(host),
|
||
|
mrq->data->bytes_xfered, mrq->data->error);
|
||
|
}
|
||
|
|
||
|
mrq->done(mrq);
|
||
|
}
|
||
|
EXPORT_SYMBOL(mmc_cqe_request_done);
|
||
|
|
||
|
/**
|
||
|
* mmc_cqe_post_req - CQE post process of a completed MMC request
|
||
|
* @host: MMC host
|
||
|
* @mrq: MMC request to be processed
|
||
|
*/
|
||
|
void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
|
||
|
{
|
||
|
if (host->cqe_ops->cqe_post_req)
|
||
|
host->cqe_ops->cqe_post_req(host, mrq);
|
||
|
}
|
||
|
EXPORT_SYMBOL(mmc_cqe_post_req);
|
||
|
|
||
|
/* Arbitrary 1 second timeout */
|
||
|
#define MMC_CQE_RECOVERY_TIMEOUT 1000
|
||
|
|
||
|
/*
|
||
|
* mmc_cqe_recovery - Recover from CQE errors.
|
||
|
* @host: MMC host to recover
|
||
|
*
|
||
|
* Recovery consists of stopping CQE, stopping eMMC, discarding the queue
|
||
|
* in eMMC, and discarding the queue in CQE. CQE must call
|
||
|
* mmc_cqe_request_done() on all requests. An error is returned if the eMMC
|
||
|
* fails to discard its queue.
|
||
|
*/
|
||
|
int mmc_cqe_recovery(struct mmc_host *host)
|
||
|
{
|
||
|
struct mmc_command cmd;
|
||
|
int err;
|
||
|
|
||
|
mmc_retune_hold_now(host);
|
||
|
|
||
|
/*
|
||
|
* Recovery is expected seldom, if at all, but it reduces performance,
|
||
|
* so make sure it is not completely silent.
|
||
|
*/
|
||
|
pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
|
||
|
|
||
|
host->cqe_ops->cqe_recovery_start(host);
|
||
|
|
||
|
memset(&cmd, 0, sizeof(cmd));
|
||
|
cmd.opcode = MMC_STOP_TRANSMISSION;
|
||
|
cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
|
||
|
cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
|
||
|
cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
|
||
|
mmc_wait_for_cmd(host, &cmd, 0);
|
||
|
|
||
|
memset(&cmd, 0, sizeof(cmd));
|
||
|
cmd.opcode = MMC_CMDQ_TASK_MGMT;
|
||
|
cmd.arg = 1; /* Discard entire queue */
|
||
|
cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
|
||
|
cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
|
||
|
cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
|
||
|
err = mmc_wait_for_cmd(host, &cmd, 0);
|
||
|
|
||
|
host->cqe_ops->cqe_recovery_finish(host);
|
||
|
|
||
|
mmc_retune_release(host);
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
EXPORT_SYMBOL(mmc_cqe_recovery);
|
||
|
|
||
|
/**
|
||
|
* mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
|
||
|
* @host: MMC host
|
||
|
* @mrq: MMC request
|
||
|
*
|
||
|
* mmc_is_req_done() is used with requests that have
|
||
|
* mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
|
||
|
* starting a request and before waiting for it to complete. That is,
|
||
|
* either in between calls to mmc_start_req(), or after mmc_wait_for_req()
|
||
|
* and before mmc_wait_for_req_done(). If it is called at other times the
|
||
|
* result is not meaningful.
|
||
|
*/
|
||
|
bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
|
||
|
{
|
||
|
return completion_done(&mrq->completion);
|
||
|
}
|
||
|
EXPORT_SYMBOL(mmc_is_req_done);
|
||
|
|
||
|
/**
|
||
|
* mmc_wait_for_req - start a request and wait for completion
|
||
|
* @host: MMC host to start command
|
||
|
* @mrq: MMC request to start
|
||
|
*
|
||
|
* Start a new MMC custom command request for a host, and wait
|
||
|
* for the command to complete. In the case of 'cap_cmd_during_tfr'
|
||
|
* requests, the transfer is ongoing and the caller can issue further
|
||
|
* commands that do not use the data lines, and then wait by calling
|
||
|
* mmc_wait_for_req_done().
|
||
|
* Does not attempt to parse the response.
|
||
|
*/
|
||
|
void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
|
||
|
{
|
||
|
__mmc_start_req(host, mrq);
|
||
|
|
||
|
if (!mrq->cap_cmd_during_tfr)
|
||
|
mmc_wait_for_req_done(host, mrq);
|
||
|
}
|
||
|
EXPORT_SYMBOL(mmc_wait_for_req);
|
||
|
|
||
|
/**
|
||
|
* mmc_wait_for_cmd - start a command and wait for completion
|
||
|
* @host: MMC host to start command
|
||
|
* @cmd: MMC command to start
|
||
|
* @retries: maximum number of retries
|
||
|
*
|
||
|
* Start a new MMC command for a host, and wait for the command
|
||
|
* to complete. Return any error that occurred while the command
|
||
|
* was executing. Do not attempt to parse the response.
|
||
|
*/
|
||
|
int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
|
||
|
{
|
||
|
struct mmc_request mrq = {};
|
||
|
|
||
|
WARN_ON(!host->claimed);
|
||
|
|
||
|
memset(cmd->resp, 0, sizeof(cmd->resp));
|
||
|
cmd->retries = retries;
|
||
|
|
||
|
mrq.cmd = cmd;
|
||
|
cmd->data = NULL;
|
||
|
|
||
|
mmc_wait_for_req(host, &mrq);
|
||
|
|
||
|
return cmd->error;
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(mmc_wait_for_cmd);
|
||
|
|
||
|
/**
|
||
|
* mmc_set_data_timeout - set the timeout for a data command
|
||
|
* @data: data phase for command
|
||
|
* @card: the MMC card associated with the data transfer
|
||
|
*
|
||
|
* Computes the data timeout parameters according to the
|
||
|
* correct algorithm given the card type.
|
||
|
*/
|
||
|
void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
|
||
|
{
|
||
|
unsigned int mult;
|
||
|
|
||
|
/*
|
||
|
* SDIO cards only define an upper 1 s limit on access.
|
||
|
*/
|
||
|
if (mmc_card_sdio(card)) {
|
||
|
data->timeout_ns = 1000000000;
|
||
|
data->timeout_clks = 0;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* SD cards use a 100 multiplier rather than 10
|
||
|
*/
|
||
|
mult = mmc_card_sd(card) ? 100 : 10;
|
||
|
|
||
|
/*
|
||
|
* Scale up the multiplier (and therefore the timeout) by
|
||
|
* the r2w factor for writes.
|
||
|
*/
|
||
|
if (data->flags & MMC_DATA_WRITE)
|
||
|
mult <<= card->csd.r2w_factor;
|
||
|
|
||
|
data->timeout_ns = card->csd.taac_ns * mult;
|
||
|
data->timeout_clks = card->csd.taac_clks * mult;
|
||
|
|
||
|
/*
|
||
|
* SD cards also have an upper limit on the timeout.
|
||
|
*/
|
||
|
if (mmc_card_sd(card)) {
|
||
|
unsigned int timeout_us, limit_us;
|
||
|
|
||
|
timeout_us = data->timeout_ns / 1000;
|
||
|
if (card->host->ios.clock)
|
||
|
timeout_us += data->timeout_clks * 1000 /
|
||
|
(card->host->ios.clock / 1000);
|
||
|
|
||
|
if (data->flags & MMC_DATA_WRITE)
|
||
|
/*
|
||
|
* The MMC spec "It is strongly recommended
|
||
|
* for hosts to implement more than 500ms
|
||
|
* timeout value even if the card indicates
|
||
|
* the 250ms maximum busy length." Even the
|
||
|
* previous value of 300ms is known to be
|
||
|
* insufficient for some cards.
|
||
|
*/
|
||
|
limit_us = 3000000;
|
||
|
else
|
||
|
limit_us = 100000;
|
||
|
|
||
|
/*
|
||
|
* SDHC cards always use these fixed values.
|
||
|
*/
|
||
|
if (timeout_us > limit_us) {
|
||
|
data->timeout_ns = limit_us * 1000;
|
||
|
data->timeout_clks = 0;
|
||
|
}
|
||
|
|
||
|
/* assign limit value if invalid */
|
||
|
if (timeout_us == 0)
|
||
|
data->timeout_ns = limit_us * 1000;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Some cards require longer data read timeout than indicated in CSD.
|
||
|
* Address this by setting the read timeout to a "reasonably high"
|
||
|
* value. For the cards tested, 600ms has proven enough. If necessary,
|
||
|
* this value can be increased if other problematic cards require this.
