linux-zen-server/drivers/mtd/nand/raw/meson_nand.c

1467 lines
36 KiB
C
Raw Permalink Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: (GPL-2.0+ OR MIT)
/*
* Amlogic Meson Nand Flash Controller Driver
*
* Copyright (c) 2018 Amlogic, inc.
* Author: Liang Yang <liang.yang@amlogic.com>
*/
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/mtd.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/iopoll.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/sched/task_stack.h>
#define NFC_REG_CMD 0x00
#define NFC_CMD_IDLE (0xc << 14)
#define NFC_CMD_CLE (0x5 << 14)
#define NFC_CMD_ALE (0x6 << 14)
#define NFC_CMD_ADL ((0 << 16) | (3 << 20))
#define NFC_CMD_ADH ((1 << 16) | (3 << 20))
#define NFC_CMD_AIL ((2 << 16) | (3 << 20))
#define NFC_CMD_AIH ((3 << 16) | (3 << 20))
#define NFC_CMD_SEED ((8 << 16) | (3 << 20))
#define NFC_CMD_M2N ((0 << 17) | (2 << 20))
#define NFC_CMD_N2M ((1 << 17) | (2 << 20))
#define NFC_CMD_RB BIT(20)
#define NFC_CMD_SCRAMBLER_ENABLE BIT(19)
#define NFC_CMD_SCRAMBLER_DISABLE 0
#define NFC_CMD_SHORTMODE_DISABLE 0
#define NFC_CMD_RB_INT BIT(14)
#define NFC_CMD_GET_SIZE(x) (((x) >> 22) & GENMASK(4, 0))
#define NFC_REG_CFG 0x04
#define NFC_REG_DADR 0x08
#define NFC_REG_IADR 0x0c
#define NFC_REG_BUF 0x10
#define NFC_REG_INFO 0x14
#define NFC_REG_DC 0x18
#define NFC_REG_ADR 0x1c
#define NFC_REG_DL 0x20
#define NFC_REG_DH 0x24
#define NFC_REG_CADR 0x28
#define NFC_REG_SADR 0x2c
#define NFC_REG_PINS 0x30
#define NFC_REG_VER 0x38
#define NFC_RB_IRQ_EN BIT(21)
#define CLK_DIV_SHIFT 0
#define CLK_DIV_WIDTH 6
#define CMDRWGEN(cmd_dir, ran, bch, short_mode, page_size, pages) \
( \
(cmd_dir) | \
((ran) << 19) | \
((bch) << 14) | \
((short_mode) << 13) | \
(((page_size) & 0x7f) << 6) | \
((pages) & 0x3f) \
)
#define GENCMDDADDRL(adl, addr) ((adl) | ((addr) & 0xffff))
#define GENCMDDADDRH(adh, addr) ((adh) | (((addr) >> 16) & 0xffff))
#define GENCMDIADDRL(ail, addr) ((ail) | ((addr) & 0xffff))
#define GENCMDIADDRH(aih, addr) ((aih) | (((addr) >> 16) & 0xffff))
#define DMA_DIR(dir) ((dir) ? NFC_CMD_N2M : NFC_CMD_M2N)
#define ECC_CHECK_RETURN_FF (-1)
#define NAND_CE0 (0xe << 10)
#define NAND_CE1 (0xd << 10)
#define DMA_BUSY_TIMEOUT 0x100000
#define CMD_FIFO_EMPTY_TIMEOUT 1000
#define MAX_CE_NUM 2
/* eMMC clock register, misc control */
#define CLK_SELECT_NAND BIT(31)
#define NFC_CLK_CYCLE 6
/* nand flash controller delay 3 ns */
#define NFC_DEFAULT_DELAY 3000
#define ROW_ADDER(page, index) (((page) >> (8 * (index))) & 0xff)
#define MAX_CYCLE_ADDRS 5
#define DIRREAD 1
#define DIRWRITE 0
#define ECC_PARITY_BCH8_512B 14
#define ECC_COMPLETE BIT(31)
#define ECC_ERR_CNT(x) (((x) >> 24) & GENMASK(5, 0))
#define ECC_ZERO_CNT(x) (((x) >> 16) & GENMASK(5, 0))
#define ECC_UNCORRECTABLE 0x3f
#define PER_INFO_BYTE 8
struct meson_nfc_nand_chip {
struct list_head node;
struct nand_chip nand;
unsigned long clk_rate;
unsigned long level1_divider;
u32 bus_timing;
u32 twb;
u32 tadl;
u32 tbers_max;
u32 bch_mode;
u8 *data_buf;
__le64 *info_buf;
u32 nsels;
u8 sels[];
};
struct meson_nand_ecc {
u32 bch;
u32 strength;
};
struct meson_nfc_data {
const struct nand_ecc_caps *ecc_caps;
};
struct meson_nfc_param {
u32 chip_select;
u32 rb_select;
};
struct nand_rw_cmd {
u32 cmd0;
u32 addrs[MAX_CYCLE_ADDRS];
u32 cmd1;
};
struct nand_timing {
u32 twb;
u32 tadl;
u32 tbers_max;
};
struct meson_nfc {
struct nand_controller controller;
struct clk *core_clk;
struct clk *device_clk;
struct clk *nand_clk;
struct clk_divider nand_divider;
unsigned long clk_rate;
u32 bus_timing;
struct device *dev;
void __iomem *reg_base;
void __iomem *reg_clk;
struct completion completion;
struct list_head chips;
const struct meson_nfc_data *data;
