linux-zen-server/drivers/net/dsa/xrs700x/xrs700x.c

828 lines
21 KiB
C
Raw Permalink Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020 NovaTech LLC
* George McCollister <george.mccollister@gmail.com>
*/
#include <net/dsa.h>
#include <linux/etherdevice.h>
#include <linux/if_bridge.h>
#include <linux/of_device.h>
#include <linux/netdev_features.h>
#include <linux/if_hsr.h>
#include "xrs700x.h"
#include "xrs700x_reg.h"
#define XRS700X_MIB_INTERVAL msecs_to_jiffies(3000)
#define XRS7000X_SUPPORTED_HSR_FEATURES \
(NETIF_F_HW_HSR_TAG_INS | NETIF_F_HW_HSR_TAG_RM | \
NETIF_F_HW_HSR_FWD | NETIF_F_HW_HSR_DUP)
#define XRS7003E_ID 0x100
#define XRS7003F_ID 0x101
#define XRS7004E_ID 0x200
#define XRS7004F_ID 0x201
const struct xrs700x_info xrs7003e_info = {XRS7003E_ID, "XRS7003E", 3};
EXPORT_SYMBOL(xrs7003e_info);
const struct xrs700x_info xrs7003f_info = {XRS7003F_ID, "XRS7003F", 3};
EXPORT_SYMBOL(xrs7003f_info);
const struct xrs700x_info xrs7004e_info = {XRS7004E_ID, "XRS7004E", 4};
EXPORT_SYMBOL(xrs7004e_info);
const struct xrs700x_info xrs7004f_info = {XRS7004F_ID, "XRS7004F", 4};
EXPORT_SYMBOL(xrs7004f_info);
struct xrs700x_regfield {
struct reg_field rf;
struct regmap_field **rmf;
};
struct xrs700x_mib {
unsigned int offset;
const char *name;
int stats64_offset;
};
#define XRS700X_MIB_ETHTOOL_ONLY(o, n) {o, n, -1}
#define XRS700X_MIB(o, n, m) {o, n, offsetof(struct rtnl_link_stats64, m)}
static const struct xrs700x_mib xrs700x_mibs[] = {
XRS700X_MIB(XRS_RX_GOOD_OCTETS_L, "rx_good_octets", rx_bytes),
XRS700X_MIB_ETHTOOL_ONLY(XRS_RX_BAD_OCTETS_L, "rx_bad_octets"),
XRS700X_MIB(XRS_RX_UNICAST_L, "rx_unicast", rx_packets),
XRS700X_MIB(XRS_RX_BROADCAST_L, "rx_broadcast", rx_packets),
XRS700X_MIB(XRS_RX_MULTICAST_L, "rx_multicast", multicast),
XRS700X_MIB(XRS_RX_UNDERSIZE_L, "rx_undersize", rx_length_errors),
XRS700X_MIB(XRS_RX_FRAGMENTS_L, "rx_fragments", rx_length_errors),
XRS700X_MIB(XRS_RX_OVERSIZE_L, "rx_oversize", rx_length_errors),
XRS700X_MIB(XRS_RX_JABBER_L, "rx_jabber", rx_length_errors),
XRS700X_MIB(XRS_RX_ERR_L, "rx_err", rx_errors),
XRS700X_MIB(XRS_RX_CRC_L, "rx_crc", rx_crc_errors),
XRS700X_MIB_ETHTOOL_ONLY(XRS_RX_64_L, "rx_64"),
XRS700X_MIB_ETHTOOL_ONLY(XRS_RX_65_127_L, "rx_65_127"),
XRS700X_MIB_ETHTOOL_ONLY(XRS_RX_128_255_L, "rx_128_255"),
XRS700X_MIB_ETHTOOL_ONLY(XRS_RX_256_511_L, "rx_256_511"),
XRS700X_MIB_ETHTOOL_ONLY(XRS_RX_512_1023_L, "rx_512_1023"),
XRS700X_MIB_ETHTOOL_ONLY(XRS_RX_1024_1536_L, "rx_1024_1536"),
XRS700X_MIB_ETHTOOL_ONLY(XRS_RX_HSR_PRP_L, "rx_hsr_prp"),
XRS700X_MIB_ETHTOOL_ONLY(XRS_RX_WRONGLAN_L, "rx_wronglan"),
XRS700X_MIB_ETHTOOL_ONLY(XRS_RX_DUPLICATE_L, "rx_duplicate"),