|
||
|
*/
|
||
|
if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
|
||
|
data->timeout_ns = 600000000;
|
||
|
data->timeout_clks = 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Some cards need very high timeouts if driven in SPI mode.
|
||
|
* The worst observed timeout was 900ms after writing a
|
||
|
* continuous stream of data until the internal logic
|
||
|
* overflowed.
|
||
|
*/
|
||
|
if (mmc_host_is_spi(card->host)) {
|
||
|
if (data->flags & MMC_DATA_WRITE) {
|
||
|
if (data->timeout_ns < 1000000000)
|
||
|
data->timeout_ns = 1000000000; /* 1s */
|
||
|
} else {
|
||
|
if (data->timeout_ns < 100000000)
|
||
|
data->timeout_ns = 100000000; /* 100ms */
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL(mmc_set_data_timeout);
|
||
|
|
||
|
/*
|
||
|
* Allow claiming an already claimed host if the context is the same or there is
|
||
|
* no context but the task is the same.
|
||
|
*/
|
||
|
static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
|
||
|
struct task_struct *task)
|
||
|
{
|
||
|
return host->claimer == ctx ||
|
||
|
(!ctx && task && host->claimer->task == task);
|
||
|
}
|
||
|
|
||
|
static inline void mmc_ctx_set_claimer(struct mmc_host *host,
|
||
|
struct mmc_ctx *ctx,
|
||
|
struct task_struct *task)
|
||
|
{
|
||
|
if (!host->claimer) {
|
||
|
if (ctx)
|
||
|
host->claimer = ctx;
|
||
|
else
|
||
|
host->claimer = &host->default_ctx;
|
||
|
}
|
||
|
if (task)
|
||
|
host->claimer->task = task;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* __mmc_claim_host - exclusively claim a host
|
||
|
* @host: mmc host to claim
|
||
|
* @ctx: context that claims the host or NULL in which case the default
|
||
|
* context will be used
|
||
|
* @abort: whether or not the operation should be aborted
|
||
|
*
|
||
|
* Claim a host for a set of operations. If @abort is non null and
|
||
|
* dereference a non-zero value then this will return prematurely with
|
||
|
* that non-zero value without acquiring the lock. Returns zero
|
||
|
* with the lock held otherwise.
|
||
|
*/
|
||
|
int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
|
||
|
atomic_t *abort)
|
||
|
{
|
||
|
struct task_struct *task = ctx ? NULL : current;
|
||
|
DECLARE_WAITQUEUE(wait, current);
|
||
|
unsigned long flags;
|
||
|
int stop;
|
||
|
bool pm = false;
|
||
|
|
||
|
might_sleep();
|
||
|
|
||
|
add_wait_queue(&host->wq, &wait);
|
||
|
spin_lock_irqsave(&host->lock, flags);
|
||
|
while (1) {
|
||
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
||
|
stop = abort ? atomic_read(abort) : 0;
|
||
|
if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
|
||
|
break;
|
||
|
spin_unlock_irqrestore(&host->lock, flags);
|
||
|
schedule();
|
||
|
spin_lock_irqsave(&host->lock, flags);
|
||
|
}
|
||
|
set_current_state(TASK_RUNNING);
|
||
|
if (!stop) {
|
||
|
host->claimed = 1;
|
||
|
mmc_ctx_set_claimer(host, ctx, task);
|
||
|
host->claim_cnt += 1;
|
||
|
if (host->claim_cnt == 1)
|
||
|
pm = true;
|
||
|
} else
|
||
|
wake_up(&host->wq);
|
||
|
spin_unlock_irqrestore(&host->lock, flags);
|
||
|
remove_wait_queue(&host->wq, &wait);
|
||
|
|
||
|
if (pm)
|
||
|
pm_runtime_get_sync(mmc_dev(host));
|
||
|
|
||
|
return stop;
|
||
|
}
|
||
|
EXPORT_SYMBOL(__mmc_claim_host);
|
||
|
|
||
|
/**
|
||
|
* mmc_release_host - release a host
|
||
|
* @host: mmc host to release
|
||
|
*
|
||
|
* Release a MMC host, allowing others to claim the host
|
||
|
* for their operations.
|
||
|
*/
|
||
|
void mmc_release_host(struct mmc_host *host)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
|
||
|
WARN_ON(!host->claimed);
|
||
|
|
||
|
spin_lock_irqsave(&host->lock, flags);
|
||
|
if (--host->claim_cnt) {
|
||
|
/* Release for nested claim */
|
||
|
spin_unlock_irqrestore(&host->lock, flags);
|
||
|
} else {
|
||
|
host->claimed = 0;
|
||
|
host->claimer->task = NULL;
|
||
|
host->claimer = NULL;
|
||
|
spin_unlock_irqrestore(&host->lock, flags);
|
||
|
wake_up(&host->wq);
|
||
|
pm_runtime_mark_last_busy(mmc_dev(host));
|
||
|
if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
|
||
|
pm_runtime_put_sync_suspend(mmc_dev(host));
|
||
|
else
|
||
|
pm_runtime_put_autosuspend(mmc_dev(host));
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL(mmc_release_host);
|
||
|
|
||
|
/*
|
||
|
* This is a helper function, which fetches a runtime pm reference for the
|
||
|
* card device and also claims the host.
|
||
|
*/
|
||
|
void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
|
||
|
{
|
||
|
pm_runtime_get_sync(&card->dev);
|
||
|
__mmc_claim_host(card->host, ctx, NULL);
|
||
|
}
|
||
|
EXPORT_SYMBOL(mmc_get_card);
|
||
|
|
||
|
/*
|
||
|
* This is a helper function, which releases the host and drops the runtime
|
||
|
* pm reference for the card device.
|
||
|
*/
|
||
|
void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
|
||
|
{
|
||
|
struct mmc_host *host = card->host;
|
||
|
|
||
|
WARN_ON(ctx && host->claimer != ctx);
|
||
|
|
||
|
mmc_release_host(host);
|
||
|
pm_runtime_mark_last_busy(&card->dev);
|
||
|
pm_runtime_put_autosuspend(&card->dev);
|
||
|
}
|
||
|
EXPORT_SYMBOL(mmc_put_card);
|
||
|
|
||
|
/*
|
||
|
* Internal function that does the actual ios call to the host driver,
|
||
|
* optionally printing some debug output.
|
||
|
*/
|
||
|
static inline void mmc_set_ios(struct mmc_host *host)
|
||
|
{
|
||
|
struct mmc_ios *ios = &host->ios;
|
||
|
|
||
|
pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
|
||
|
"width %u timing %u\n",
|
||
|
mmc_hostname(host), ios->clock, ios->bus_mode,
|
||
|
ios->power_mode, ios->chip_select, ios->vdd,
|
||
|
1 << ios->bus_width, ios->timing);
|
||
|
|
||
|
host->ops->set_ios(host, ios);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Control chip select pin on a host.
|
||
|
*/
|
||
|
void mmc_set_chip_select(struct mmc_host *host, int mode)
|
||
|
{
|
||
|
host->ios.chip_select = mode;
|
||
|
mmc_set_ios(host);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Sets the host clock to the highest possible frequency that
|
||
|
* is below "hz".
|
||
|
*/
|
||
|
void mmc_set_clock(struct mmc_host *host, unsigned int hz)
|
||
|
{
|
||
|
WARN_ON(hz && hz < host->f_min);
|
||
|
|
||
|
if (hz > host->f_max)
|
||
|
hz = host->f_max;
|
||
|
|
||
|
host->ios.clock = hz;
|
||
|
mmc_set_ios(host);
|
||
|
}
|
||
|
|
||
|
int mmc_execute_tuning(struct mmc_card *card)
|
||
|
{
|
||
|
struct mmc_host *host = card->host;
|
||
|
u32 opcode;
|
||
|
int err;
|
||
|
|
||
|
if (!host->ops->execute_tuning)
|
||
|
return 0;
|
||
|
|
||
|
if (host->cqe_on)
|
||
|
host->cqe_ops->cqe_off(host);
|
||
|
|
||
|
if (mmc_card_mmc(card))
|
||
|
opcode = MMC_SEND_TUNING_BLOCK_HS200;
|
||
|
else
|
||
|
opcode = MMC_SEND_TUNING_BLOCK;
|
||
|
|
||
|
err = host->ops->execute_tuning(host, opcode);
|
||
|
if (!err) {
|
||
|
mmc_retune_clear(host);
|
||
|
mmc_retune_enable(host);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Only print error when we don't check for card removal */
|
||
|
if (!host->detect_change) {
|
||
|
pr_err("%s: tuning execution failed: %d\n",
|
||
|
mmc_hostname(host), err);
|
||
|
mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
|
||
|
}
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Change the bus mode (open drain/push-pull) of a host.