struct meson_nfc_param param;
struct nand_timing timing;
union {
int cmd[32];
struct nand_rw_cmd rw;
} cmdfifo;
dma_addr_t daddr;
dma_addr_t iaddr;
u32 info_bytes;
unsigned long assigned_cs;
};
enum {
NFC_ECC_BCH8_1K = 2,
NFC_ECC_BCH24_1K,
NFC_ECC_BCH30_1K,
NFC_ECC_BCH40_1K,
NFC_ECC_BCH50_1K,
NFC_ECC_BCH60_1K,
};
#define MESON_ECC_DATA(b, s) { .bch = (b), .strength = (s)}
static struct meson_nand_ecc meson_ecc[] = {
MESON_ECC_DATA(NFC_ECC_BCH8_1K, 8),
MESON_ECC_DATA(NFC_ECC_BCH24_1K, 24),
MESON_ECC_DATA(NFC_ECC_BCH30_1K, 30),
MESON_ECC_DATA(NFC_ECC_BCH40_1K, 40),
MESON_ECC_DATA(NFC_ECC_BCH50_1K, 50),
MESON_ECC_DATA(NFC_ECC_BCH60_1K, 60),
};
static int meson_nand_calc_ecc_bytes(int step_size, int strength)
{
int ecc_bytes;
if (step_size == 512 && strength == 8)
return ECC_PARITY_BCH8_512B;
ecc_bytes = DIV_ROUND_UP(strength * fls(step_size * 8), 8);
ecc_bytes = ALIGN(ecc_bytes, 2);
return ecc_bytes;
}
NAND_ECC_CAPS_SINGLE(meson_gxl_ecc_caps,
meson_nand_calc_ecc_bytes, 1024, 8, 24, 30, 40, 50, 60);
NAND_ECC_CAPS_SINGLE(meson_axg_ecc_caps,
meson_nand_calc_ecc_bytes, 1024, 8);
static struct meson_nfc_nand_chip *to_meson_nand(struct nand_chip *nand)
{
return container_of(nand, struct meson_nfc_nand_chip, nand);
}
static void meson_nfc_select_chip(struct nand_chip *nand, int chip)
{
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
struct meson_nfc *nfc = nand_get_controller_data(nand);
int ret, value;
if (chip < 0 || WARN_ON_ONCE(chip >= meson_chip->nsels))
return;
nfc->param.chip_select = meson_chip->sels[chip] ? NAND_CE1 : NAND_CE0;
nfc->param.rb_select = nfc->param.chip_select;
nfc->timing.twb = meson_chip->twb;
nfc->timing.tadl = meson_chip->tadl;
nfc->timing.tbers_max = meson_chip->tbers_max;
if (nfc->clk_rate != meson_chip->clk_rate) {
ret = clk_set_rate(nfc->nand_clk, meson_chip->clk_rate);
if (ret) {
dev_err(nfc->dev, "failed to set clock rate\n");
return;
}
nfc->clk_rate = meson_chip->clk_rate;
}
if (nfc->bus_timing != meson_chip->bus_timing) {
value = (NFC_CLK_CYCLE - 1) | (meson_chip->bus_timing << 5);
writel(value, nfc->reg_base + NFC_REG_CFG);
writel((1 << 31), nfc->reg_base + NFC_REG_CMD);
nfc->bus_timing = meson_chip->bus_timing;
}
}
static void meson_nfc_cmd_idle(struct meson_nfc *nfc, u32 time)
{
writel(nfc->param.chip_select | NFC_CMD_IDLE | (time & 0x3ff),
nfc->reg_base + NFC_REG_CMD);
}
static void meson_nfc_cmd_seed(struct meson_nfc *nfc, u32 seed)
{
writel(NFC_CMD_SEED | (0xc2 + (seed & 0x7fff)),
nfc->reg_base + NFC_REG_CMD);
}
static void meson_nfc_cmd_access(struct nand_chip *nand, int raw, bool dir,
int scrambler)
{
struct mtd_info *mtd = nand_to_mtd(nand);
struct meson_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
u32 bch = meson_chip->bch_mode, cmd;
int len = mtd->writesize, pagesize, pages;
pagesize = nand->ecc.size;
if (raw) {
len = mtd->writesize + mtd->oobsize;
cmd = (len & GENMASK(13, 0)) | scrambler | DMA_DIR(dir);
writel(cmd, nfc->reg_base + NFC_REG_CMD);
return;
}
pages = len / nand->ecc.size;
cmd = CMDRWGEN(DMA_DIR(dir), scrambler, bch,
NFC_CMD_SHORTMODE_DISABLE, pagesize, pages);
writel(cmd, nfc->reg_base + NFC_REG_CMD);
}
static void meson_nfc_drain_cmd(struct meson_nfc *nfc)
{
/*
* Insert two commands to make sure all valid commands are finished.
*
* The Nand flash controller is designed as two stages pipleline -
* a) fetch and b) excute.
* There might be cases when the driver see command queue is empty,
* but the Nand flash controller still has two commands buffered,
* one is fetched into NFC request queue (ready to run), and another
* is actively executing. So pushing 2 "IDLE" commands guarantees that
* the pipeline is emptied.