XRS700X_MIB(XRS_TX_OCTETS_L, "tx_octets", tx_bytes),
XRS700X_MIB(XRS_TX_UNICAST_L, "tx_unicast", tx_packets),
XRS700X_MIB(XRS_TX_BROADCAST_L, "tx_broadcast", tx_packets),
XRS700X_MIB(XRS_TX_MULTICAST_L, "tx_multicast", tx_packets),
XRS700X_MIB_ETHTOOL_ONLY(XRS_TX_HSR_PRP_L, "tx_hsr_prp"),
XRS700X_MIB(XRS_PRIQ_DROP_L, "priq_drop", tx_dropped),
XRS700X_MIB(XRS_EARLY_DROP_L, "early_drop", tx_dropped),
};
static const u8 eth_hsrsup_addr[ETH_ALEN] = {
0x01, 0x15, 0x4e, 0x00, 0x01, 0x00};
static void xrs700x_get_strings(struct dsa_switch *ds, int port,
u32 stringset, u8 *data)
{
int i;
if (stringset != ETH_SS_STATS)
return;
for (i = 0; i < ARRAY_SIZE(xrs700x_mibs); i++) {
strscpy(data, xrs700x_mibs[i].name, ETH_GSTRING_LEN);
data += ETH_GSTRING_LEN;
}
}
static int xrs700x_get_sset_count(struct dsa_switch *ds, int port, int sset)
{
if (sset != ETH_SS_STATS)
return -EOPNOTSUPP;
return ARRAY_SIZE(xrs700x_mibs);
}
static void xrs700x_read_port_counters(struct xrs700x *priv, int port)
{
struct xrs700x_port *p = &priv->ports[port];
struct rtnl_link_stats64 stats;
unsigned long flags;
int i;
memset(&stats, 0, sizeof(stats));
mutex_lock(&p->mib_mutex);
/* Capture counter values */
regmap_write(priv->regmap, XRS_CNT_CTRL(port), 1);
for (i = 0; i < ARRAY_SIZE(xrs700x_mibs); i++) {
unsigned int high = 0, low = 0, reg;
reg = xrs700x_mibs[i].offset + XRS_PORT_OFFSET * port;
regmap_read(priv->regmap, reg, &low);
regmap_read(priv->regmap, reg + 2, &high);
p->mib_data[i] += (high << 16) | low;
if (xrs700x_mibs[i].stats64_offset >= 0) {
u8 *s = (u8 *)&stats + xrs700x_mibs[i].stats64_offset;
*(u64 *)s += p->mib_data[i];
}
}
/* multicast must be added to rx_packets (which already includes
* unicast and broadcast)
*/
stats.rx_packets += stats.multicast;
flags = u64_stats_update_begin_irqsave(&p->syncp);
p->stats64 = stats;
u64_stats_update_end_irqrestore(&p->syncp, flags);
mutex_unlock(&p->mib_mutex);
}
static void xrs700x_mib_work(struct work_struct *work)
{
struct xrs700x *priv = container_of(work, struct xrs700x,
mib_work.work);
int i;
for (i = 0; i < priv->ds->num_ports; i++)
xrs700x_read_port_counters(priv, i);
schedule_delayed_work(&priv->mib_work, XRS700X_MIB_INTERVAL);
}
static void xrs700x_get_ethtool_stats(struct dsa_switch *ds, int port,
u64 *data)
{
struct xrs700x *priv = ds->priv;
struct xrs700x_port *p = &priv->ports[port];
xrs700x_read_port_counters(priv, port);
mutex_lock(&p->mib_mutex);
memcpy(data, p->mib_data, sizeof(*data) * ARRAY_SIZE(xrs700x_mibs));
mutex_unlock(&p->mib_mutex);
}
static void xrs700x_get_stats64(struct dsa_switch *ds, int port,