|
||
|
*/
|
||
|
void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
|
||
|
{
|
||
|
host->ios.bus_mode = mode;
|
||
|
mmc_set_ios(host);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Change data bus width of a host.
|
||
|
*/
|
||
|
void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
|
||
|
{
|
||
|
host->ios.bus_width = width;
|
||
|
mmc_set_ios(host);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Set initial state after a power cycle or a hw_reset.
|
||
|
*/
|
||
|
void mmc_set_initial_state(struct mmc_host *host)
|
||
|
{
|
||
|
if (host->cqe_on)
|
||
|
host->cqe_ops->cqe_off(host);
|
||
|
|
||
|
mmc_retune_disable(host);
|
||
|
|
||
|
if (mmc_host_is_spi(host))
|
||
|
host->ios.chip_select = MMC_CS_HIGH;
|
||
|
else
|
||
|
host->ios.chip_select = MMC_CS_DONTCARE;
|
||
|
host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
|
||
|
host->ios.bus_width = MMC_BUS_WIDTH_1;
|
||
|
host->ios.timing = MMC_TIMING_LEGACY;
|
||
|
host->ios.drv_type = 0;
|
||
|
host->ios.enhanced_strobe = false;
|
||
|
|
||
|
/*
|
||
|
* Make sure we are in non-enhanced strobe mode before we
|
||
|
* actually enable it in ext_csd.
|
||
|
*/
|
||
|
if ((host->caps2 & MMC_CAP2_HS400_ES) &&
|
||
|
host->ops->hs400_enhanced_strobe)
|
||
|
host->ops->hs400_enhanced_strobe(host, &host->ios);
|
||
|
|
||
|
mmc_set_ios(host);
|
||
|
|
||
|
mmc_crypto_set_initial_state(host);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
|
||
|
* @vdd: voltage (mV)
|
||
|
* @low_bits: prefer low bits in boundary cases
|
||
|
*
|
||
|
* This function returns the OCR bit number according to the provided @vdd
|
||
|
* value. If conversion is not possible a negative errno value returned.
|
||
|
*
|
||
|
* Depending on the @low_bits flag the function prefers low or high OCR bits
|
||
|
* on boundary voltages. For example,
|
||
|
* with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
|
||
|
* with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
|
||
|
*
|
||
|
* Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
|
||
|
*/
|
||
|
static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
|
||
|
{
|
||
|
const int max_bit = ilog2(MMC_VDD_35_36);
|
||
|
int bit;
|
||
|
|
||
|
if (vdd < 1650 || vdd > 3600)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (vdd >= 1650 && vdd <= 1950)
|
||
|
return ilog2(MMC_VDD_165_195);
|
||
|
|
||
|
if (low_bits)
|
||
|
vdd -= 1;
|
||
|
|
||
|
/* Base 2000 mV, step 100 mV, bit's base 8. */
|
||
|
bit = (vdd - 2000) / 100 + 8;
|
||
|
if (bit > max_bit)
|
||
|
return max_bit;
|
||
|
return bit;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
|
||
|
* @vdd_min: minimum voltage value (mV)
|
||
|
* @vdd_max: maximum voltage value (mV)
|
||
|
*
|
||
|
* This function returns the OCR mask bits according to the provided @vdd_min
|
||
|
* and @vdd_max values. If conversion is not possible the function returns 0.
|
||
|
*
|
||
|
* Notes wrt boundary cases:
|
||
|
* This function sets the OCR bits for all boundary voltages, for example
|
||
|
* [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
|
||
|
* MMC_VDD_34_35 mask.
|
||
|
*/
|
||
|
u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
|
||
|
{
|
||
|
u32 mask = 0;
|
||
|
|
||
|
if (vdd_max < vdd_min)
|
||
|
return 0;
|
||
|
|
||
|
/* Prefer high bits for the boundary vdd_max values. */
|
||
|
vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
|
||
|
if (vdd_max < 0)
|
||
|
return 0;
|
||
|
|
||
|
/* Prefer low bits for the boundary vdd_min values. */
|
||
|
vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
|
||
|
if (vdd_min < 0)
|
||
|
return 0;
|
||
|
|
||
|
/* Fill the mask, from max bit to min bit. */
|
||
|
while (vdd_max >= vdd_min)
|
||
|
mask |= 1 << vdd_max--;
|
||
|
|
||
|
return mask;
|
||
|
}
|
||
|
|
||
|
static int mmc_of_get_func_num(struct device_node *node)
|
||
|
{
|
||
|
u32 reg;
|
||
|
int ret;
|
||
|
|
||
|
ret = of_property_read_u32(node, "reg", ®);
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
|
||
|
return reg;
|
||
|
}
|
||
|
|
||
|
struct device_node *mmc_of_find_child_device(struct mmc_host *host,
|
||
|
unsigned func_num)
|
||
|
{
|
||
|
struct device_node *node;
|
||
|
|
||
|
if (!host->parent || !host->parent->of_node)
|
||
|
return NULL;
|
||
|
|
||
|
for_each_child_of_node(host->parent->of_node, node) {
|
||
|
if (mmc_of_get_func_num(node) == func_num)
|
||
|
return node;
|
||
|
}
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Mask off any voltages we don't support and select
|
||
|
* the lowest voltage
|
||
|
*/
|
||
|
u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
|
||
|
{
|
||
|
int bit;
|
||
|
|
||
|
/*
|
||
|
* Sanity check the voltages that the card claims to
|
||
|
* support.
|
||
|
*/
|
||
|
if (ocr & 0x7F) {
|
||
|
dev_warn(mmc_dev(host),
|
||
|
"card claims to support voltages below defined range\n");
|
||
|
ocr &= ~0x7F;
|
||
|
}
|
||
|
|
||
|
ocr &= host->ocr_avail;
|
||
|
if (!ocr) {
|
||
|
dev_warn(mmc_dev(host), "no support for card's volts\n");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
|
||
|
bit = ffs(ocr) - 1;
|
||
|
ocr &= 3 << bit;
|
||
|
mmc_power_cycle(host, ocr);
|
||
|
} else {
|
||
|
bit = fls(ocr) - 1;
|
||
|
/*
|
||
|
* The bit variable represents the highest voltage bit set in
|
||
|
* the OCR register.
|
||
|
* To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
|
||
|
* we must shift the mask '3' with (bit - 1).
|
||
|
*/
|
||
|
ocr &= 3 << (bit - 1);
|
||
|
if (bit != host->ios.vdd)
|
||
|
dev_warn(mmc_dev(host), "exceeding card's volts\n");
|
||
|
}
|
||
|
|
||
|
return ocr;
|
||
|
}
|
||
|
|
||
|
int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
|
||
|
{
|
||
|
int err = 0;
|
||
|
int old_signal_voltage = host->ios.signal_voltage;
|
||
|
|
||
|
host->ios.signal_voltage = signal_voltage;
|
||
|
if (host->ops->start_signal_voltage_switch)
|
||
|
err = host->ops->start_signal_voltage_switch(host, &host->ios);
|
||
|
|
||
|
if (err)
|
||
|
host->ios.signal_voltage = old_signal_voltage;
|
||
|
|
||
|
return err;
|
||
|
|
||
|
}
|
||
|
|
||
|
void mmc_set_initial_signal_voltage(struct mmc_host *host)
|
||
|
{
|
||
|
/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
|
||
|
if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
|
||
|
dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
|
||
|
else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
|
||
|
dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
|
||
|
else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
|
||
|
dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
|
||
|
}
|
||
|
|
||
|
int mmc_host_set_uhs_voltage(struct mmc_host *host)
|
||
|
{
|
||
|
u32 clock;
|
||
|
|
||
|
/*
|
||
|
* During a signal voltage level switch, the clock must be gated
|
||
|
* for 5 ms according to the SD spec
|
||
|
*/
|
||
|
clock = host->ios.clock;
|
||
|
host->ios.clock = 0;
|
||
|
mmc_set_ios(host);
|
||
|
|
||
|
if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
|
||
|
return -EAGAIN;
|
||
|
|
||
|
/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
|
||
|
mmc_delay(10);
|
||
|
host->ios.clock = clock;
|
||
|
mmc_set_ios(host);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
|
||
|
{
|
||
|
struct mmc_command cmd = {};
|
||
|
int err = 0;
|
||
|
|
||
|
/*
|
||
|
* If we cannot switch voltages, return failure so the caller
|
||
|
* can continue without UHS mode
|
||
|
*/
|
||
|
if (!host->ops->start_signal_voltage_switch)
|
||
|
return -EPERM;
|
||
|
if (!host->ops->card_busy)
|
||
|
pr_warn("%s: cannot verify signal voltage switch\n",
|
||
|
mmc_hostname(host));
|
||
|
|
||
|
cmd.opcode = SD_SWITCH_VOLTAGE;
|
||
|
cmd.arg = 0;
|
||
|
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
|
||
|
|
||
|
err = mmc_wait_for_cmd(host, &cmd, 0);
|
||
|
if (err)
|
||
|
goto power_cycle;
|
||
|
|
||
|
if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
|
||
|
return -EIO;
|
||
|
|
||
|
/*
|
||
|
* The card should drive cmd and dat[0:3] low immediately
|
||
|
* after the response of cmd11, but wait 1 ms to be sure
|
||
|
*/
|
||
|
mmc_delay(1);
|
||
|
if (host->ops->card_busy && !host->ops->card_busy(host)) {
|
||
|
err = -EAGAIN;
|
||
|
goto power_cycle;
|
||
|
}
|
||
|
|
||
|
if (mmc_host_set_uhs_voltage(host)) {
|
||
|
/*
|
||
|
* Voltages may not have been switched, but we've already
|
||
|
* sent CMD11, so a power cycle is required anyway
|
||
|
*/
|
||
|
err = -EAGAIN;
|
||
|
goto power_cycle;
|
||
|
}
|
||
|
|
||
|
/* Wait for at least 1 ms according to spec */
|
||
|
mmc_delay(1);
|
||
|
|
||
|
/*
|
||
|
* Failure to switch is indicated by the card holding
|
||
|
* dat[0:3] low
|
||
|
*/
|
||
|
if (host->ops->card_busy && host->ops->card_busy(host))
|
||
|
err = -EAGAIN;
|
||
|
|
||
|
power_cycle:
|
||
|
if (err) {
|
||
|
pr_debug("%s: Signal voltage switch failed, "
|
||
|
"power cycling card\n", mmc_hostname(host));
|
||
|
mmc_power_cycle(host, ocr);
|
||
|
}
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Select timing parameters for host.
