2539 lines
71 KiB
C
2539 lines
71 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/* Copyright(c) 2013 - 2018 Intel Corporation. */
|
||
|
|
||
|
#include <linux/prefetch.h>
|
||
|
|
||
|
#include "iavf.h"
|
||
|
#include "iavf_trace.h"
|
||
|
#include "iavf_prototype.h"
|
||
|
|
||
|
static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
|
||
|
u32 td_tag)
|
||
|
{
|
||
|
return cpu_to_le64(IAVF_TX_DESC_DTYPE_DATA |
|
||
|
((u64)td_cmd << IAVF_TXD_QW1_CMD_SHIFT) |
|
||
|
((u64)td_offset << IAVF_TXD_QW1_OFFSET_SHIFT) |
|
||
|
((u64)size << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
|
||
|
((u64)td_tag << IAVF_TXD_QW1_L2TAG1_SHIFT));
|
||
|
}
|
||
|
|
||
|
#define IAVF_TXD_CMD (IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_RS)
|
||
|
|
||
|
/**
|
||
|
* iavf_unmap_and_free_tx_resource - Release a Tx buffer
|
||
|
* @ring: the ring that owns the buffer
|
||
|
* @tx_buffer: the buffer to free
|
||
|
**/
|
||
|
static void iavf_unmap_and_free_tx_resource(struct iavf_ring *ring,
|
||
|
struct iavf_tx_buffer *tx_buffer)
|
||
|
{
|
||
|
if (tx_buffer->skb) {
|
||
|
if (tx_buffer->tx_flags & IAVF_TX_FLAGS_FD_SB)
|
||
|
kfree(tx_buffer->raw_buf);
|
||
|
else
|
||
|
dev_kfree_skb_any(tx_buffer->skb);
|
||
|
if (dma_unmap_len(tx_buffer, len))
|
||
|
dma_unmap_single(ring->dev,
|
||
|
dma_unmap_addr(tx_buffer, dma),
|
||
|
dma_unmap_len(tx_buffer, len),
|
||
|
DMA_TO_DEVICE);
|
||
|
} else if (dma_unmap_len(tx_buffer, len)) {
|
||
|
dma_unmap_page(ring->dev,
|
||
|
dma_unmap_addr(tx_buffer, dma),
|
||
|
dma_unmap_len(tx_buffer, len),
|
||
|
DMA_TO_DEVICE);
|
||
|
}
|
||
|
|
||
|
tx_buffer->next_to_watch = NULL;
|
||
|
tx_buffer->skb = NULL;
|
||
|
dma_unmap_len_set(tx_buffer, len, 0);
|
||
|
/* tx_buffer must be completely set up in the transmit path */
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_clean_tx_ring - Free any empty Tx buffers
|
||
|
* @tx_ring: ring to be cleaned
|
||
|
**/
|
||
|
void iavf_clean_tx_ring(struct iavf_ring *tx_ring)
|
||
|
{
|
||
|
unsigned long bi_size;
|
||
|
u16 i;
|
||
|
|
||
|
/* ring already cleared, nothing to do */
|
||
|
if (!tx_ring->tx_bi)
|
||
|
return;
|
||
|
|
||
|
/* Free all the Tx ring sk_buffs */
|
||
|
for (i = 0; i < tx_ring->count; i++)
|
||
|
iavf_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
|
||
|
|
||
|
bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
|
||
|
memset(tx_ring->tx_bi, 0, bi_size);
|
||
|
|
||
|
/* Zero out the descriptor ring */
|
||
|
memset(tx_ring->desc, 0, tx_ring->size);
|
||
|
|
||
|
tx_ring->next_to_use = 0;
|
||
|
tx_ring->next_to_clean = 0;
|
||
|
|
||
|
if (!tx_ring->netdev)
|
||
|
return;
|
||
|
|
||
|
/* cleanup Tx queue statistics */
|
||
|
netdev_tx_reset_queue(txring_txq(tx_ring));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_free_tx_resources - Free Tx resources per queue
|
||
|
* @tx_ring: Tx descriptor ring for a specific queue
|
||
|
*
|
||
|
* Free all transmit software resources
|
||
|
**/
|
||
|
void iavf_free_tx_resources(struct iavf_ring *tx_ring)
|
||
|
{
|
||
|
iavf_clean_tx_ring(tx_ring);
|
||
|
kfree(tx_ring->tx_bi);
|
||
|
tx_ring->tx_bi = NULL;
|
||
|
|
||
|
if (tx_ring->desc) {
|
||
|
dma_free_coherent(tx_ring->dev, tx_ring->size,
|
||
|
tx_ring->desc, tx_ring->dma);
|
||
|
tx_ring->desc = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_get_tx_pending - how many Tx descriptors not processed
|
||
|
* @ring: the ring of descriptors
|
||
|
* @in_sw: is tx_pending being checked in SW or HW
|
||
|
*
|
||
|
* Since there is no access to the ring head register
|
||
|
* in XL710, we need to use our local copies
|
||
|
**/
|
||
|
u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw)
|
||
|
{
|
||
|
u32 head, tail;
|
||
|
|
||
|
/* underlying hardware might not allow access and/or always return
|
||
|
* 0 for the head/tail registers so just use the cached values
|
||
|
*/
|
||
|
head = ring->next_to_clean;
|
||
|
tail = ring->next_to_use;
|
||
|
|
||
|
if (head != tail)
|
||
|
return (head < tail) ?
