linux-zen-server/drivers/mtd/nand/ecc-mtk.c

622 lines
14 KiB
C
Raw Permalink Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* MTK ECC controller driver.
* Copyright (C) 2016 MediaTek Inc.
* Authors: Xiaolei Li <xiaolei.li@mediatek.com>
* Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
*/
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/iopoll.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/mutex.h>
#include <linux/mtd/nand-ecc-mtk.h>
#define ECC_IDLE_MASK BIT(0)
#define ECC_IRQ_EN BIT(0)
#define ECC_PG_IRQ_SEL BIT(1)
#define ECC_OP_ENABLE (1)
#define ECC_OP_DISABLE (0)
#define ECC_ENCCON (0x00)
#define ECC_ENCCNFG (0x04)
#define ECC_MS_SHIFT (16)
#define ECC_ENCDIADDR (0x08)
#define ECC_ENCIDLE (0x0C)
#define ECC_DECCON (0x100)
#define ECC_DECCNFG (0x104)
#define DEC_EMPTY_EN BIT(31)
#define DEC_CNFG_CORRECT (0x3 << 12)
#define ECC_DECIDLE (0x10C)
#define ECC_DECENUM0 (0x114)
#define ECC_TIMEOUT (500000)
#define ECC_IDLE_REG(op) ((op) == ECC_ENCODE ? ECC_ENCIDLE : ECC_DECIDLE)
#define ECC_CTL_REG(op) ((op) == ECC_ENCODE ? ECC_ENCCON : ECC_DECCON)
#define ECC_ERRMASK_MT7622 GENMASK(4, 0)
#define ECC_ERRMASK_MT2701 GENMASK(5, 0)
#define ECC_ERRMASK_MT2712 GENMASK(6, 0)
struct mtk_ecc_caps {
u32 err_mask;
u32 err_shift;
const u8 *ecc_strength;
const u32 *ecc_regs;
u8 num_ecc_strength;
u8 ecc_mode_shift;
u32 parity_bits;
int pg_irq_sel;
};
struct mtk_ecc {
struct device *dev;
const struct mtk_ecc_caps *caps;
void __iomem *regs;
struct clk *clk;
struct completion done;
struct mutex lock;
u32 sectors;
u8 *eccdata;
};
/* ecc strength that each IP supports */
static const u8 ecc_strength_mt2701[] = {
4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
40, 44, 48, 52, 56, 60
};
static const u8 ecc_strength_mt2712[] = {
4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
40, 44, 48, 52, 56, 60, 68, 72, 80
};
static const u8 ecc_strength_mt7622[] = {
4, 6, 8, 10, 12
};
static const u8 ecc_strength_mt7986[] = {
4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24
};
enum mtk_ecc_regs {
ECC_ENCPAR00,
ECC_ENCIRQ_EN,
ECC_ENCIRQ_STA,
ECC_DECDONE,
ECC_DECIRQ_EN,
ECC_DECIRQ_STA,
};
static int mt2701_ecc_regs[] = {
[ECC_ENCPAR00] = 0x10,
[ECC_ENCIRQ_EN] = 0x80,
[ECC_ENCIRQ_STA] = 0x84,
[ECC_DECDONE] = 0x124,
[ECC_DECIRQ_EN] = 0x200,
[ECC_DECIRQ_STA] = 0x204,
};
static int mt2712_ecc_regs[] = {
[ECC_ENCPAR00] = 0x300,
[ECC_ENCIRQ_EN] = 0x80,
[ECC_ENCIRQ_STA] = 0x84,
[ECC_DECDONE] = 0x124,
[ECC_DECIRQ_EN] = 0x200,
[ECC_DECIRQ_STA] = 0x204,
};
static int mt7622_ecc_regs[] = {
[ECC_ENCPAR00] = 0x10,
[ECC_ENCIRQ_EN] = 0x30,
[ECC_ENCIRQ_STA] = 0x34,
[ECC_DECDONE] = 0x11c,
[ECC_DECIRQ_EN] = 0x140,
[ECC_DECIRQ_STA] = 0x144,
};
static inline void mtk_ecc_wait_idle(struct mtk_ecc *ecc,
enum mtk_ecc_operation op)
{
struct device *dev = ecc->dev;
u32 val;
int ret;
ret = readl_poll_timeout_atomic(ecc->regs + ECC_IDLE_REG(op), val,
val & ECC_IDLE_MASK,
10, ECC_TIMEOUT);
if (ret)
dev_warn(dev, "%s NOT idle\n",
op == ECC_ENCODE ? "encoder" : "decoder");
}
static irqreturn_t mtk_ecc_irq(int irq, void *id)
{
struct mtk_ecc *ecc = id;
u32 dec, enc;
dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA])
& ECC_IRQ_EN;
if (dec) {
dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]);
if (dec & ecc->sectors) {
/*
* Clear decode IRQ status once again to ensure that
* there will be no extra IRQ.