|
||
|
*/
|
||
|
void mmc_set_timing(struct mmc_host *host, unsigned int timing)
|
||
|
{
|
||
|
host->ios.timing = timing;
|
||
|
mmc_set_ios(host);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Select appropriate driver type for host.
|
||
|
*/
|
||
|
void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
|
||
|
{
|
||
|
host->ios.drv_type = drv_type;
|
||
|
mmc_set_ios(host);
|
||
|
}
|
||
|
|
||
|
int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
|
||
|
int card_drv_type, int *drv_type)
|
||
|
{
|
||
|
struct mmc_host *host = card->host;
|
||
|
int host_drv_type = SD_DRIVER_TYPE_B;
|
||
|
|
||
|
*drv_type = 0;
|
||
|
|
||
|
if (!host->ops->select_drive_strength)
|
||
|
return 0;
|
||
|
|
||
|
/* Use SD definition of driver strength for hosts */
|
||
|
if (host->caps & MMC_CAP_DRIVER_TYPE_A)
|
||
|
host_drv_type |= SD_DRIVER_TYPE_A;
|
||
|
|
||
|
if (host->caps & MMC_CAP_DRIVER_TYPE_C)
|
||
|
host_drv_type |= SD_DRIVER_TYPE_C;
|
||
|
|
||
|
if (host->caps & MMC_CAP_DRIVER_TYPE_D)
|
||
|
host_drv_type |= SD_DRIVER_TYPE_D;
|
||
|
|
||
|
/*
|
||
|
* The drive strength that the hardware can support
|
||
|
* depends on the board design. Pass the appropriate
|
||
|
* information and let the hardware specific code
|
||
|
* return what is possible given the options
|
||
|
*/
|
||
|
return host->ops->select_drive_strength(card, max_dtr,
|
||
|
host_drv_type,
|
||
|
card_drv_type,
|
||
|
drv_type);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Apply power to the MMC stack. This is a two-stage process.
|
||
|
* First, we enable power to the card without the clock running.
|
||
|
* We then wait a bit for the power to stabilise. Finally,
|
||
|
* enable the bus drivers and clock to the card.
|
||
|
*
|
||
|
* We must _NOT_ enable the clock prior to power stablising.
|
||
|
*
|
||
|
* If a host does all the power sequencing itself, ignore the
|
||
|
* initial MMC_POWER_UP stage.
|
||
|
*/
|
||
|
void mmc_power_up(struct mmc_host *host, u32 ocr)
|
||
|
{
|
||
|
if (host->ios.power_mode == MMC_POWER_ON)
|
||
|
return;
|
||
|
|
||
|
mmc_pwrseq_pre_power_on(host);
|
||
|
|
||
|
host->ios.vdd = fls(ocr) - 1;
|
||
|
host->ios.power_mode = MMC_POWER_UP;
|
||
|
/* Set initial state and call mmc_set_ios */
|
||
|
mmc_set_initial_state(host);
|
||
|
|
||
|
mmc_set_initial_signal_voltage(host);
|
||
|
|
||
|
/*
|
||
|
* This delay should be sufficient to allow the power supply
|
||
|
* to reach the minimum voltage.
|
||
|
*/
|
||
|
mmc_delay(host->ios.power_delay_ms);
|
||
|
|
||
|
mmc_pwrseq_post_power_on(host);
|
||
|
|
||
|
host->ios.clock = host->f_init;
|
||
|
|
||
|
host->ios.power_mode = MMC_POWER_ON;
|
||
|
mmc_set_ios(host);
|
||
|
|
||
|
/*
|
||
|
* This delay must be at least 74 clock sizes, or 1 ms, or the
|
||
|
* time required to reach a stable voltage.
|
||
|
*/
|
||
|
mmc_delay(host->ios.power_delay_ms);
|
||
|
}
|
||
|
|
||
|
void mmc_power_off(struct mmc_host *host)
|
||
|
{
|
||
|
if (host->ios.power_mode == MMC_POWER_OFF)
|
||
|
return;
|
||
|
|
||
|
mmc_pwrseq_power_off(host);
|
||
|
|
||
|
host->ios.clock = 0;
|
||
|
host->ios.vdd = 0;
|
||
|
|
||
|
host->ios.power_mode = MMC_POWER_OFF;
|
||
|
/* Set initial state and call mmc_set_ios */
|
||
|
mmc_set_initial_state(host);
|
||
|
|
||
|
/*
|
||
|
* Some configurations, such as the 802.11 SDIO card in the OLPC
|
||
|
* XO-1.5, require a short delay after poweroff before the card
|
||
|
* can be successfully turned on again.
|
||
|
*/
|
||
|
mmc_delay(1);
|
||
|
}
|
||
|
|
||
|
void mmc_power_cycle(struct mmc_host *host, u32 ocr)
|
||
|
{
|
||
|
mmc_power_off(host);
|
||
|
/* Wait at least 1 ms according to SD spec */
|
||
|
mmc_delay(1);
|
||
|
mmc_power_up(host, ocr);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Assign a mmc bus handler to a host. Only one bus handler may control a
|
||
|
* host at any given time.
|
||
|
*/
|
||
|
void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
|
||
|
{
|
||
|
host->bus_ops = ops;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Remove the current bus handler from a host.
|
||
|
*/
|
||
|
void mmc_detach_bus(struct mmc_host *host)
|
||
|
{
|
||
|
host->bus_ops = NULL;
|
||
|
}
|
||
|
|
||
|
void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
|
||
|
{
|
||
|
/*
|
||
|
* Prevent system sleep for 5s to allow user space to consume the
|
||
|
* corresponding uevent. This is especially useful, when CD irq is used
|
||
|
* as a system wakeup, but doesn't hurt in other cases.
|
||
|
*/
|
||
|
if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
|
||
|
__pm_wakeup_event(host->ws, 5000);
|
||
|
|
||
|
host->detect_change = 1;
|
||
|
mmc_schedule_delayed_work(&host->detect, delay);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* mmc_detect_change - process change of state on a MMC socket
|
||
|
* @host: host which changed state.
|
||
|
* @delay: optional delay to wait before detection (jiffies)
|
||
|
*
|
||
|
* MMC drivers should call this when they detect a card has been
|
||
|
* inserted or removed. The MMC layer will confirm that any
|
||
|
* present card is still functional, and initialize any newly
|
||
|
* inserted.