|
||
|
tail - head : (tail + ring->count - head);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_detect_recover_hung - Function to detect and recover hung_queues
|
||
|
* @vsi: pointer to vsi struct with tx queues
|
||
|
*
|
||
|
* VSI has netdev and netdev has TX queues. This function is to check each of
|
||
|
* those TX queues if they are hung, trigger recovery by issuing SW interrupt.
|
||
|
**/
|
||
|
void iavf_detect_recover_hung(struct iavf_vsi *vsi)
|
||
|
{
|
||
|
struct iavf_ring *tx_ring = NULL;
|
||
|
struct net_device *netdev;
|
||
|
unsigned int i;
|
||
|
int packets;
|
||
|
|
||
|
if (!vsi)
|
||
|
return;
|
||
|
|
||
|
if (test_bit(__IAVF_VSI_DOWN, vsi->state))
|
||
|
return;
|
||
|
|
||
|
netdev = vsi->netdev;
|
||
|
if (!netdev)
|
||
|
return;
|
||
|
|
||
|
if (!netif_carrier_ok(netdev))
|
||
|
return;
|
||
|
|
||
|
for (i = 0; i < vsi->back->num_active_queues; i++) {
|
||
|
tx_ring = &vsi->back->tx_rings[i];
|
||
|
if (tx_ring && tx_ring->desc) {
|
||
|
/* If packet counter has not changed the queue is
|
||
|
* likely stalled, so force an interrupt for this
|
||
|
* queue.
|
||
|
*
|
||
|
* prev_pkt_ctr would be negative if there was no
|
||
|
* pending work.
|
||
|
*/
|
||
|
packets = tx_ring->stats.packets & INT_MAX;
|
||
|
if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
|
||
|
iavf_force_wb(vsi, tx_ring->q_vector);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* Memory barrier between read of packet count and call
|
||
|
* to iavf_get_tx_pending()
|
||
|
*/
|
||
|
smp_rmb();
|
||
|
tx_ring->tx_stats.prev_pkt_ctr =
|
||
|
iavf_get_tx_pending(tx_ring, true) ? packets : -1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define WB_STRIDE 4
|
||
|
|
||
|
/**
|
||
|
* iavf_clean_tx_irq - Reclaim resources after transmit completes
|
||
|
* @vsi: the VSI we care about
|
||
|
* @tx_ring: Tx ring to clean
|
||
|
* @napi_budget: Used to determine if we are in netpoll
|
||
|
*
|
||
|
* Returns true if there's any budget left (e.g. the clean is finished)
|
||
|
**/
|
||
|
static bool iavf_clean_tx_irq(struct iavf_vsi *vsi,
|
||
|
struct iavf_ring *tx_ring, int napi_budget)
|
||
|
{
|
||
|
int i = tx_ring->next_to_clean;
|
||
|
struct iavf_tx_buffer *tx_buf;
|
||
|
struct iavf_tx_desc *tx_desc;
|
||
|
unsigned int total_bytes = 0, total_packets = 0;
|
||
|
unsigned int budget = IAVF_DEFAULT_IRQ_WORK;
|
||
|
|
||
|
tx_buf = &tx_ring->tx_bi[i];
|
||
|
tx_desc = IAVF_TX_DESC(tx_ring, i);
|
||
|
i -= tx_ring->count;
|
||
|
|
||
|
do {
|
||
|
struct iavf_tx_desc *eop_desc = tx_buf->next_to_watch;
|
||
|
|
||
|
/* if next_to_watch is not set then there is no work pending */
|
||
|
if (!eop_desc)
|
||
|
break;
|
||
|
|
||
|
/* prevent any other reads prior to eop_desc */
|
||
|
smp_rmb();
|
||
|
|
||
|
iavf_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
|
||
|
/* if the descriptor isn't done, no work yet to do */
|
||
|
if (!(eop_desc->cmd_type_offset_bsz &
|
||
|
cpu_to_le64(IAVF_TX_DESC_DTYPE_DESC_DONE)))
|
||
|
break;
|
||
|
|
||
|