*/
readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA]);
ecc->sectors = 0;
complete(&ecc->done);
} else {
return IRQ_HANDLED;
}
} else {
enc = readl(ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_STA])
& ECC_IRQ_EN;
if (enc)
complete(&ecc->done);
else
return IRQ_NONE;
}
return IRQ_HANDLED;
}
static int mtk_ecc_config(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
{
u32 ecc_bit, dec_sz, enc_sz;
u32 reg, i;
for (i = 0; i < ecc->caps->num_ecc_strength; i++) {
if (ecc->caps->ecc_strength[i] == config->strength)
break;
}
if (i == ecc->caps->num_ecc_strength) {
dev_err(ecc->dev, "invalid ecc strength %d\n",
config->strength);
return -EINVAL;
}
ecc_bit = i;
if (config->op == ECC_ENCODE) {
/* configure ECC encoder (in bits) */
enc_sz = config->len << 3;
reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift);
reg |= (enc_sz << ECC_MS_SHIFT);
writel(reg, ecc->regs + ECC_ENCCNFG);
if (config->mode != ECC_NFI_MODE)
writel(lower_32_bits(config->addr),
ecc->regs + ECC_ENCDIADDR);
} else {
/* configure ECC decoder (in bits) */
dec_sz = (config->len << 3) +
config->strength * ecc->caps->parity_bits;
reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift);
reg |= (dec_sz << ECC_MS_SHIFT) | DEC_CNFG_CORRECT;
reg |= DEC_EMPTY_EN;
writel(reg, ecc->regs + ECC_DECCNFG);
if (config->sectors)
ecc->sectors = 1 << (config->sectors - 1);
}
return 0;
}
void mtk_ecc_get_stats(struct mtk_ecc *ecc, struct mtk_ecc_stats *stats,
int sectors)
{
u32 offset, i, err;
u32 bitflips = 0;
stats->corrected = 0;
stats->failed = 0;
for (i = 0; i < sectors; i++) {
offset = (i >> 2) << 2;
err = readl(ecc->regs + ECC_DECENUM0 + offset);
err = err >> ((i % 4) * ecc->caps->err_shift);
err &= ecc->caps->err_mask;
if (err == ecc->caps->err_mask) {
/* uncorrectable errors */
stats->failed++;
continue;
}
stats->corrected += err;
bitflips = max_t(u32, bitflips, err);
}
stats->bitflips = bitflips;
}
EXPORT_SYMBOL(mtk_ecc_get_stats);
void mtk_ecc_release(struct mtk_ecc *ecc)
{
clk_disable_unprepare(ecc->clk);
put_device(ecc->dev);
}
EXPORT_SYMBOL(mtk_ecc_release);
static void mtk_ecc_hw_init(struct mtk_ecc *ecc)
{
mtk_ecc_wait_idle(ecc, ECC_ENCODE);
writew(ECC_OP_DISABLE, ecc->regs + ECC_ENCCON);
mtk_ecc_wait_idle(ecc, ECC_DECODE);
writel(ECC_OP_DISABLE, ecc->regs + ECC_DECCON);
}
static struct mtk_ecc *mtk_ecc_get(struct device_node *np)
{
struct platform_device *pdev;
struct mtk_ecc *ecc;
pdev = of_find_device_by_node(np);
if (!pdev)
return ERR_PTR(-EPROBE_DEFER);
ecc = platform_get_drvdata(pdev);
if (!ecc) {
put_device(&pdev->dev);
return ERR_PTR(-EPROBE_DEFER);
}
clk_prepare_enable(ecc->clk);
mtk_ecc_hw_init(ecc);
return ecc;
}
struct mtk_ecc *of_mtk_ecc_get(struct device_node *of_node)
{
struct mtk_ecc *ecc = NULL;
struct device_node *np;
np = of_parse_phandle(of_node, "nand-ecc-engine", 0);
/* for backward compatibility */
if (!np)
np = of_parse_phandle(of_node, "ecc-engine", 0);
if (np) {
ecc = mtk_ecc_get(np);
of_node_put(np);
}
return ecc;
}
EXPORT_SYMBOL(of_mtk_ecc_get);
int mtk_ecc_enable(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
{
enum mtk_ecc_operation op = config->op;
u16 reg_val;
int ret;
ret = mutex_lock_interruptible(&ecc->lock);
if (ret) {
dev_err(ecc->dev, "interrupted when attempting to lock\n");
return ret;
}
mtk_ecc_wait_idle(ecc, op);
ret = mtk_ecc_config(ecc, config);
if (ret) {
mutex_unlock(&ecc->lock);
return ret;
}
if (config->mode != ECC_NFI_MODE || op != ECC_ENCODE) {
init_completion(&ecc->done);
reg_val = ECC_IRQ_EN;
/*
* For ECC_NFI_MODE, if ecc->caps->pg_irq_sel is 1, then it
* means this chip can only generate one ecc irq during page
* read / write. If is 0, generate one ecc irq each ecc step.