|
||
|
*/
|
||
|
void mmc_detect_change(struct mmc_host *host, unsigned long delay)
|
||
|
{
|
||
|
_mmc_detect_change(host, delay, true);
|
||
|
}
|
||
|
EXPORT_SYMBOL(mmc_detect_change);
|
||
|
|
||
|
void mmc_init_erase(struct mmc_card *card)
|
||
|
{
|
||
|
unsigned int sz;
|
||
|
|
||
|
if (is_power_of_2(card->erase_size))
|
||
|
card->erase_shift = ffs(card->erase_size) - 1;
|
||
|
else
|
||
|
card->erase_shift = 0;
|
||
|
|
||
|
/*
|
||
|
* It is possible to erase an arbitrarily large area of an SD or MMC
|
||
|
* card. That is not desirable because it can take a long time
|
||
|
* (minutes) potentially delaying more important I/O, and also the
|
||
|
* timeout calculations become increasingly hugely over-estimated.
|
||
|
* Consequently, 'pref_erase' is defined as a guide to limit erases
|
||
|
* to that size and alignment.
|
||
|
*
|
||
|
* For SD cards that define Allocation Unit size, limit erases to one
|
||
|
* Allocation Unit at a time.
|
||
|
* For MMC, have a stab at ai good value and for modern cards it will
|
||
|
* end up being 4MiB. Note that if the value is too small, it can end
|
||
|
* up taking longer to erase. Also note, erase_size is already set to
|
||
|
* High Capacity Erase Size if available when this function is called.
|
||
|
*/
|
||
|
if (mmc_card_sd(card) && card->ssr.au) {
|
||
|
card->pref_erase = card->ssr.au;
|
||
|
card->erase_shift = ffs(card->ssr.au) - 1;
|
||
|
} else if (card->erase_size) {
|
||
|
sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
|
||
|
if (sz < 128)
|
||
|
card->pref_erase = 512 * 1024 / 512;
|
||
|
else if (sz < 512)
|
||
|
card->pref_erase = 1024 * 1024 / 512;
|
||
|
else if (sz < 1024)
|
||
|
card->pref_erase = 2 * 1024 * 1024 / 512;
|
||
|
else
|
||
|
card->pref_erase = 4 * 1024 * 1024 / 512;
|
||
|
if (card->pref_erase < card->erase_size)
|
||
|
card->pref_erase = card->erase_size;
|
||
|
else {
|
||
|
sz = card->pref_erase % card->erase_size;
|
||
|
if (sz)
|
||
|
card->pref_erase += card->erase_size - sz;
|
||
|
}
|
||
|
} else
|
||
|
card->pref_erase = 0;
|
||
|
}
|
||
|
|
||
|
static bool is_trim_arg(unsigned int arg)
|
||
|
{
|
||
|
return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
|
||
|
}
|
||
|
|
||
|
static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
|
||
|
unsigned int arg, unsigned int qty)
|
||
|
{
|
||
|
unsigned int erase_timeout;
|
||
|
|
||
|
if (arg == MMC_DISCARD_ARG ||
|
||
|
(arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
|
||
|
erase_timeout = card->ext_csd.trim_timeout;
|
||
|
} else if (card->ext_csd.erase_group_def & 1) {
|
||
|
/* High Capacity Erase Group Size uses HC timeouts */
|
||
|
if (arg == MMC_TRIM_ARG)
|
||
|
erase_timeout = card->ext_csd.trim_timeout;
|
||
|
else
|
||
|
erase_timeout = card->ext_csd.hc_erase_timeout;
|
||
|
} else {
|
||
|
/* CSD Erase Group Size uses write timeout */
|
||
|
unsigned int mult = (10 << card->csd.r2w_factor);
|
||
|
unsigned int timeout_clks = card->csd.taac_clks * mult;
|
||
|
unsigned int timeout_us;
|
||
|
|
||
|
/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
|
||
|
if (card->csd.taac_ns < 1000000)
|
||
|
timeout_us = (card->csd.taac_ns * mult) / 1000;
|
||
|
else
|
||
|
timeout_us = (card->csd.taac_ns / 1000) * mult;
|
||
|
|
||
|
/*
|
||
|
* ios.clock is only a target. The real clock rate might be
|
||
|
* less but not that much less, so fudge it by multiplying by 2.
|
||
|
*/
|
||
|
timeout_clks <<= 1;
|
||
|
timeout_us += (timeout_clks * 1000) /
|
||
|
(card->host->ios.clock / 1000);
|
||
|
|
||
|
erase_timeout = timeout_us / 1000;
|
||
|
|
||
|
/*
|
||
|
* Theoretically, the calculation could underflow so round up
|
||
|
* to 1ms in that case.
|
||
|
*/
|
||
|
if (!erase_timeout)
|
||
|
erase_timeout = 1;
|
||
|
}
|
||
|
|
||
|
/* Multiplier for secure operations */
|
||
|
if (arg & MMC_SECURE_ARGS) {
|
||
|
if (arg == MMC_SECURE_ERASE_ARG)
|
||
|
erase_timeout *= card->ext_csd.sec_erase_mult;
|
||
|
else
|
||
|
erase_timeout *= card->ext_csd.sec_trim_mult;
|
||
|
}
|
||
|
|
||
|
erase_timeout *= qty;
|
||
|
|
||
|
/*
|
||
|
* Ensure at least a 1 second timeout for SPI as per
|
||
|
* 'mmc_set_data_timeout()'
|
||
|
*/
|
||
|
if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
|
||
|
erase_timeout = 1000;
|
||
|
|
||
|
return erase_timeout;
|
||
|
}
|
||
|
|
||
|
static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
|
||
|
unsigned int arg,
|
||
|
unsigned int qty)
|
||
|
{
|
||
|
unsigned int erase_timeout;
|
||
|
|
||
|
/* for DISCARD none of the below calculation applies.
|
||
|
* the busy timeout is 250msec per discard command.
|
||
|
*/
|
||
|
if (arg == SD_DISCARD_ARG)
|
||
|
return SD_DISCARD_TIMEOUT_MS;
|
||
|
|
||
|
if (card->ssr.erase_timeout) {
|
||
|
/* Erase timeout specified in SD Status Register (SSR) */
|
||
|
erase_timeout = card->ssr.erase_timeout * qty +
|
||
|
card->ssr.erase_offset;
|
||
|
} else {
|
||
|
/*
|
||
|
* Erase timeout not specified in SD Status Register (SSR) so
|
||
|
* use 250ms per write block.
|
||
|
*/
|
||
|
erase_timeout = 250 * qty;
|
||
|
}
|
||
|
|
||
|
/* Must not be less than 1 second */
|
||
|
if (erase_timeout < 1000)
|
||
|
erase_timeout = 1000;
|
||
|
|
||
|
return erase_timeout;
|
||
|
}
|
||
|
|
||
|
static unsigned int mmc_erase_timeout(struct mmc_card *card,
|
||
|
unsigned int arg,
|
||
|
unsigned int qty)
|
||
|
{
|
||
|
if (mmc_card_sd(card))
|
||
|
return mmc_sd_erase_timeout(card, arg, qty);
|
||
|
else
|
||
|
return mmc_mmc_erase_timeout(card, arg, qty);
|
||
|
}
|
||
|
|
||
|
static int mmc_do_erase(struct mmc_card *card, unsigned int from,
|
||
|
unsigned int to, unsigned int arg)
|
||
|
{
|
||
|
struct mmc_command cmd = {};
|
||
|
unsigned int qty = 0, busy_timeout = 0;
|
||
|
bool use_r1b_resp;
|
||
|
int err;
|
||
|
|
||
|
mmc_retune_hold(card->host);
|
||
|
|
||
|
/*
|
||
|
* qty is used to calculate the erase timeout which depends on how many
|
||
|
* erase groups (or allocation units in SD terminology) are affected.
|
||
|
* We count erasing part of an erase group as one erase group.
|
||
|
* For SD, the allocation units are always a power of 2. For MMC, the
|
||
|
* erase group size is almost certainly also power of 2, but it does not
|
||
|
* seem to insist on that in the JEDEC standard, so we fall back to
|
||
|
* division in that case. SD may not specify an allocation unit size,
|
||
|
* in which case the timeout is based on the number of write blocks.
|
||
|
*
|
||
|
* Note that the timeout for secure trim 2 will only be correct if the
|
||
|
* number of erase groups specified is the same as the total of all
|
||
|
* preceding secure trim 1 commands. Since the power may have been
|
||
|
* lost since the secure trim 1 commands occurred, it is generally
|
||
|
* impossible to calculate the secure trim 2 timeout correctly.