*/
meson_nfc_cmd_idle(nfc, 0);
meson_nfc_cmd_idle(nfc, 0);
}
static int meson_nfc_wait_cmd_finish(struct meson_nfc *nfc,
unsigned int timeout_ms)
{
u32 cmd_size = 0;
int ret;
/* wait cmd fifo is empty */
ret = readl_relaxed_poll_timeout(nfc->reg_base + NFC_REG_CMD, cmd_size,
!NFC_CMD_GET_SIZE(cmd_size),
10, timeout_ms * 1000);
if (ret)
dev_err(nfc->dev, "wait for empty CMD FIFO time out\n");
return ret;
}
static int meson_nfc_wait_dma_finish(struct meson_nfc *nfc)
{
meson_nfc_drain_cmd(nfc);
return meson_nfc_wait_cmd_finish(nfc, DMA_BUSY_TIMEOUT);
}
static u8 *meson_nfc_oob_ptr(struct nand_chip *nand, int i)
{
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
int len;
len = nand->ecc.size * (i + 1) + (nand->ecc.bytes + 2) * i;
return meson_chip->data_buf + len;
}
static u8 *meson_nfc_data_ptr(struct nand_chip *nand, int i)
{
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
int len, temp;
temp = nand->ecc.size + nand->ecc.bytes;
len = (temp + 2) * i;
return meson_chip->data_buf + len;
}
static void meson_nfc_get_data_oob(struct nand_chip *nand,
u8 *buf, u8 *oobbuf)
{
int i, oob_len = 0;
u8 *dsrc, *osrc;
oob_len = nand->ecc.bytes + 2;
for (i = 0; i < nand->ecc.steps; i++) {
if (buf) {
dsrc = meson_nfc_data_ptr(nand, i);
memcpy(buf, dsrc, nand->ecc.size);
buf += nand->ecc.size;
}
osrc = meson_nfc_oob_ptr(nand, i);
memcpy(oobbuf, osrc, oob_len);
oobbuf += oob_len;
}
}
static void meson_nfc_set_data_oob(struct nand_chip *nand,
const u8 *buf, u8 *oobbuf)
{
int i, oob_len = 0;
u8 *dsrc, *osrc;
oob_len = nand->ecc.bytes + 2;
for (i = 0; i < nand->ecc.steps; i++) {
if (buf) {
dsrc = meson_nfc_data_ptr(nand, i);
memcpy(dsrc, buf, nand->ecc.size);
buf += nand->ecc.size;
}
osrc = meson_nfc_oob_ptr(nand, i);
memcpy(osrc, oobbuf, oob_len);
oobbuf += oob_len;
}
}
static int meson_nfc_queue_rb(struct meson_nfc *nfc, int timeout_ms)
{
u32 cmd, cfg;
int ret = 0;
meson_nfc_cmd_idle(nfc, nfc->timing.twb);
meson_nfc_drain_cmd(nfc);
meson_nfc_wait_cmd_finish(nfc, CMD_FIFO_EMPTY_TIMEOUT);
cfg = readl(nfc->reg_base + NFC_REG_CFG);
cfg |= NFC_RB_IRQ_EN;
writel(cfg, nfc->reg_base + NFC_REG_CFG);
reinit_completion(&nfc->completion);
/* use the max erase time as the maximum clock for waiting R/B */
cmd = NFC_CMD_RB | NFC_CMD_RB_INT
| nfc->param.chip_select | nfc->timing.tbers_max;
writel(cmd, nfc->reg_base + NFC_REG_CMD);
ret = wait_for_completion_timeout(&nfc->completion,
msecs_to_jiffies(timeout_ms));
if (ret == 0)
ret = -1;
return ret;
}
static void meson_nfc_set_user_byte(struct nand_chip *nand, u8 *oob_buf)
{
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
__le64 *info;
int i, count;
for (i = 0, count = 0; i < nand->ecc.steps; i++, count += 2) {
info = &meson_chip->info_buf[i];
*info |= oob_buf[count];
*info |= oob_buf[count + 1] << 8;
}
}
static void meson_nfc_get_user_byte(struct nand_chip *nand, u8 *oob_buf)
{
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
__le64 *info;
int i, count;
for (i = 0, count = 0; i < nand->ecc.steps; i++, count += 2) {
info = &meson_chip->info_buf[i];
oob_buf[count] = *info;
oob_buf[count + 1] = *info >> 8;
}
}
static int meson_nfc_ecc_correct(struct nand_chip *nand, u32 *bitflips,
u64 *correct_bitmap)
{
struct mtd_info *mtd = nand_to_mtd(nand);
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
__le64 *info;
int ret = 0, i;
for (i = 0; i < nand->ecc.steps; i++) {
info = &meson_chip->info_buf[i];
if (ECC_ERR_CNT(*info) != ECC_UNCORRECTABLE) {
mtd->ecc_stats.corrected += ECC_ERR_CNT(*info);
*bitflips = max_t(u32, *bitflips, ECC_ERR_CNT(*info));
*correct_bitmap |= BIT_ULL(i);
continue;
}
if ((nand->options & NAND_NEED_SCRAMBLING) &&
ECC_ZERO_CNT(*info) < nand->ecc.strength) {
mtd->ecc_stats.corrected += ECC_ZERO_CNT(*info);
*bitflips = max_t(u32, *bitflips,
ECC_ZERO_CNT(*info));
ret = ECC_CHECK_RETURN_FF;
} else {
ret = -EBADMSG;
}
}
return ret;
}
static int meson_nfc_dma_buffer_setup(struct nand_chip *nand, void *databuf,
int datalen, void *infobuf, int infolen,
enum dma_data_direction dir)
{
struct meson_nfc *nfc = nand_get_controller_data(nand);
u32 cmd;
int ret = 0;
nfc->daddr = dma_map_single(nfc->dev, databuf, datalen, dir);
ret = dma_mapping_error(nfc->dev, nfc->daddr);
if (ret) {
dev_err(nfc->dev, "DMA mapping error\n");
return ret;
}
cmd = GENCMDDADDRL(NFC_CMD_ADL, nfc->daddr);
writel(cmd, nfc->reg_base + NFC_REG_CMD);
cmd = GENCMDDADDRH(NFC_CMD_ADH, nfc->daddr);
writel(cmd, nfc->reg_base + NFC_REG_CMD);
if (infobuf) {
nfc->iaddr = dma_map_single(nfc->dev, infobuf, infolen, dir);