/* clear next_to_watch to prevent false hangs */
|
||
|
tx_buf->next_to_watch = NULL;
|
||
|
|
||
|
/* update the statistics for this packet */
|
||
|
total_bytes += tx_buf->bytecount;
|
||
|
total_packets += tx_buf->gso_segs;
|
||
|
|
||
|
/* free the skb */
|
||
|
napi_consume_skb(tx_buf->skb, napi_budget);
|
||
|
|
||
|
/* unmap skb header data */
|
||
|
dma_unmap_single(tx_ring->dev,
|
||
|
dma_unmap_addr(tx_buf, dma),
|
||
|
dma_unmap_len(tx_buf, len),
|
||
|
DMA_TO_DEVICE);
|
||
|
|
||
|
/* clear tx_buffer data */
|
||
|
tx_buf->skb = NULL;
|
||
|
dma_unmap_len_set(tx_buf, len, 0);
|
||
|
|
||
|
/* unmap remaining buffers */
|
||
|
while (tx_desc != eop_desc) {
|
||
|
iavf_trace(clean_tx_irq_unmap,
|
||
|
tx_ring, tx_desc, tx_buf);
|
||
|
|
||
|
tx_buf++;
|
||
|
tx_desc++;
|
||
|
i++;
|
||
|
if (unlikely(!i)) {
|
||
|
i -= tx_ring->count;
|
||
|
tx_buf = tx_ring->tx_bi;
|
||
|
tx_desc = IAVF_TX_DESC(tx_ring, 0);
|
||
|
}
|
||
|
|
||
|
/* unmap any remaining paged data */
|
||
|
if (dma_unmap_len(tx_buf, len)) {
|
||
|
dma_unmap_page(tx_ring->dev,
|
||
|
dma_unmap_addr(tx_buf, dma),
|
||
|
dma_unmap_len(tx_buf, len),
|
||
|
DMA_TO_DEVICE);
|
||
|
dma_unmap_len_set(tx_buf, len, 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* move us one more past the eop_desc for start of next pkt */
|
||
|
tx_buf++;
|
||
|
tx_desc++;
|
||
|
i++;
|
||
|
if (unlikely(!i)) {
|
||
|
i -= tx_ring->count;
|
||
|
tx_buf = tx_ring->tx_bi;
|
||
|
tx_desc = IAVF_TX_DESC(tx_ring, 0);
|
||
|
}
|
||
|
|
||
|
prefetch(tx_desc);
|
||
|
|
||
|
/* update budget accounting */
|
||
|
budget--;
|
||
|
} while (likely(budget));
|
||
|
|
||
|
i += tx_ring->count;
|
||
|
tx_ring->next_to_clean = i;
|
||
|
u64_stats_update_begin(&tx_ring->syncp);
|
||
|
tx_ring->stats.bytes += total_bytes;
|
||
|
tx_ring->stats.packets += total_packets;
|
||
|
u64_stats_update_end(&tx_ring->syncp);
|
||
|
tx_ring->q_vector->tx.total_bytes += total_bytes;
|
||
|
tx_ring->q_vector->tx.total_packets += total_packets;
|
||
|
|
||
|
if (tx_ring->flags & IAVF_TXR_FLAGS_WB_ON_ITR) {
|
||
|
/* check to see if there are < 4 descriptors
|
||
|
* waiting to be written back, then kick the hardware to force
|
||
|
* them to be written back in case we stay in NAPI.
|
||
|
* In this mode on X722 we do not enable Interrupt.
|
||
|
*/
|
||
|
unsigned int j = iavf_get_tx_pending(tx_ring, false);
|
||
|
|
||
|
if (budget &&
|
||
|
((j / WB_STRIDE) == 0) && (j > 0) &&
|
||
|
!test_bit(__IAVF_VSI_DOWN, vsi->state) &&
|
||
|
(IAVF_DESC_UNUSED(tx_ring) != tx_ring->count))
|
||
|
tx_ring->arm_wb = true;
|
||
|
}
|
||
|
|
||
|
/* notify netdev of completed buffers */
|
||
|
netdev_tx_completed_queue(txring_txq(tx_ring),
|
||
|
total_packets, total_bytes);
|
||
|
|
||
|
#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
|
||
|
if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
|
||
|
(IAVF_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
|
||
|
/* Make sure that anybody stopping the queue after this
|
||
|
* sees the new next_to_clean.