|
||
|
*/
|
||
|
if (card->erase_shift)
|
||
|
qty += ((to >> card->erase_shift) -
|
||
|
(from >> card->erase_shift)) + 1;
|
||
|
else if (mmc_card_sd(card))
|
||
|
qty += to - from + 1;
|
||
|
else
|
||
|
qty += ((to / card->erase_size) -
|
||
|
(from / card->erase_size)) + 1;
|
||
|
|
||
|
if (!mmc_card_blockaddr(card)) {
|
||
|
from <<= 9;
|
||
|
to <<= 9;
|
||
|
}
|
||
|
|
||
|
if (mmc_card_sd(card))
|
||
|
cmd.opcode = SD_ERASE_WR_BLK_START;
|
||
|
else
|
||
|
cmd.opcode = MMC_ERASE_GROUP_START;
|
||
|
cmd.arg = from;
|
||
|
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
|
||
|
err = mmc_wait_for_cmd(card->host, &cmd, 0);
|
||
|
if (err) {
|
||
|
pr_err("mmc_erase: group start error %d, "
|
||
|
"status %#x\n", err, cmd.resp[0]);
|
||
|
err = -EIO;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
memset(&cmd, 0, sizeof(struct mmc_command));
|
||
|
if (mmc_card_sd(card))
|
||
|
cmd.opcode = SD_ERASE_WR_BLK_END;
|
||
|
else
|
||
|
cmd.opcode = MMC_ERASE_GROUP_END;
|
||
|
cmd.arg = to;
|
||
|
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
|
||
|
err = mmc_wait_for_cmd(card->host, &cmd, 0);
|
||
|
if (err) {
|
||
|
pr_err("mmc_erase: group end error %d, status %#x\n",
|
||
|
err, cmd.resp[0]);
|
||
|
err = -EIO;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
memset(&cmd, 0, sizeof(struct mmc_command));
|
||
|
cmd.opcode = MMC_ERASE;
|
||
|
cmd.arg = arg;
|
||
|
busy_timeout = mmc_erase_timeout(card, arg, qty);
|
||
|
use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
|
||
|
|
||
|
err = mmc_wait_for_cmd(card->host, &cmd, 0);
|
||
|
if (err) {
|
||
|
pr_err("mmc_erase: erase error %d, status %#x\n",
|
||
|
err, cmd.resp[0]);
|
||
|
err = -EIO;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (mmc_host_is_spi(card->host))
|
||
|
goto out;
|
||
|
|
||
|
/*
|
||
|
* In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
|
||
|
* shall be avoided.
|
||
|
*/
|
||
|
if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
|
||
|
goto out;
|
||
|
|
||
|
/* Let's poll to find out when the erase operation completes. */
|
||
|
err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
|
||
|
|
||
|
out:
|
||
|
mmc_retune_release(card->host);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
static unsigned int mmc_align_erase_size(struct mmc_card *card,
|
||
|
unsigned int *from,
|
||
|
unsigned int *to,
|
||
|
unsigned int nr)
|
||
|
{
|
||
|
unsigned int from_new = *from, nr_new = nr, rem;
|
||
|
|
||
|
/*
|
||
|
* When the 'card->erase_size' is power of 2, we can use round_up/down()
|
||
|
* to align the erase size efficiently.
|
||
|
*/
|
||
|
if (is_power_of_2(card->erase_size)) {
|
||
|
unsigned int temp = from_new;
|
||
|
|
||
|
from_new = round_up(temp, card->erase_size);
|
||
|
rem = from_new - temp;
|
||
|
|
||
|
if (nr_new > rem)
|
||
|
nr_new -= rem;
|
||
|
else
|
||
|
return 0;
|
||
|
|
||
|
nr_new = round_down(nr_new, card->erase_size);
|
||
|
} else {
|
||
|
rem = from_new % card->erase_size;
|
||
|
if (rem) {
|
||
|
rem = card->erase_size - rem;
|
||
|
from_new += rem;
|
||
|
if (nr_new > rem)
|
||
|
nr_new -= rem;
|
||
|
else
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
rem = nr_new % card->erase_size;
|
||
|
if (rem)
|
||
|
nr_new -= rem;
|
||
|
}
|
||
|
|
||
|
if (nr_new == 0)
|
||
|
return 0;
|
||
|
|
||
|
*to = from_new + nr_new;
|
||
|
*from = from_new;
|
||
|
|
||
|
return nr_new;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* mmc_erase - erase sectors.
|
||
|
* @card: card to erase
|
||
|
* @from: first sector to erase
|
||
|
* @nr: number of sectors to erase
|
||
|
* @arg: erase command argument
|
||
|
*
|
||
|
* Caller must claim host before calling this function.
|
||
|
*/
|
||
|
int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
|
||
|
unsigned int arg)
|
||
|
{
|
||
|
unsigned int rem, to = from + nr;
|
||
|
int err;
|
||
|
|
||
|
if (!(card->csd.cmdclass & CCC_ERASE))
|
||
|
return -EOPNOTSUPP;
|
||
|
|
||
|
if (!card->erase_size)
|
||
|
return -EOPNOTSUPP;
|
||
|
|
||
|
if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
|
||
|
return -EOPNOTSUPP;
|
||
|
|
||
|
if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
|
||
|
!(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
|
||
|
return -EOPNOTSUPP;
|
||
|
|
||
|
if (mmc_card_mmc(card) && is_trim_arg(arg) &&
|
||
|
!(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
|
||
|
return -EOPNOTSUPP;
|
||
|
|
||
|
if (arg == MMC_SECURE_ERASE_ARG) {
|
||
|
if (from % card->erase_size || nr % card->erase_size)
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (arg == MMC_ERASE_ARG)
|
||
|
nr = mmc_align_erase_size(card, &from, &to, nr);
|
||
|
|
||
|
if (nr == 0)
|
||
|
return 0;
|
||
|
|
||
|
if (to <= from)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* 'from' and 'to' are inclusive */
|
||
|
to -= 1;
|
||
|
|
||
|
/*
|
||
|
* Special case where only one erase-group fits in the timeout budget:
|
||
|
* If the region crosses an erase-group boundary on this particular
|
||
|
* case, we will be trimming more than one erase-group which, does not
|
||
|
* fit in the timeout budget of the controller, so we need to split it
|
||
|
* and call mmc_do_erase() twice if necessary. This special case is
|
||
|
* identified by the card->eg_boundary flag.
|
||
|
*/
|
||
|
rem = card->erase_size - (from % card->erase_size);
|
||
|
if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
|
||
|
err = mmc_do_erase(card, from, from + rem - 1, arg);
|
||
|
from += rem;
|
||
|
if ((err) || (to <= from))
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
return mmc_do_erase(card, from, to, arg);
|
||
|
}
|
||
|
EXPORT_SYMBOL(mmc_erase);
|
||
|
|
||
|
int mmc_can_erase(struct mmc_card *card)
|
||
|
{
|
||
|
if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
|
||
|
return 1;
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL(mmc_can_erase);
|
||
|
|
||
|
int mmc_can_trim(struct mmc_card *card)
|
||
|
{
|
||
|
if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
|
||
|
(!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
|
||
|
return 1;
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL(mmc_can_trim);
|
||
|
|
||
|
int mmc_can_discard(struct mmc_card *card)
|
||
|
{
|
||
|
/*
|
||
|
* As there's no way to detect the discard support bit at v4.5
|
||
|
* use the s/w feature support filed.
|
||
|
*/
|
||
|
if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
|
||
|
return 1;
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL(mmc_can_discard);
|
||
|
|
||
|
int mmc_can_sanitize(struct mmc_card *card)
|
||
|
{
|
||
|
if (!mmc_can_trim(card) && !mmc_can_erase(card))
|
||
|
return 0;
|
||
|
if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
|
||
|
return 1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int mmc_can_secure_erase_trim(struct mmc_card *card)
|
||
|
{
|
||
|
if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
|
||
|
!(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
|
||
|
return 1;
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL(mmc_can_secure_erase_trim);
|
||
|
|
||
|
int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
|
||
|
unsigned int nr)
|
||
|
{
|
||
|
if (!card->erase_size)
|
||
|
return 0;
|
||
|
if (from % card->erase_size || nr % card->erase_size)
|
||
|
return 0;
|
||
|
return 1;
|
||
|
}
|
||
|
EXPORT_SYMBOL(mmc_erase_group_aligned);
|
||
|
|
||
|
static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
|
||
|
unsigned int arg)
|
||
|
{
|
||
|
struct mmc_host *host = card->host;
|
||
|
unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
|
||
|
unsigned int last_timeout = 0;
|
||
|
unsigned int max_busy_timeout = host->max_busy_timeout ?