ret = dma_mapping_error(nfc->dev, nfc->iaddr);
if (ret) {
dev_err(nfc->dev, "DMA mapping error\n");
dma_unmap_single(nfc->dev,
nfc->daddr, datalen, dir);
return ret;
}
nfc->info_bytes = infolen;
cmd = GENCMDIADDRL(NFC_CMD_AIL, nfc->iaddr);
writel(cmd, nfc->reg_base + NFC_REG_CMD);
cmd = GENCMDIADDRH(NFC_CMD_AIH, nfc->iaddr);
writel(cmd, nfc->reg_base + NFC_REG_CMD);
}
return ret;
}
static void meson_nfc_dma_buffer_release(struct nand_chip *nand,
int datalen, int infolen,
enum dma_data_direction dir)
{
struct meson_nfc *nfc = nand_get_controller_data(nand);
dma_unmap_single(nfc->dev, nfc->daddr, datalen, dir);
if (infolen) {
dma_unmap_single(nfc->dev, nfc->iaddr, infolen, dir);
nfc->info_bytes = 0;
}
}
static int meson_nfc_read_buf(struct nand_chip *nand, u8 *buf, int len)
{
struct meson_nfc *nfc = nand_get_controller_data(nand);
int ret = 0;
u32 cmd;
u8 *info;
info = kzalloc(PER_INFO_BYTE, GFP_KERNEL);
if (!info)
return -ENOMEM;
ret = meson_nfc_dma_buffer_setup(nand, buf, len, info,
PER_INFO_BYTE, DMA_FROM_DEVICE);
if (ret)
goto out;
cmd = NFC_CMD_N2M | (len & GENMASK(13, 0));
writel(cmd, nfc->reg_base + NFC_REG_CMD);
meson_nfc_drain_cmd(nfc);
meson_nfc_wait_cmd_finish(nfc, 1000);
meson_nfc_dma_buffer_release(nand, len, PER_INFO_BYTE, DMA_FROM_DEVICE);
out:
kfree(info);
return ret;
}
static int meson_nfc_write_buf(struct nand_chip *nand, u8 *buf, int len)
{
struct meson_nfc *nfc = nand_get_controller_data(nand);
int ret = 0;
u32 cmd;
ret = meson_nfc_dma_buffer_setup(nand, buf, len, NULL,
0, DMA_TO_DEVICE);
if (ret)
return ret;
cmd = NFC_CMD_M2N | (len & GENMASK(13, 0));
writel(cmd, nfc->reg_base + NFC_REG_CMD);
meson_nfc_drain_cmd(nfc);
meson_nfc_wait_cmd_finish(nfc, 1000);
meson_nfc_dma_buffer_release(nand, len, 0, DMA_TO_DEVICE);
return ret;
}
static int meson_nfc_rw_cmd_prepare_and_execute(struct nand_chip *nand,
int page, bool in)
{
const struct nand_sdr_timings *sdr =
nand_get_sdr_timings(nand_get_interface_config(nand));
struct mtd_info *mtd = nand_to_mtd(nand);
struct meson_nfc *nfc = nand_get_controller_data(nand);
u32 *addrs = nfc->cmdfifo.rw.addrs;
u32 cs = nfc->param.chip_select;
u32 cmd0, cmd_num, row_start;
int i;
cmd_num = sizeof(struct nand_rw_cmd) / sizeof(int);
cmd0 = in ? NAND_CMD_READ0 : NAND_CMD_SEQIN;
nfc->cmdfifo.rw.cmd0 = cs | NFC_CMD_CLE | cmd0;
addrs[0] = cs | NFC_CMD_ALE | 0;
if (mtd->writesize <= 512) {
cmd_num--;
row_start = 1;
} else {
addrs[1] = cs | NFC_CMD_ALE | 0;
row_start = 2;
}
addrs[row_start] = cs | NFC_CMD_ALE | ROW_ADDER(page, 0);
addrs[row_start + 1] = cs | NFC_CMD_ALE | ROW_ADDER(page, 1);
if (nand->options & NAND_ROW_ADDR_3)
addrs[row_start + 2] =
cs | NFC_CMD_ALE | ROW_ADDER(page, 2);
else
cmd_num--;
/* subtract cmd1 */
cmd_num--;
for (i = 0; i < cmd_num; i++)
writel_relaxed(nfc->cmdfifo.cmd[i],
nfc->reg_base + NFC_REG_CMD);
if (in) {
nfc->cmdfifo.rw.cmd1 = cs | NFC_CMD_CLE | NAND_CMD_READSTART;
writel(nfc->cmdfifo.rw.cmd1, nfc->reg_base + NFC_REG_CMD);
meson_nfc_queue_rb(nfc, PSEC_TO_MSEC(sdr->tR_max));
} else {
meson_nfc_cmd_idle(nfc, nfc->timing.tadl);
}
return 0;
}
static int meson_nfc_write_page_sub(struct nand_chip *nand,
int page, int raw)
{
const struct nand_sdr_timings *sdr =
nand_get_sdr_timings(nand_get_interface_config(nand));
struct mtd_info *mtd = nand_to_mtd(nand);
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
struct meson_nfc *nfc = nand_get_controller_data(nand);
int data_len, info_len;
u32 cmd;
int ret;
meson_nfc_select_chip(nand, nand->cur_cs);
data_len = mtd->writesize + mtd->oobsize;
info_len = nand->ecc.steps * PER_INFO_BYTE;
ret = meson_nfc_rw_cmd_prepare_and_execute(nand, page, DIRWRITE);
if (ret)
return ret;
ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf,
data_len, meson_chip->info_buf,
info_len, DMA_TO_DEVICE);
if (ret)
return ret;
if (nand->options & NAND_NEED_SCRAMBLING) {
meson_nfc_cmd_seed(nfc, page);
meson_nfc_cmd_access(nand, raw, DIRWRITE,
NFC_CMD_SCRAMBLER_ENABLE);
} else {
meson_nfc_cmd_access(nand, raw, DIRWRITE,
NFC_CMD_SCRAMBLER_DISABLE);
}
cmd = nfc->param.chip_select | NFC_CMD_CLE | NAND_CMD_PAGEPROG;
writel(cmd, nfc->reg_base + NFC_REG_CMD);
meson_nfc_queue_rb(nfc, PSEC_TO_MSEC(sdr->tPROG_max));
meson_nfc_dma_buffer_release(nand, data_len, info_len, DMA_TO_DEVICE);
return ret;
}
static int meson_nfc_write_page_raw(struct nand_chip *nand, const u8 *buf,
int oob_required, int page)
{
u8 *oob_buf = nand->oob_poi;
meson_nfc_set_data_oob(nand, buf, oob_buf);
return meson_nfc_write_page_sub(nand, page, 1);
}
static int meson_nfc_write_page_hwecc(struct nand_chip *nand,