*/
if (ecc->caps->pg_irq_sel && config->mode == ECC_NFI_MODE)
reg_val |= ECC_PG_IRQ_SEL;
if (op == ECC_ENCODE)
writew(reg_val, ecc->regs +
ecc->caps->ecc_regs[ECC_ENCIRQ_EN]);
else
writew(reg_val, ecc->regs +
ecc->caps->ecc_regs[ECC_DECIRQ_EN]);
}
writew(ECC_OP_ENABLE, ecc->regs + ECC_CTL_REG(op));
return 0;
}
EXPORT_SYMBOL(mtk_ecc_enable);
void mtk_ecc_disable(struct mtk_ecc *ecc)
{
enum mtk_ecc_operation op = ECC_ENCODE;
/* find out the running operation */
if (readw(ecc->regs + ECC_CTL_REG(op)) != ECC_OP_ENABLE)
op = ECC_DECODE;
/* disable it */
mtk_ecc_wait_idle(ecc, op);
if (op == ECC_DECODE) {
/*
* Clear decode IRQ status in case there is a timeout to wait
* decode IRQ.
*/
readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]);
writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_EN]);
} else {
writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_EN]);
}
writew(ECC_OP_DISABLE, ecc->regs + ECC_CTL_REG(op));
mutex_unlock(&ecc->lock);
}
EXPORT_SYMBOL(mtk_ecc_disable);
int mtk_ecc_wait_done(struct mtk_ecc *ecc, enum mtk_ecc_operation op)
{
int ret;
ret = wait_for_completion_timeout(&ecc->done, msecs_to_jiffies(500));
if (!ret) {
dev_err(ecc->dev, "%s timeout - interrupt did not arrive)\n",
(op == ECC_ENCODE) ? "encoder" : "decoder");
return -ETIMEDOUT;
}
return 0;
}
EXPORT_SYMBOL(mtk_ecc_wait_done);
int mtk_ecc_encode(struct mtk_ecc *ecc, struct mtk_ecc_config *config,
u8 *data, u32 bytes)
{
dma_addr_t addr;
u32 len;
int ret;
addr = dma_map_single(ecc->dev, data, bytes, DMA_TO_DEVICE);
ret = dma_mapping_error(ecc->dev, addr);
if (ret) {
dev_err(ecc->dev, "dma mapping error\n");
return -EINVAL;
}
config->op = ECC_ENCODE;
config->addr = addr;
ret = mtk_ecc_enable(ecc, config);
if (ret) {
dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
return ret;
}
ret = mtk_ecc_wait_done(ecc, ECC_ENCODE);
if (ret)
goto timeout;
mtk_ecc_wait_idle(ecc, ECC_ENCODE);
/* Program ECC bytes to OOB: per sector oob = FDM + ECC + SPARE */
len = (config->strength * ecc->caps->parity_bits + 7) >> 3;
/* write the parity bytes generated by the ECC back to temp buffer */
__ioread32_copy(ecc->eccdata,
ecc->regs + ecc->caps->ecc_regs[ECC_ENCPAR00],
round_up(len, 4));
/* copy into possibly unaligned OOB region with actual length */
memcpy(data + bytes, ecc->eccdata, len);
timeout:
dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
mtk_ecc_disable(ecc);
return ret;
}
EXPORT_SYMBOL(mtk_ecc_encode);
void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p)
{
const u8 *ecc_strength = ecc->caps->ecc_strength;
int i;
for (i = 0; i < ecc->caps->num_ecc_strength; i++) {
if (*p <= ecc_strength[i]) {
if (!i)
*p = ecc_strength[i];
else if (*p != ecc_strength[i])
*p = ecc_strength[i - 1];
return;
}
}
*p = ecc_strength[ecc->caps->num_ecc_strength - 1];
}
EXPORT_SYMBOL(mtk_ecc_adjust_strength);
unsigned int mtk_ecc_get_parity_bits(struct mtk_ecc *ecc)
{
return ecc->caps->parity_bits;
}
EXPORT_SYMBOL(mtk_ecc_get_parity_bits);
static const struct mtk_ecc_caps mtk_ecc_caps_mt2701 = {
.err_mask = ECC_ERRMASK_MT2701,
.err_shift = 8,
.ecc_strength = ecc_strength_mt2701,
.ecc_regs = mt2701_ecc_regs,
.num_ecc_strength = 20,
.ecc_mode_shift = 5,
.parity_bits = 14,
.pg_irq_sel = 0,
};