|
||
|
host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
|
||
|
|
||
|
if (card->erase_shift) {
|
||
|
max_qty = UINT_MAX >> card->erase_shift;
|
||
|
min_qty = card->pref_erase >> card->erase_shift;
|
||
|
} else if (mmc_card_sd(card)) {
|
||
|
max_qty = UINT_MAX;
|
||
|
min_qty = card->pref_erase;
|
||
|
} else {
|
||
|
max_qty = UINT_MAX / card->erase_size;
|
||
|
min_qty = card->pref_erase / card->erase_size;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We should not only use 'host->max_busy_timeout' as the limitation
|
||
|
* when deciding the max discard sectors. We should set a balance value
|
||
|
* to improve the erase speed, and it can not get too long timeout at
|
||
|
* the same time.
|
||
|
*
|
||
|
* Here we set 'card->pref_erase' as the minimal discard sectors no
|
||
|
* matter what size of 'host->max_busy_timeout', but if the
|
||
|
* 'host->max_busy_timeout' is large enough for more discard sectors,
|
||
|
* then we can continue to increase the max discard sectors until we
|
||
|
* get a balance value. In cases when the 'host->max_busy_timeout'
|
||
|
* isn't specified, use the default max erase timeout.
|
||
|
*/
|
||
|
do {
|
||
|
y = 0;
|
||
|
for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
|
||
|
timeout = mmc_erase_timeout(card, arg, qty + x);
|
||
|
|
||
|
if (qty + x > min_qty && timeout > max_busy_timeout)
|
||
|
break;
|
||
|
|
||
|
if (timeout < last_timeout)
|
||
|
break;
|
||
|
last_timeout = timeout;
|
||
|
y = x;
|
||
|
}
|
||
|
qty += y;
|
||
|
} while (y);
|
||
|
|
||
|
if (!qty)
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* When specifying a sector range to trim, chances are we might cross
|
||
|
* an erase-group boundary even if the amount of sectors is less than
|
||
|
* one erase-group.
|
||
|
* If we can only fit one erase-group in the controller timeout budget,
|
||
|
* we have to care that erase-group boundaries are not crossed by a
|
||
|
* single trim operation. We flag that special case with "eg_boundary".
|
||
|
* In all other cases we can just decrement qty and pretend that we
|
||
|
* always touch (qty + 1) erase-groups as a simple optimization.
|
||
|
*/
|
||
|
if (qty == 1)
|
||
|
card->eg_boundary = 1;
|
||
|
else
|
||
|
qty--;
|
||
|
|
||
|
/* Convert qty to sectors */
|
||
|
if (card->erase_shift)
|
||
|
max_discard = qty << card->erase_shift;
|
||
|
else if (mmc_card_sd(card))
|
||
|
max_discard = qty + 1;
|
||
|
else
|
||
|
max_discard = qty * card->erase_size;
|
||
|
|
||
|
return max_discard;
|
||
|
}
|
||
|
|
||
|
unsigned int mmc_calc_max_discard(struct mmc_card *card)
|
||
|
{
|
||
|
struct mmc_host *host = card->host;
|
||
|
unsigned int max_discard, max_trim;
|
||
|
|
||
|
/*
|
||
|
* Without erase_group_def set, MMC erase timeout depends on clock
|
||
|
* frequence which can change. In that case, the best choice is
|
||
|
* just the preferred erase size.
|
||
|
*/
|
||
|
if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
|
||
|
return card->pref_erase;
|
||
|
|
||
|
max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
|
||
|
if (mmc_can_trim(card)) {
|
||
|
max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
|
||
|
if (max_trim < max_discard || max_discard == 0)
|
||
|
max_discard = max_trim;
|
||
|
} else if (max_discard < card->erase_size) {
|
||
|
max_discard = 0;
|
||
|
}
|
||
|
pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
|
||
|
mmc_hostname(host), max_discard, host->max_busy_timeout ?
|
||
|
host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
|
||
|
return max_discard;
|
||
|
}
|
||
|
EXPORT_SYMBOL(mmc_calc_max_discard);
|
||
|
|
||
|
bool mmc_card_is_blockaddr(struct mmc_card *card)
|
||
|
{
|
||
|
return card ? mmc_card_blockaddr(card) : false;
|
||
|
}
|
||
|
EXPORT_SYMBOL(mmc_card_is_blockaddr);
|
||
|
|
||
|
int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
|
||
|
{
|
||
|
struct mmc_command cmd = {};
|
||
|
|
||
|
if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
|
||
|
mmc_card_hs400(card) || mmc_card_hs400es(card))
|
||
|
return 0;
|
||
|
|
||
|
cmd.opcode = MMC_SET_BLOCKLEN;
|
||
|
cmd.arg = blocklen;
|
||
|
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
|
||
|
return mmc_wait_for_cmd(card->host, &cmd, 5);
|
||
|
}
|
||
|
EXPORT_SYMBOL(mmc_set_blocklen);
|
||
|
|
||
|
static void mmc_hw_reset_for_init(struct mmc_host *host)
|
||
|
{
|
||
|
mmc_pwrseq_reset(host);
|
||
|
|
||
|
if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
|
||
|
return;
|
||
|
host->ops->card_hw_reset(host);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* mmc_hw_reset - reset the card in hardware
|
||
|
* @card: card to be reset
|
||
|
*
|
||
|
* Hard reset the card. This function is only for upper layers, like the
|
||
|
* block layer or card drivers. You cannot use it in host drivers (struct
|
||
|
* mmc_card might be gone then).
|
||
|
*
|
||
|
* Return: 0 on success, -errno on failure
|
||
|
*/
|
||
|
int mmc_hw_reset(struct mmc_card *card)
|
||
|
{
|
||
|
struct mmc_host *host = card->host;
|
||
|
int ret;
|
||
|
|
||
|
ret = host->bus_ops->hw_reset(host);
|
||
|
if (ret < 0)
|
||
|
pr_warn("%s: tried to HW reset card, got error %d\n",
|
||
|
mmc_hostname(host), ret);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
EXPORT_SYMBOL(mmc_hw_reset);
|
||
|
|
||
|
int mmc_sw_reset(struct mmc_card *card)
|
||
|
{
|
||
|
struct mmc_host *host = card->host;
|
||
|
int ret;
|
||
|
|
||
|
if (!host->bus_ops->sw_reset)
|
||
|
return -EOPNOTSUPP;
|
||
|
|
||
|
ret = host->bus_ops->sw_reset(host);
|
||
|
if (ret)
|
||
|
pr_warn("%s: tried to SW reset card, got error %d\n",
|
||
|
mmc_hostname(host), ret);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
EXPORT_SYMBOL(mmc_sw_reset);
|
||
|
|
||
|
static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
|
||
|
{
|
||
|
host->f_init = freq;
|
||
|
|
||
|
pr_debug("%s: %s: trying to init card at %u Hz\n",
|
||
|
mmc_hostname(host), __func__, host->f_init);
|
||
|
|
||
|
mmc_power_up(host, host->ocr_avail);
|
||
|
|
||
|
/*
|
||
|
* Some eMMCs (with VCCQ always on) may not be reset after power up, so
|
||
|
* do a hardware reset if possible.
|
||
|
*/
|
||
|
mmc_hw_reset_for_init(host);
|
||
|
|
||
|
/*
|
||
|
* sdio_reset sends CMD52 to reset card. Since we do not know
|
||
|
* if the card is being re-initialized, just send it. CMD52
|
||
|
* should be ignored by SD/eMMC cards.
|
||
|
* Skip it if we already know that we do not support SDIO commands
|
||
|
*/
|
||
|
if (!(host->caps2 & MMC_CAP2_NO_SDIO))
|
||
|
sdio_reset(host);
|
||
|
|
||
|
mmc_go_idle(host);
|
||
|
|
||
|
if (!(host->caps2 & MMC_CAP2_NO_SD)) {
|
||
|
if (mmc_send_if_cond_pcie(host, host->ocr_avail))
|
||
|
goto out;
|
||
|
if (mmc_card_sd_express(host))
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Order's important: probe SDIO, then SD, then MMC */
|
||
|
if (!(host->caps2 & MMC_CAP2_NO_SDIO))
|
||
|
if (!mmc_attach_sdio(host))
|
||
|
return 0;
|
||
|
|
||
|
if (!(host->caps2 & MMC_CAP2_NO_SD))
|
||
|
if (!mmc_attach_sd(host))
|
||
|
return 0;
|
||
|
|
||
|
if (!(host->caps2 & MMC_CAP2_NO_MMC))
|
||
|
if (!mmc_attach_mmc(host))
|
||
|
return 0;
|
||
|
|
||
|
out:
|
||
|
mmc_power_off(host);
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
int _mmc_detect_card_removed(struct mmc_host *host)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
if (!host->card || mmc_card_removed(host->card))
|
||
|
return 1;
|
||
|
|
||
|
ret = host->bus_ops->alive(host);
|
||
|
|
||
|
/*
|
||
|
* Card detect status and alive check may be out of sync if card is
|
||
|
* removed slowly, when card detect switch changes while card/slot
|
||
|
* pads are still contacted in hardware (refer to "SD Card Mechanical
|
||
|
* Addendum, Appendix C: Card Detection Switch"). So reschedule a
|
||
|
* detect work 200ms later for this case.