struct rtnl_link_stats64 *s)
{
struct xrs700x *priv = ds->priv;
struct xrs700x_port *p = &priv->ports[port];
unsigned int start;
do {
start = u64_stats_fetch_begin(&p->syncp);
*s = p->stats64;
} while (u64_stats_fetch_retry(&p->syncp, start));
}
static int xrs700x_setup_regmap_range(struct xrs700x *priv)
{
struct xrs700x_regfield regfields[] = {
{
.rf = REG_FIELD_ID(XRS_PORT_STATE(0), 0, 1,
priv->ds->num_ports,
XRS_PORT_OFFSET),
.rmf = &priv->ps_forward
},
{
.rf = REG_FIELD_ID(XRS_PORT_STATE(0), 2, 3,
priv->ds->num_ports,
XRS_PORT_OFFSET),
.rmf = &priv->ps_management
},
{
.rf = REG_FIELD_ID(XRS_PORT_STATE(0), 4, 9,
priv->ds->num_ports,
XRS_PORT_OFFSET),
.rmf = &priv->ps_sel_speed
},
{
.rf = REG_FIELD_ID(XRS_PORT_STATE(0), 10, 11,
priv->ds->num_ports,
XRS_PORT_OFFSET),
.rmf = &priv->ps_cur_speed
}
};
int i = 0;
for (; i < ARRAY_SIZE(regfields); i++) {
*regfields[i].rmf = devm_regmap_field_alloc(priv->dev,
priv->regmap,
regfields[i].rf);
if (IS_ERR(*regfields[i].rmf))
return PTR_ERR(*regfields[i].rmf);
}
return 0;
}
static enum dsa_tag_protocol xrs700x_get_tag_protocol(struct dsa_switch *ds,
int port,
enum dsa_tag_protocol m)
{
return DSA_TAG_PROTO_XRS700X;
}
static int xrs700x_reset(struct dsa_switch *ds)
{
struct xrs700x *priv = ds->priv;
unsigned int val;
int ret;
ret = regmap_write(priv->regmap, XRS_GENERAL, XRS_GENERAL_RESET);
if (ret)
goto error;
ret = regmap_read_poll_timeout(priv->regmap, XRS_GENERAL,
val, !(val & XRS_GENERAL_RESET),
10, 1000);
error:
if (ret) {
dev_err_ratelimited(priv->dev, "error resetting switch: %d\n",
ret);
}
return ret;
}
static void xrs700x_port_stp_state_set(struct dsa_switch *ds, int port,
u8 state)
{
struct xrs700x *priv = ds->priv;
unsigned int bpdus = 1;
unsigned int val;
switch (state) {
case BR_STATE_DISABLED:
bpdus = 0;
fallthrough;
case BR_STATE_BLOCKING:
case BR_STATE_LISTENING:
val = XRS_PORT_DISABLED;
break;
case BR_STATE_LEARNING:
val = XRS_PORT_LEARNING;
break;
case BR_STATE_FORWARDING:
val = XRS_PORT_FORWARDING;
break;
default:
dev_err(ds->dev, "invalid STP state: %d\n", state);
return;
}
regmap_fields_write(priv->ps_forward, port, val);
/* Enable/disable inbound policy added by xrs700x_port_add_bpdu_ipf()
* which allows BPDU forwarding to the CPU port when the front facing
* port is in disabled/learning state.
*/
regmap_update_bits(priv->regmap, XRS_ETH_ADDR_CFG(port, 0), 1, bpdus);
dev_dbg_ratelimited(priv->dev, "%s - port: %d, state: %u, val: 0x%x\n",
__func__, port, state, val);
}
/* Add an inbound policy filter which matches the BPDU destination MAC
* and forwards to the CPU port. Leave the policy disabled, it will be
* enabled as needed.