static const struct mtk_ecc_caps mtk_ecc_caps_mt2712 = {
.err_mask = ECC_ERRMASK_MT2712,
.err_shift = 8,
.ecc_strength = ecc_strength_mt2712,
.ecc_regs = mt2712_ecc_regs,
.num_ecc_strength = 23,
.ecc_mode_shift = 5,
.parity_bits = 14,
.pg_irq_sel = 1,
};
static const struct mtk_ecc_caps mtk_ecc_caps_mt7622 = {
.err_mask = ECC_ERRMASK_MT7622,
.err_shift = 5,
.ecc_strength = ecc_strength_mt7622,
.ecc_regs = mt7622_ecc_regs,
.num_ecc_strength = 5,
.ecc_mode_shift = 4,
.parity_bits = 13,
.pg_irq_sel = 0,
};
static const struct mtk_ecc_caps mtk_ecc_caps_mt7986 = {
.err_mask = ECC_ERRMASK_MT7622,
.err_shift = 8,
.ecc_strength = ecc_strength_mt7986,
.ecc_regs = mt2712_ecc_regs,
.num_ecc_strength = 11,
.ecc_mode_shift = 5,
.parity_bits = 14,
.pg_irq_sel = 1,
};
static const struct of_device_id mtk_ecc_dt_match[] = {
{
.compatible = "mediatek,mt2701-ecc",
.data = &mtk_ecc_caps_mt2701,
}, {
.compatible = "mediatek,mt2712-ecc",
.data = &mtk_ecc_caps_mt2712,
}, {
.compatible = "mediatek,mt7622-ecc",
.data = &mtk_ecc_caps_mt7622,
}, {
.compatible = "mediatek,mt7986-ecc",
.data = &mtk_ecc_caps_mt7986,
},
{},
};
static int mtk_ecc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct mtk_ecc *ecc;
u32 max_eccdata_size;
int irq, ret;
ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
if (!ecc)
return -ENOMEM;
ecc->caps = of_device_get_match_data(dev);
max_eccdata_size = ecc->caps->num_ecc_strength - 1;
max_eccdata_size = ecc->caps->ecc_strength[max_eccdata_size];
max_eccdata_size = (max_eccdata_size * ecc->caps->parity_bits + 7) >> 3;
max_eccdata_size = round_up(max_eccdata_size, 4);
ecc->eccdata = devm_kzalloc(dev, max_eccdata_size, GFP_KERNEL);
if (!ecc->eccdata)
return -ENOMEM;
ecc->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(ecc->regs))
return PTR_ERR(ecc->regs);
ecc->clk = devm_clk_get(dev, NULL);
if (IS_ERR(ecc->clk)) {
dev_err(dev, "failed to get clock: %ld\n", PTR_ERR(ecc->clk));
return PTR_ERR(ecc->clk);
}
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ret = dma_set_mask(dev, DMA_BIT_MASK(32));
if (ret) {
dev_err(dev, "failed to set DMA mask\n");
return ret;
}
ret = devm_request_irq(dev, irq, mtk_ecc_irq, 0x0, "mtk-ecc", ecc);
if (ret) {
dev_err(dev, "failed to request irq\n");
return -EINVAL;
}
ecc->dev = dev;
mutex_init(&ecc->lock);
platform_set_drvdata(pdev, ecc);
dev_info(dev, "probed\n");
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int mtk_ecc_suspend(struct device *dev)
{
struct mtk_ecc *ecc = dev_get_drvdata(dev);
clk_disable_unprepare(ecc->clk);
return 0;
}
static int mtk_ecc_resume(struct device *dev)
{
struct mtk_ecc *ecc = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(ecc->clk);
if (ret) {
dev_err(dev, "failed to enable clk\n");
return ret;
}
return 0;
}
static SIMPLE_DEV_PM_OPS(mtk_ecc_pm_ops, mtk_ecc_suspend, mtk_ecc_resume);
#endif
MODULE_DEVICE_TABLE(of, mtk_ecc_dt_match);
static struct platform_driver mtk_ecc_driver = {
.probe = mtk_ecc_probe,
.driver = {
.name = "mtk-ecc",
.of_match_table = mtk_ecc_dt_match,
#ifdef CONFIG_PM_SLEEP
.pm = &mtk_ecc_pm_ops,
#endif
},
};
module_platform_driver(mtk_ecc_driver);
MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
MODULE_DESCRIPTION("MTK Nand ECC Driver");
MODULE_LICENSE("Dual MIT/GPL");