|
||
|
*/
|
||
|
if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
|
||
|
mmc_detect_change(host, msecs_to_jiffies(200));
|
||
|
pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
|
||
|
}
|
||
|
|
||
|
if (ret) {
|
||
|
mmc_card_set_removed(host->card);
|
||
|
pr_debug("%s: card remove detected\n", mmc_hostname(host));
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int mmc_detect_card_removed(struct mmc_host *host)
|
||
|
{
|
||
|
struct mmc_card *card = host->card;
|
||
|
int ret;
|
||
|
|
||
|
WARN_ON(!host->claimed);
|
||
|
|
||
|
if (!card)
|
||
|
return 1;
|
||
|
|
||
|
if (!mmc_card_is_removable(host))
|
||
|
return 0;
|
||
|
|
||
|
ret = mmc_card_removed(card);
|
||
|
/*
|
||
|
* The card will be considered unchanged unless we have been asked to
|
||
|
* detect a change or host requires polling to provide card detection.
|
||
|
*/
|
||
|
if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
|
||
|
return ret;
|
||
|
|
||
|
host->detect_change = 0;
|
||
|
if (!ret) {
|
||
|
ret = _mmc_detect_card_removed(host);
|
||
|
if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
|
||
|
/*
|
||
|
* Schedule a detect work as soon as possible to let a
|
||
|
* rescan handle the card removal.
|
||
|
*/
|
||
|
cancel_delayed_work(&host->detect);
|
||
|
_mmc_detect_change(host, 0, false);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
EXPORT_SYMBOL(mmc_detect_card_removed);
|
||
|
|
||
|
int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
|
||
|
{
|
||
|
unsigned int boot_sectors_num;
|
||
|
|
||
|
if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
|
||
|
return -EOPNOTSUPP;
|
||
|
|
||
|
/* filter out unrelated cards */
|
||
|
if (card->ext_csd.rev < 3 ||
|
||
|
!mmc_card_mmc(card) ||
|
||
|
!mmc_card_is_blockaddr(card) ||
|
||
|
mmc_card_is_removable(card->host))
|
||
|
return -ENOENT;
|
||
|
|
||
|
/*
|
||
|
* eMMC storage has two special boot partitions in addition to the
|
||
|
* main one. NVIDIA's bootloader linearizes eMMC boot0->boot1->main
|
||
|
* accesses, this means that the partition table addresses are shifted
|
||
|
* by the size of boot partitions. In accordance with the eMMC
|
||
|
* specification, the boot partition size is calculated as follows:
|
||
|
*
|
||
|
* boot partition size = 128K byte x BOOT_SIZE_MULT
|
||
|
*
|
||
|
* Calculate number of sectors occupied by the both boot partitions.
|
||
|
*/
|
||
|
boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
|
||
|
SZ_512 * MMC_NUM_BOOT_PARTITION;
|
||
|
|
||
|
/* Defined by NVIDIA and used by Android devices. */
|
||
|
*gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
|
||
|
|
||
|
void mmc_rescan(struct work_struct *work)
|
||
|
{
|
||
|
struct mmc_host *host =
|
||
|
container_of(work, struct mmc_host, detect.work);
|
||
|
int i;
|
||
|
|
||
|
if (host->rescan_disable)
|
||
|
return;
|
||
|
|
||
|
/* If there is a non-removable card registered, only scan once */
|
||
|
if (!mmc_card_is_removable(host) && host->rescan_entered)
|
||
|
return;
|
||
|
host->rescan_entered = 1;
|
||
|
|
||
|
if (host->trigger_card_event && host->ops->card_event) {
|
||
|
mmc_claim_host(host);
|
||
|
host->ops->card_event(host);
|
||
|
mmc_release_host(host);
|
||
|
host->trigger_card_event = false;
|
||
|
}
|
||
|
|
||
|
/* Verify a registered card to be functional, else remove it. */
|
||
|
if (host->bus_ops)
|
||
|
host->bus_ops->detect(host);
|
||
|
|
||
|
host->detect_change = 0;
|
||
|
|
||
|
/* if there still is a card present, stop here */
|
||
|
if (host->bus_ops != NULL)
|
||
|
goto out;
|
||
|
|
||
|
mmc_claim_host(host);
|
||
|
if (mmc_card_is_removable(host) && host->ops->get_cd &&
|
||
|
host->ops->get_cd(host) == 0) {
|
||
|
mmc_power_off(host);
|
||
|
mmc_release_host(host);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/* If an SD express card is present, then leave it as is. */
|
||
|
if (mmc_card_sd_express(host)) {
|
||
|
mmc_release_host(host);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < ARRAY_SIZE(freqs); i++) {
|
||
|
unsigned int freq = freqs[i];
|
||
|
if (freq > host->f_max) {
|
||
|
if (i + 1 < ARRAY_SIZE(freqs))
|
||
|
continue;
|
||
|
freq = host->f_max;
|
||
|
}
|
||
|
if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
|
||
|
break;
|
||
|
if (freqs[i] <= host->f_min)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Ignore the command timeout errors observed during
|
||
|
* the card init as those are excepted.
|
||
|
*/
|
||
|
host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
|
||
|
mmc_release_host(host);
|
||
|
|
||
|
out:
|
||
|
if (host->caps & MMC_CAP_NEEDS_POLL)
|
||
|
mmc_schedule_delayed_work(&host->detect, HZ);
|
||
|
}
|
||
|
|
||
|
void mmc_start_host(struct mmc_host *host)
|
||
|
{
|
||
|
host->f_init = max(min(freqs[0], host->f_max), host->f_min);
|
||
|
host->rescan_disable = 0;
|
||
|
|
||
|
if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
|
||
|
mmc_claim_host(host);
|
||
|
mmc_power_up(host, host->ocr_avail);
|
||
|
mmc_release_host(host);
|
||
|
}
|
||
|
|
||
|
mmc_gpiod_request_cd_irq(host);
|
||
|
_mmc_detect_change(host, 0, false);
|
||
|
}
|
||
|
|
||
|
void __mmc_stop_host(struct mmc_host *host)
|
||
|
{
|
||
|
if (host->slot.cd_irq >= 0) {
|
||
|
mmc_gpio_set_cd_wake(host, false);
|
||
|
disable_irq(host->slot.cd_irq);
|
||
|
}
|
||
|
|
||
|
host->rescan_disable = 1;
|
||
|
cancel_delayed_work_sync(&host->detect);
|
||
|
}
|
||
|
|
||
|
void mmc_stop_host(struct mmc_host *host)
|
||
|
{
|
||
|
__mmc_stop_host(host);
|
||
|
|
||
|
/* clear pm flags now and let card drivers set them as needed */
|
||
|
host->pm_flags = 0;
|
||
|
|
||
|
if (host->bus_ops) {
|
||
|
/* Calling bus_ops->remove() with a claimed host can deadlock */
|
||
|
host->bus_ops->remove(host);
|
||
|
mmc_claim_host(host);
|
||
|
mmc_detach_bus(host);
|
||
|
mmc_power_off(host);
|
||
|
mmc_release_host(host);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
mmc_claim_host(host);
|
||
|
mmc_power_off(host);
|
||
|
mmc_release_host(host);
|
||
|
}
|
||
|
|
||
|
static int __init mmc_init(void)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
ret = mmc_register_bus();
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
ret = mmc_register_host_class();
|
||
|
if (ret)
|
||
|
goto unregister_bus;
|
||
|
|
||
|
ret = sdio_register_bus();
|
||
|
if (ret)
|
||
|
goto unregister_host_class;
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
unregister_host_class:
|
||
|
mmc_unregister_host_class();
|
||
|
unregister_bus:
|
||
|
mmc_unregister_bus();
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void __exit mmc_exit(void)
|
||
|
{
|
||
|
sdio_unregister_bus();
|
||
|
mmc_unregister_host_class();
|
||
|
mmc_unregister_bus();
|
||
|
}
|
||
|
|
||
|
subsys_initcall(mmc_init);
|
||
|
module_exit(mmc_exit);
|
||
|
|
||
|
MODULE_LICENSE("GPL");
|