const u8 *buf, int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(nand);
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
u8 *oob_buf = nand->oob_poi;
memcpy(meson_chip->data_buf, buf, mtd->writesize);
memset(meson_chip->info_buf, 0, nand->ecc.steps * PER_INFO_BYTE);
meson_nfc_set_user_byte(nand, oob_buf);
return meson_nfc_write_page_sub(nand, page, 0);
}
static void meson_nfc_check_ecc_pages_valid(struct meson_nfc *nfc,
struct nand_chip *nand, int raw)
{
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
__le64 *info;
u32 neccpages;
int ret;
neccpages = raw ? 1 : nand->ecc.steps;
info = &meson_chip->info_buf[neccpages - 1];
do {
usleep_range(10, 15);
/* info is updated by nfc dma engine*/
smp_rmb();
dma_sync_single_for_cpu(nfc->dev, nfc->iaddr, nfc->info_bytes,
DMA_FROM_DEVICE);
ret = *info & ECC_COMPLETE;
} while (!ret);
}
static int meson_nfc_read_page_sub(struct nand_chip *nand,
int page, int raw)
{
struct mtd_info *mtd = nand_to_mtd(nand);
struct meson_nfc *nfc = nand_get_controller_data(nand);
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
int data_len, info_len;
int ret;
meson_nfc_select_chip(nand, nand->cur_cs);
data_len = mtd->writesize + mtd->oobsize;
info_len = nand->ecc.steps * PER_INFO_BYTE;
ret = meson_nfc_rw_cmd_prepare_and_execute(nand, page, DIRREAD);
if (ret)
return ret;
ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf,
data_len, meson_chip->info_buf,
info_len, DMA_FROM_DEVICE);
if (ret)
return ret;
if (nand->options & NAND_NEED_SCRAMBLING) {
meson_nfc_cmd_seed(nfc, page);
meson_nfc_cmd_access(nand, raw, DIRREAD,
NFC_CMD_SCRAMBLER_ENABLE);
} else {
meson_nfc_cmd_access(nand, raw, DIRREAD,
NFC_CMD_SCRAMBLER_DISABLE);
}
ret = meson_nfc_wait_dma_finish(nfc);
meson_nfc_check_ecc_pages_valid(nfc, nand, raw);
meson_nfc_dma_buffer_release(nand, data_len, info_len, DMA_FROM_DEVICE);
return ret;
}
static int meson_nfc_read_page_raw(struct nand_chip *nand, u8 *buf,
int oob_required, int page)
{
u8 *oob_buf = nand->oob_poi;
int ret;
ret = meson_nfc_read_page_sub(nand, page, 1);
if (ret)
return ret;
meson_nfc_get_data_oob(nand, buf, oob_buf);
return 0;
}
static int meson_nfc_read_page_hwecc(struct nand_chip *nand, u8 *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(nand);
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
struct nand_ecc_ctrl *ecc = &nand->ecc;
u64 correct_bitmap = 0;
u32 bitflips = 0;
u8 *oob_buf = nand->oob_poi;
int ret, i;
ret = meson_nfc_read_page_sub(nand, page, 0);
if (ret)
return ret;
meson_nfc_get_user_byte(nand, oob_buf);
ret = meson_nfc_ecc_correct(nand, &bitflips, &correct_bitmap);
if (ret == ECC_CHECK_RETURN_FF) {
if (buf)
memset(buf, 0xff, mtd->writesize);
memset(oob_buf, 0xff, mtd->oobsize);
} else if (ret < 0) {
if ((nand->options & NAND_NEED_SCRAMBLING) || !buf) {
mtd->ecc_stats.failed++;
return bitflips;
}
ret = meson_nfc_read_page_raw(nand, buf, 0, page);
if (ret)
return ret;
for (i = 0; i < nand->ecc.steps ; i++) {
u8 *data = buf + i * ecc->size;
u8 *oob = nand->oob_poi + i * (ecc->bytes + 2);
if (correct_bitmap & BIT_ULL(i))
continue;
ret = nand_check_erased_ecc_chunk(data, ecc->size,
oob, ecc->bytes + 2,
NULL, 0,
ecc->strength);
if (ret < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += ret;
bitflips = max_t(u32, bitflips, ret);
}
}
} else if (buf && buf != meson_chip->data_buf) {
memcpy(buf, meson_chip->data_buf, mtd->writesize);
}
return bitflips;
}
static int meson_nfc_read_oob_raw(struct nand_chip *nand, int page)
{
return meson_nfc_read_page_raw(nand, NULL, 1, page);
}
static int meson_nfc_read_oob(struct nand_chip *nand, int page)
{
return meson_nfc_read_page_hwecc(nand, NULL, 1, page);
}
static bool meson_nfc_is_buffer_dma_safe(const void *buffer)
{
if (virt_addr_valid(buffer) && (!object_is_on_stack(buffer)))
return true;
return false;
}
static void *
meson_nand_op_get_dma_safe_input_buf(const struct nand_op_instr *instr)
{
if (WARN_ON(instr->type != NAND_OP_DATA_IN_INSTR))
return NULL;
if (meson_nfc_is_buffer_dma_safe(instr->ctx.data.buf.in))
return instr->ctx.data.buf.in;
return kzalloc(instr->ctx.data.len, GFP_KERNEL);
}
static void
meson_nand_op_put_dma_safe_input_buf(const struct nand_op_instr *instr,
void *buf)
{
if (WARN_ON(instr->type != NAND_OP_DATA_IN_INSTR) ||
WARN_ON(!buf))
return;
if (buf == instr->ctx.data.buf.in)
return;
memcpy(instr->ctx.data.buf.in, buf, instr->ctx.data.len);
kfree(buf);
}
static void *
meson_nand_op_get_dma_safe_output_buf(const struct nand_op_instr *instr)
{