*/
static int xrs700x_port_add_bpdu_ipf(struct dsa_switch *ds, int port)
{
struct xrs700x *priv = ds->priv;
unsigned int val = 0;
int i = 0;
int ret;
/* Compare all 48 bits of the destination MAC address. */
ret = regmap_write(priv->regmap, XRS_ETH_ADDR_CFG(port, 0), 48 << 2);
if (ret)
return ret;
/* match BPDU destination 01:80:c2:00:00:00 */
for (i = 0; i < sizeof(eth_stp_addr); i += 2) {
ret = regmap_write(priv->regmap, XRS_ETH_ADDR_0(port, 0) + i,
eth_stp_addr[i] |
(eth_stp_addr[i + 1] << 8));
if (ret)
return ret;
}
/* Mirror BPDU to CPU port */
for (i = 0; i < ds->num_ports; i++) {
if (dsa_is_cpu_port(ds, i))
val |= BIT(i);
}
ret = regmap_write(priv->regmap, XRS_ETH_ADDR_FWD_MIRROR(port, 0), val);
if (ret)
return ret;
ret = regmap_write(priv->regmap, XRS_ETH_ADDR_FWD_ALLOW(port, 0), 0);
if (ret)
return ret;
return 0;
}
/* Add an inbound policy filter which matches the HSR/PRP supervision MAC
* range and forwards to the CPU port without discarding duplicates.
* This is required to correctly populate the HSR/PRP node_table.
* Leave the policy disabled, it will be enabled as needed.
*/
static int xrs700x_port_add_hsrsup_ipf(struct dsa_switch *ds, int port,
int fwdport)
{
struct xrs700x *priv = ds->priv;
unsigned int val = 0;
int i = 0;
int ret;
/* Compare 40 bits of the destination MAC address. */
ret = regmap_write(priv->regmap, XRS_ETH_ADDR_CFG(port, 1), 40 << 2);
if (ret)
return ret;
/* match HSR/PRP supervision destination 01:15:4e:00:01:XX */
for (i = 0; i < sizeof(eth_hsrsup_addr); i += 2) {
ret = regmap_write(priv->regmap, XRS_ETH_ADDR_0(port, 1) + i,
eth_hsrsup_addr[i] |
(eth_hsrsup_addr[i + 1] << 8));
if (ret)
return ret;
}
/* Mirror HSR/PRP supervision to CPU port */
for (i = 0; i < ds->num_ports; i++) {
if (dsa_is_cpu_port(ds, i))
val |= BIT(i);
}
ret = regmap_write(priv->regmap, XRS_ETH_ADDR_FWD_MIRROR(port, 1), val);
if (ret)
return ret;
if (fwdport >= 0)
val |= BIT(fwdport);
/* Allow must be set prevent duplicate discard */
ret = regmap_write(priv->regmap, XRS_ETH_ADDR_FWD_ALLOW(port, 1), val);
if (ret)
return ret;
return 0;
}
static int xrs700x_port_setup(struct dsa_switch *ds, int port)
{
bool cpu_port = dsa_is_cpu_port(ds, port);
struct xrs700x *priv = ds->priv;
unsigned int val = 0;
int ret, i;
xrs700x_port_stp_state_set(ds, port, BR_STATE_DISABLED);
/* Disable forwarding to non-CPU ports */
for (i = 0; i < ds->num_ports; i++) {
if (!dsa_is_cpu_port(ds, i))
val |= BIT(i);
}
/* 1 = Disable forwarding to the port */
ret = regmap_write(priv->regmap, XRS_PORT_FWD_MASK(port), val);
if (ret)
return ret;
val = cpu_port ? XRS_PORT_MODE_MANAGEMENT : XRS_PORT_MODE_NORMAL;
ret = regmap_fields_write(priv->ps_management, port, val);
if (ret)
return ret;
if (!cpu_port) {
ret = xrs700x_port_add_bpdu_ipf(ds, port);
if (ret)
return ret;
}
return 0;
}
static int xrs700x_setup(struct dsa_switch *ds)
{
struct xrs700x *priv = ds->priv;
int ret, i;
ret = xrs700x_reset(ds);
if (ret)
return ret;
for (i = 0; i < ds->num_ports; i++) {
ret = xrs700x_port_setup(ds, i);
if (ret)
return ret;
}