if (WARN_ON(instr->type != NAND_OP_DATA_OUT_INSTR))
return NULL;
if (meson_nfc_is_buffer_dma_safe(instr->ctx.data.buf.out))
return (void *)instr->ctx.data.buf.out;
return kmemdup(instr->ctx.data.buf.out,
instr->ctx.data.len, GFP_KERNEL);
}
static void
meson_nand_op_put_dma_safe_output_buf(const struct nand_op_instr *instr,
const void *buf)
{
if (WARN_ON(instr->type != NAND_OP_DATA_OUT_INSTR) ||
WARN_ON(!buf))
return;
if (buf != instr->ctx.data.buf.out)
kfree(buf);
}
static int meson_nfc_exec_op(struct nand_chip *nand,
const struct nand_operation *op, bool check_only)
{
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
struct meson_nfc *nfc = nand_get_controller_data(nand);
const struct nand_op_instr *instr = NULL;
void *buf;
u32 op_id, delay_idle, cmd;
int i;
if (check_only)
return 0;
meson_nfc_select_chip(nand, op->cs);
for (op_id = 0; op_id < op->ninstrs; op_id++) {
instr = &op->instrs[op_id];
delay_idle = DIV_ROUND_UP(PSEC_TO_NSEC(instr->delay_ns),
meson_chip->level1_divider *
NFC_CLK_CYCLE);
switch (instr->type) {
case NAND_OP_CMD_INSTR:
cmd = nfc->param.chip_select | NFC_CMD_CLE;
cmd |= instr->ctx.cmd.opcode & 0xff;
writel(cmd, nfc->reg_base + NFC_REG_CMD);
meson_nfc_cmd_idle(nfc, delay_idle);
break;
case NAND_OP_ADDR_INSTR:
for (i = 0; i < instr->ctx.addr.naddrs; i++) {
cmd = nfc->param.chip_select | NFC_CMD_ALE;
cmd |= instr->ctx.addr.addrs[i] & 0xff;
writel(cmd, nfc->reg_base + NFC_REG_CMD);
}
meson_nfc_cmd_idle(nfc, delay_idle);
break;
case NAND_OP_DATA_IN_INSTR:
buf = meson_nand_op_get_dma_safe_input_buf(instr);
if (!buf)
return -ENOMEM;
meson_nfc_read_buf(nand, buf, instr->ctx.data.len);
meson_nand_op_put_dma_safe_input_buf(instr, buf);
break;
case NAND_OP_DATA_OUT_INSTR:
buf = meson_nand_op_get_dma_safe_output_buf(instr);
if (!buf)
return -ENOMEM;
meson_nfc_write_buf(nand, buf, instr->ctx.data.len);
meson_nand_op_put_dma_safe_output_buf(instr, buf);
break;
case NAND_OP_WAITRDY_INSTR:
meson_nfc_queue_rb(nfc, instr->ctx.waitrdy.timeout_ms);
if (instr->delay_ns)
meson_nfc_cmd_idle(nfc, delay_idle);
break;
}
}
meson_nfc_wait_cmd_finish(nfc, 1000);
return 0;
}
static int meson_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *nand = mtd_to_nand(mtd);
if (section >= nand->ecc.steps)
return -ERANGE;
oobregion->offset = 2 + (section * (2 + nand->ecc.bytes));
oobregion->length = nand->ecc.bytes;
return 0;
}
static int meson_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *nand = mtd_to_nand(mtd);
if (section >= nand->ecc.steps)
return -ERANGE;
oobregion->offset = section * (2 + nand->ecc.bytes);
oobregion->length = 2;
return 0;
}
static const struct mtd_ooblayout_ops meson_ooblayout_ops = {
.ecc = meson_ooblayout_ecc,
.free = meson_ooblayout_free,
};
static int meson_nfc_clk_init(struct meson_nfc *nfc)
{
struct clk_parent_data nfc_divider_parent_data[1] = {0};
struct clk_init_data init = {0};
int ret;
/* request core clock */
nfc->core_clk = devm_clk_get(nfc->dev, "core");
if (IS_ERR(nfc->core_clk)) {
dev_err(nfc->dev, "failed to get core clock\n");
return PTR_ERR(nfc->core_clk);
}
nfc->device_clk = devm_clk_get(nfc->dev, "device");
if (IS_ERR(nfc->device_clk)) {
dev_err(nfc->dev, "failed to get device clock\n");
return PTR_ERR(nfc->device_clk);
}
init.name = devm_kasprintf(nfc->dev,
GFP_KERNEL, "%s#div",
dev_name(nfc->dev));
init.ops = &clk_divider_ops;
nfc_divider_parent_data[0].fw_name = "device";
init.parent_data = nfc_divider_parent_data;
init.num_parents = 1;
nfc->nand_divider.reg = nfc->reg_clk;
nfc->nand_divider.shift = CLK_DIV_SHIFT;
nfc->nand_divider.width = CLK_DIV_WIDTH;
nfc->nand_divider.hw.init = &init;
nfc->nand_divider.flags = CLK_DIVIDER_ONE_BASED |
CLK_DIVIDER_ROUND_CLOSEST |
CLK_DIVIDER_ALLOW_ZERO;
nfc->nand_clk = devm_clk_register(nfc->dev, &nfc->nand_divider.hw);
if (IS_ERR(nfc->nand_clk))
return PTR_ERR(nfc->nand_clk);
/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
writel(CLK_SELECT_NAND | readl(nfc->reg_clk),
nfc->reg_clk);
ret = clk_prepare_enable(nfc->core_clk);
if (ret) {
dev_err(nfc->dev, "failed to enable core clock\n");
return ret;
}
ret = clk_prepare_enable(nfc->device_clk);
if (ret) {
dev_err(nfc->dev, "failed to enable device clock\n");
goto err_device_clk;
}
ret = clk_prepare_enable(nfc->nand_clk);
if (ret) {
dev_err(nfc->dev, "pre enable NFC divider fail\n");
goto err_nand_clk;
}
ret = clk_set_rate(nfc->nand_clk, 24000000);
if (ret)
goto err_disable_clk;
return 0;
err_disable_clk:
clk_disable_unprepare(nfc->nand_clk);
err_nand_clk:
clk_disable_unprepare(nfc->device_clk);
err_device_clk:
clk_disable_unprepare(nfc->core_clk);
return ret;
}
static void meson_nfc_disable_clk(struct meson_nfc *nfc)
{
clk_disable_unprepare(nfc->nand_clk);
clk_disable_unprepare(nfc->device_clk);
clk_disable_unprepare(nfc->core_clk);
}
static void meson_nfc_free_buffer(struct nand_chip *nand)
{
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
kfree(meson_chip->info_buf);
kfree(meson_chip->data_buf);
}
static int meson_chip_buffer_init(struct nand_chip *nand)
{
struct mtd_info *mtd = nand_to_mtd(nand);
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
u32 page_bytes, info_bytes, nsectors;
nsectors = mtd->writesize / nand->ecc.size;
page_bytes = mtd->writesize + mtd->oobsize;
info_bytes = nsectors * PER_INFO_BYTE;
meson_chip->data_buf = kmalloc(page_bytes, GFP_KERNEL);
if (!meson_chip->data_buf)
return -ENOMEM;
meson_chip->info_buf = kmalloc(info_bytes, GFP_KERNEL);
if (!meson_chip->info_buf) {
kfree(meson_chip->data_buf);
return -ENOMEM;
}
return 0;
}
static
int meson_nfc_setup_interface(struct nand_chip *nand, int csline,
const struct nand_interface_config *conf)
{
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
const struct nand_sdr_timings *timings;
u32 div, bt_min, bt_max, tbers_clocks;
timings = nand_get_sdr_timings(conf);
if (IS_ERR(timings))
return -ENOTSUPP;
if (csline == NAND_DATA_IFACE_CHECK_ONLY)
return 0;
div = DIV_ROUND_UP((timings->tRC_min / 1000), NFC_CLK_CYCLE);
bt_min = (timings->tREA_max + NFC_DEFAULT_DELAY) / div;
bt_max = (NFC_DEFAULT_DELAY + timings->tRHOH_min +
timings->tRC_min / 2) / div;
meson_chip->twb = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tWB_max),
div * NFC_CLK_CYCLE);
meson_chip->tadl = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tADL_min),
div * NFC_CLK_CYCLE);
tbers_clocks = DIV_ROUND_UP_ULL(PSEC_TO_NSEC(timings->tBERS_max),
div * NFC_CLK_CYCLE);
meson_chip->tbers_max = ilog2(tbers_clocks);
if (!is_power_of_2(tbers_clocks))
meson_chip->tbers_max++;
bt_min = DIV_ROUND_UP(bt_min, 1000);
bt_max = DIV_ROUND_UP(bt_max, 1000);
if (bt_max < bt_min)
return -EINVAL;
meson_chip->level1_divider = div;
meson_chip->clk_rate = 1000000000 / meson_chip->level1_divider;
meson_chip->bus_timing = (bt_min + bt_max) / 2 + 1;
return 0;
}
static int meson_nand_bch_mode(struct nand_chip *nand)
{
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
int i;
if (nand->ecc.strength > 60 || nand->ecc.strength < 8)
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(meson_ecc); i++) {
if (meson_ecc[i].strength == nand->ecc.strength) {
meson_chip->bch_mode = meson_ecc[i].bch;
return 0;
}
}
return -EINVAL;
}
static void meson_nand_detach_chip(struct nand_chip *nand)
{
meson_nfc_free_buffer(nand);
}
static int meson_nand_attach_chip(struct nand_chip *nand)
{
struct meson_nfc *nfc = nand_get_controller_data(nand);
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
struct mtd_info *mtd = nand_to_mtd(nand);
int nsectors = mtd->writesize / 1024;
int ret;
if (!mtd->name) {
mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
"%s:nand%d",
dev_name(nfc->dev),
meson_chip->sels[0]);
if (!mtd->name)
return -ENOMEM;
}
if (nand->bbt_options & NAND_BBT_USE_FLASH)
nand->bbt_options |= NAND_BBT_NO_OOB;
nand->options |= NAND_NO_SUBPAGE_WRITE;
ret = nand_ecc_choose_conf(nand, nfc->data->ecc_caps,
mtd->oobsize - 2 * nsectors);
if (ret) {
dev_err(nfc->dev, "failed to ECC init\n");
return -EINVAL;
}
mtd_set_ooblayout(mtd, &meson_ooblayout_ops);
ret = meson_nand_bch_mode(nand);
if (ret)
return -EINVAL;
nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
nand->ecc.write_page_raw = meson_nfc_write_page_raw;
nand->ecc.write_page = meson_nfc_write_page_hwecc;
nand->ecc.write_oob_raw = nand_write_oob_std;
nand->ecc.write_oob = nand_write_oob_std;
nand->ecc.read_page_raw = meson_nfc_read_page_raw;
nand->ecc.read_page = meson_nfc_read_page_hwecc;
nand->ecc.read_oob_raw = meson_nfc_read_oob_raw;
nand->ecc.read_oob = meson_nfc_read_oob;
if (nand->options & NAND_BUSWIDTH_16) {
dev_err(nfc->dev, "16bits bus width not supported");
return -EINVAL;
}
ret = meson_chip_buffer_init(nand);
if (ret)
return -ENOMEM;
return ret;
}
static const struct nand_controller_ops meson_nand_controller_ops = {
.attach_chip = meson_nand_attach_chip,
.detach_chip = meson_nand_detach_chip,
.setup_interface = meson_nfc_setup_interface,
.exec_op = meson_nfc_exec_op,
};
static int
meson_nfc_nand_chip_init(struct device *dev,
struct meson_nfc *nfc, struct device_node *np)
{
struct meson_nfc_nand_chip *meson_chip;
struct nand_chip *nand;
struct mtd_info *mtd;