schedule_delayed_work(&priv->mib_work, XRS700X_MIB_INTERVAL);
return 0;
}
static void xrs700x_teardown(struct dsa_switch *ds)
{
struct xrs700x *priv = ds->priv;
cancel_delayed_work_sync(&priv->mib_work);
}
static void xrs700x_phylink_get_caps(struct dsa_switch *ds, int port,
struct phylink_config *config)
{
switch (port) {
case 0:
__set_bit(PHY_INTERFACE_MODE_RMII,
config->supported_interfaces);
config->mac_capabilities = MAC_10FD | MAC_100FD;
break;
case 1:
case 2:
case 3:
phy_interface_set_rgmii(config->supported_interfaces);
config->mac_capabilities = MAC_10FD | MAC_100FD | MAC_1000FD;
break;
default:
dev_err(ds->dev, "Unsupported port: %i\n", port);
break;
}
}
static void xrs700x_mac_link_up(struct dsa_switch *ds, int port,
unsigned int mode, phy_interface_t interface,
struct phy_device *phydev,
int speed, int duplex,
bool tx_pause, bool rx_pause)
{
struct xrs700x *priv = ds->priv;
unsigned int val;
switch (speed) {
case SPEED_1000:
val = XRS_PORT_SPEED_1000;
break;
case SPEED_100:
val = XRS_PORT_SPEED_100;
break;
case SPEED_10:
val = XRS_PORT_SPEED_10;
break;
default:
return;
}
regmap_fields_write(priv->ps_sel_speed, port, val);
dev_dbg_ratelimited(priv->dev, "%s: port: %d mode: %u speed: %u\n",
__func__, port, mode, speed);
}
static int xrs700x_bridge_common(struct dsa_switch *ds, int port,
struct dsa_bridge bridge, bool join)
{
unsigned int i, cpu_mask = 0, mask = 0;
struct xrs700x *priv = ds->priv;
int ret;
for (i = 0; i < ds->num_ports; i++) {
if (dsa_is_cpu_port(ds, i))
continue;
cpu_mask |= BIT(i);
if (dsa_port_offloads_bridge(dsa_to_port(ds, i), &bridge))
continue;
mask |= BIT(i);
}
for (i = 0; i < ds->num_ports; i++) {
if (!dsa_port_offloads_bridge(dsa_to_port(ds, i), &bridge))
continue;
/* 1 = Disable forwarding to the port */
ret = regmap_write(priv->regmap, XRS_PORT_FWD_MASK(i), mask);
if (ret)
return ret;
}
if (!join) {
ret = regmap_write(priv->regmap, XRS_PORT_FWD_MASK(port),
cpu_mask);
if (ret)
return ret;
}
return 0;
}
static int xrs700x_bridge_join(struct dsa_switch *ds, int port,
struct dsa_bridge bridge, bool *tx_fwd_offload,
struct netlink_ext_ack *extack)
{
return xrs700x_bridge_common(ds, port, bridge, true);
}
static void xrs700x_bridge_leave(struct dsa_switch *ds, int port,
struct dsa_bridge bridge)
{
xrs700x_bridge_common(ds, port, bridge, false);
}
static int xrs700x_hsr_join(struct dsa_switch *ds, int port,
struct net_device *hsr)
{
unsigned int val = XRS_HSR_CFG_HSR_PRP;
struct dsa_port *partner = NULL, *dp;
struct xrs700x *priv = ds->priv;
struct net_device *slave;
int ret, i, hsr_pair[2];
enum hsr_version ver;
bool fwd = false;
ret = hsr_get_version(hsr, &ver);
if (ret)
return ret;
/* Only ports 1 and 2 can be HSR/PRP redundant ports. */
if (port != 1 && port != 2)
return -EOPNOTSUPP;
if (ver == HSR_V1)
val |= XRS_HSR_CFG_HSR;
else if (ver == PRP_V1)
val |= XRS_HSR_CFG_PRP;
else
return -EOPNOTSUPP;
dsa_hsr_foreach_port(dp, ds, hsr) {
if (dp->index != port) {
partner = dp;
break;
}
}
/* We can't enable redundancy on the switch until both
* redundant ports have signed up.