int ret, i;
u32 tmp, nsels;
nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
if (!nsels || nsels > MAX_CE_NUM) {
dev_err(dev, "invalid register property size\n");
return -EINVAL;
}
meson_chip = devm_kzalloc(dev, struct_size(meson_chip, sels, nsels),
GFP_KERNEL);
if (!meson_chip)
return -ENOMEM;
meson_chip->nsels = nsels;
for (i = 0; i < nsels; i++) {
ret = of_property_read_u32_index(np, "reg", i, &tmp);
if (ret) {
dev_err(dev, "could not retrieve register property: %d\n",
ret);
return ret;
}
if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
dev_err(dev, "CS %d already assigned\n", tmp);
return -EINVAL;
}
}
nand = &meson_chip->nand;
nand->controller = &nfc->controller;
nand->controller->ops = &meson_nand_controller_ops;
nand_set_flash_node(nand, np);
nand_set_controller_data(nand, nfc);
nand->options |= NAND_USES_DMA;
mtd = nand_to_mtd(nand);
mtd->owner = THIS_MODULE;
mtd->dev.parent = dev;
ret = nand_scan(nand, nsels);
if (ret)
return ret;
ret = mtd_device_register(mtd, NULL, 0);
if (ret) {
dev_err(dev, "failed to register MTD device: %d\n", ret);
nand_cleanup(nand);
return ret;
}
list_add_tail(&meson_chip->node, &nfc->chips);
return 0;
}
static void meson_nfc_nand_chip_cleanup(struct meson_nfc *nfc)
{
struct meson_nfc_nand_chip *meson_chip;
struct mtd_info *mtd;
while (!list_empty(&nfc->chips)) {
meson_chip = list_first_entry(&nfc->chips,
struct meson_nfc_nand_chip, node);
mtd = nand_to_mtd(&meson_chip->nand);
WARN_ON(mtd_device_unregister(mtd));
nand_cleanup(&meson_chip->nand);
list_del(&meson_chip->node);
}
}
static int meson_nfc_nand_chips_init(struct device *dev,
struct meson_nfc *nfc)
{
struct device_node *np = dev->of_node;
struct device_node *nand_np;
int ret;
for_each_child_of_node(np, nand_np) {
ret = meson_nfc_nand_chip_init(dev, nfc, nand_np);
if (ret) {
meson_nfc_nand_chip_cleanup(nfc);
of_node_put(nand_np);
return ret;
}
}
return 0;
}
static irqreturn_t meson_nfc_irq(int irq, void *id)
{
struct meson_nfc *nfc = id;
u32 cfg;
cfg = readl(nfc->reg_base + NFC_REG_CFG);
if (!(cfg & NFC_RB_IRQ_EN))
return IRQ_NONE;
cfg &= ~(NFC_RB_IRQ_EN);
writel(cfg, nfc->reg_base + NFC_REG_CFG);
complete(&nfc->completion);
return IRQ_HANDLED;
}
static const struct meson_nfc_data meson_gxl_data = {
.ecc_caps = &meson_gxl_ecc_caps,
};
static const struct meson_nfc_data meson_axg_data = {
.ecc_caps = &meson_axg_ecc_caps,
};
static const struct of_device_id meson_nfc_id_table[] = {
{
.compatible = "amlogic,meson-gxl-nfc",
.data = &meson_gxl_data,
}, {
.compatible = "amlogic,meson-axg-nfc",
.data = &meson_axg_data,
},
{}
};
MODULE_DEVICE_TABLE(of, meson_nfc_id_table);
static int meson_nfc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct meson_nfc *nfc;
int ret, irq;
nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
if (!nfc)
return -ENOMEM;
nfc->data = of_device_get_match_data(&pdev->dev);
if (!nfc->data)
return -ENODEV;
nand_controller_init(&nfc->controller);
INIT_LIST_HEAD(&nfc->chips);
init_completion(&nfc->completion);
nfc->dev = dev;
nfc->reg_base = devm_platform_ioremap_resource_byname(pdev, "nfc");
if (IS_ERR(nfc->reg_base))
return PTR_ERR(nfc->reg_base);
nfc->reg_clk = devm_platform_ioremap_resource_byname(pdev, "emmc");
if (IS_ERR(nfc->reg_clk))
return PTR_ERR(nfc->reg_clk);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return -EINVAL;
ret = meson_nfc_clk_init(nfc);
if (ret) {
dev_err(dev, "failed to initialize NAND clock\n");
return ret;
}
writel(0, nfc->reg_base + NFC_REG_CFG);
ret = devm_request_irq(dev, irq, meson_nfc_irq, 0, dev_name(dev), nfc);
if (ret) {
dev_err(dev, "failed to request NFC IRQ\n");
ret = -EINVAL;
goto err_clk;
}
ret = dma_set_mask(dev, DMA_BIT_MASK(32));
if (ret) {
dev_err(dev, "failed to set DMA mask\n");
goto err_clk;
}
platform_set_drvdata(pdev, nfc);
ret = meson_nfc_nand_chips_init(dev, nfc);
if (ret) {
dev_err(dev, "failed to init NAND chips\n");
goto err_clk;
}
return 0;
err_clk:
meson_nfc_disable_clk(nfc);
return ret;
}
static int meson_nfc_remove(struct platform_device *pdev)
{
struct meson_nfc *nfc = platform_get_drvdata(pdev);
meson_nfc_nand_chip_cleanup(nfc);
meson_nfc_disable_clk(nfc);
return 0;
}
static struct platform_driver meson_nfc_driver = {
.probe = meson_nfc_probe,
.remove = meson_nfc_remove,
.driver = {
.name = "meson-nand",
.of_match_table = meson_nfc_id_table,
},
};
module_platform_driver(meson_nfc_driver);
MODULE_LICENSE("Dual MIT/GPL");
MODULE_AUTHOR("Liang Yang <liang.yang@amlogic.com>");
MODULE_DESCRIPTION("Amlogic's Meson NAND Flash Controller driver");