*/
if (!partner)
return 0;
regmap_fields_write(priv->ps_forward, partner->index,
XRS_PORT_DISABLED);
regmap_fields_write(priv->ps_forward, port, XRS_PORT_DISABLED);
regmap_write(priv->regmap, XRS_HSR_CFG(partner->index),
val | XRS_HSR_CFG_LANID_A);
regmap_write(priv->regmap, XRS_HSR_CFG(port),
val | XRS_HSR_CFG_LANID_B);
/* Clear bits for both redundant ports (HSR only) and the CPU port to
* enable forwarding.
*/
val = GENMASK(ds->num_ports - 1, 0);
if (ver == HSR_V1) {
val &= ~BIT(partner->index);
val &= ~BIT(port);
fwd = true;
}
val &= ~BIT(dsa_upstream_port(ds, port));
regmap_write(priv->regmap, XRS_PORT_FWD_MASK(partner->index), val);
regmap_write(priv->regmap, XRS_PORT_FWD_MASK(port), val);
regmap_fields_write(priv->ps_forward, partner->index,
XRS_PORT_FORWARDING);
regmap_fields_write(priv->ps_forward, port, XRS_PORT_FORWARDING);
/* Enable inbound policy which allows HSR/PRP supervision forwarding
* to the CPU port without discarding duplicates. Continue to
* forward to redundant ports when in HSR mode while discarding
* duplicates.
*/
ret = xrs700x_port_add_hsrsup_ipf(ds, partner->index, fwd ? port : -1);
if (ret)
return ret;
ret = xrs700x_port_add_hsrsup_ipf(ds, port, fwd ? partner->index : -1);
if (ret)
return ret;
regmap_update_bits(priv->regmap,
XRS_ETH_ADDR_CFG(partner->index, 1), 1, 1);
regmap_update_bits(priv->regmap, XRS_ETH_ADDR_CFG(port, 1), 1, 1);
hsr_pair[0] = port;
hsr_pair[1] = partner->index;
for (i = 0; i < ARRAY_SIZE(hsr_pair); i++) {
slave = dsa_to_port(ds, hsr_pair[i])->slave;
slave->features |= XRS7000X_SUPPORTED_HSR_FEATURES;
}
return 0;
}
static int xrs700x_hsr_leave(struct dsa_switch *ds, int port,
struct net_device *hsr)
{
struct dsa_port *partner = NULL, *dp;
struct xrs700x *priv = ds->priv;
struct net_device *slave;
int i, hsr_pair[2];
unsigned int val;
dsa_hsr_foreach_port(dp, ds, hsr) {
if (dp->index != port) {
partner = dp;
break;
}
}
if (!partner)
return 0;
regmap_fields_write(priv->ps_forward, partner->index,
XRS_PORT_DISABLED);
regmap_fields_write(priv->ps_forward, port, XRS_PORT_DISABLED);
regmap_write(priv->regmap, XRS_HSR_CFG(partner->index), 0);
regmap_write(priv->regmap, XRS_HSR_CFG(port), 0);
/* Clear bit for the CPU port to enable forwarding. */
val = GENMASK(ds->num_ports - 1, 0);
val &= ~BIT(dsa_upstream_port(ds, port));
regmap_write(priv->regmap, XRS_PORT_FWD_MASK(partner->index), val);
regmap_write(priv->regmap, XRS_PORT_FWD_MASK(port), val);
regmap_fields_write(priv->ps_forward, partner->index,
XRS_PORT_FORWARDING);
regmap_fields_write(priv->ps_forward, port, XRS_PORT_FORWARDING);
/* Disable inbound policy added by xrs700x_port_add_hsrsup_ipf()
* which allows HSR/PRP supervision forwarding to the CPU port without
* discarding duplicates.
*/
regmap_update_bits(priv->regmap,
XRS_ETH_ADDR_CFG(partner->index, 1), 1, 0);
regmap_update_bits(priv->regmap, XRS_ETH_ADDR_CFG(port, 1), 1, 0);
hsr_pair[0] = port;
hsr_pair[1] = partner->index;
for (i = 0; i < ARRAY_SIZE(hsr_pair); i++) {
slave = dsa_to_port(ds, hsr_pair[i])->slave;
slave->features &= ~XRS7000X_SUPPORTED_HSR_FEATURES;
}
return 0;
}
static const struct dsa_switch_ops xrs700x_ops = {
.get_tag_protocol = xrs700x_get_tag_protocol,
.setup = xrs700x_setup,
.teardown = xrs700x_teardown,
.port_stp_state_set = xrs700x_port_stp_state_set,
.phylink_get_caps = xrs700x_phylink_get_caps,
.phylink_mac_link_up = xrs700x_mac_link_up,
.get_strings = xrs700x_get_strings,
.get_sset_count = xrs700x_get_sset_count,
.get_ethtool_stats = xrs700x_get_ethtool_stats,
.get_stats64 = xrs700x_get_stats64,
.port_bridge_join = xrs700x_bridge_join,
.port_bridge_leave = xrs700x_bridge_leave,
.port_hsr_join = xrs700x_hsr_join,
.port_hsr_leave = xrs700x_hsr_leave,
};
static int xrs700x_detect(struct xrs700x *priv)
{
const struct xrs700x_info *info;
unsigned int id;
int ret;
ret = regmap_read(priv->regmap, XRS_DEV_ID0, &id);
if (ret) {
dev_err(priv->dev, "error %d while reading switch id.\n",
ret);
return ret;
}
info = of_device_get_match_data(priv->dev);
if (!info)
return -EINVAL;
if (info->id == id) {
priv->ds->num_ports = info->num_ports;
dev_info(priv->dev, "%s detected.\n", info->name);
return 0;
}
dev_err(priv->dev, "expected switch id 0x%x but found 0x%x.\n",
info->id, id);
return -ENODEV;
}
struct xrs700x *xrs700x_switch_alloc(struct device *base, void *devpriv)
{
struct dsa_switch *ds;
struct xrs700x *priv;
ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL);
if (!ds)
return NULL;
ds->dev = base;
priv = devm_kzalloc(base, sizeof(*priv), GFP_KERNEL);
if (!priv)
return NULL;
INIT_DELAYED_WORK(&priv->mib_work, xrs700x_mib_work);
ds->ops = &xrs700x_ops;
ds->priv = priv;
priv->dev = base;
priv->ds = ds;
priv->priv = devpriv;
return priv;
}
EXPORT_SYMBOL(xrs700x_switch_alloc);
static int xrs700x_alloc_port_mib(struct xrs700x *priv, int port)
{
struct xrs700x_port *p = &priv->ports[port];
p->mib_data = devm_kcalloc(priv->dev, ARRAY_SIZE(xrs700x_mibs),
sizeof(*p->mib_data), GFP_KERNEL);
if (!p->mib_data)
return -ENOMEM;
mutex_init(&p->mib_mutex);
u64_stats_init(&p->syncp);
return 0;
}
int xrs700x_switch_register(struct xrs700x *priv)
{
int ret;
int i;
ret = xrs700x_detect(priv);
if (ret)
return ret;
ret = xrs700x_setup_regmap_range(priv);
if (ret)
return ret;
priv->ports = devm_kcalloc(priv->dev, priv->ds->num_ports,
sizeof(*priv->ports), GFP_KERNEL);
if (!priv->ports)
return -ENOMEM;
for (i = 0; i < priv->ds->num_ports; i++) {
ret = xrs700x_alloc_port_mib(priv, i);
if (ret)
return ret;
}
return dsa_register_switch(priv->ds);
}
EXPORT_SYMBOL(xrs700x_switch_register);
void xrs700x_switch_remove(struct xrs700x *priv)
{
dsa_unregister_switch(priv->ds);
}
EXPORT_SYMBOL(xrs700x_switch_remove);
void xrs700x_switch_shutdown(struct xrs700x *priv)
{
dsa_switch_shutdown(priv->ds);
}
EXPORT_SYMBOL(xrs700x_switch_shutdown);
MODULE_AUTHOR("George McCollister <george.mccollister@gmail.com>");
MODULE_DESCRIPTION("Arrow SpeedChips XRS700x DSA driver");
MODULE_LICENSE("GPL v2");