|
||
|
*/
|
||
|
smp_mb();
|
||
|
if (__netif_subqueue_stopped(tx_ring->netdev,
|
||
|
tx_ring->queue_index) &&
|
||
|
!test_bit(__IAVF_VSI_DOWN, vsi->state)) {
|
||
|
netif_wake_subqueue(tx_ring->netdev,
|
||
|
tx_ring->queue_index);
|
||
|
++tx_ring->tx_stats.restart_queue;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return !!budget;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
|
||
|
* @vsi: the VSI we care about
|
||
|
* @q_vector: the vector on which to enable writeback
|
||
|
*
|
||
|
**/
|
||
|
static void iavf_enable_wb_on_itr(struct iavf_vsi *vsi,
|
||
|
struct iavf_q_vector *q_vector)
|
||
|
{
|
||
|
u16 flags = q_vector->tx.ring[0].flags;
|
||
|
u32 val;
|
||
|
|
||
|
if (!(flags & IAVF_TXR_FLAGS_WB_ON_ITR))
|
||
|
return;
|
||
|
|
||
|
if (q_vector->arm_wb_state)
|
||
|
return;
|
||
|
|
||
|
val = IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
|
||
|
IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
|
||
|
|
||
|
wr32(&vsi->back->hw,
|
||
|
IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), val);
|
||
|
q_vector->arm_wb_state = true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_force_wb - Issue SW Interrupt so HW does a wb
|
||
|
* @vsi: the VSI we care about
|
||
|
* @q_vector: the vector on which to force writeback
|
||
|
*
|
||
|
**/
|
||
|
void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector)
|
||
|
{
|
||
|
u32 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
|
||
|
IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
|
||
|
IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
|
||
|
IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
|
||
|
/* allow 00 to be written to the index */;
|
||
|
|
||
|
wr32(&vsi->back->hw,
|
||
|
IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx),
|
||
|
val);
|
||
|
}
|
||
|
|
||
|
static inline bool iavf_container_is_rx(struct iavf_q_vector *q_vector,
|
||
|
struct iavf_ring_container *rc)
|
||
|
{
|
||
|
return &q_vector->rx == rc;
|
||
|
}
|
||
|
|
||
|
#define IAVF_AIM_MULTIPLIER_100G 2560
|
||
|
#define IAVF_AIM_MULTIPLIER_50G 1280
|
||
|
#define IAVF_AIM_MULTIPLIER_40G 1024
|
||
|
#define IAVF_AIM_MULTIPLIER_20G 512
|
||
|
#define IAVF_AIM_MULTIPLIER_10G 256
|
||
|
#define IAVF_AIM_MULTIPLIER_1G 32
|
||
|
|
||
|
static unsigned int iavf_mbps_itr_multiplier(u32 speed_mbps)
|
||
|
{
|
||
|
switch (speed_mbps) {
|
||
|
case SPEED_100000:
|
||
|
return IAVF_AIM_MULTIPLIER_100G;
|
||
|
case SPEED_50000:
|
||
|
return IAVF_AIM_MULTIPLIER_50G;
|
||
|
case SPEED_40000:
|
||
|
return IAVF_AIM_MULTIPLIER_40G;
|
||
|
case SPEED_25000:
|
||
|
case SPEED_20000:
|
||
|
return IAVF_AIM_MULTIPLIER_20G;
|
||
|
case SPEED_10000:
|
||
|
default:
|
||
|
return IAVF_AIM_MULTIPLIER_10G;
|
||
|
case SPEED_1000:
|
||
|
case SPEED_100:
|
||
|
return IAVF_AIM_MULTIPLIER_1G;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static unsigned int
|
||
|
iavf_virtchnl_itr_multiplier(enum virtchnl_link_speed speed_virtchnl)
|
||
|
{
|
||
|
switch (speed_virtchnl) {
|
||
|
case VIRTCHNL_LINK_SPEED_40GB:
|
||
|
return IAVF_AIM_MULTIPLIER_40G;
|
||
|
case VIRTCHNL_LINK_SPEED_25GB:
|
||
|
case VIRTCHNL_LINK_SPEED_20GB:
|
||
|
return IAVF_AIM_MULTIPLIER_20G;
|
||
|
case VIRTCHNL_LINK_SPEED_10GB:
|
||
|
default:
|
||
|
return IAVF_AIM_MULTIPLIER_10G;
|
||
|
case VIRTCHNL_LINK_SPEED_1GB:
|
||
|
case VIRTCHNL_LINK_SPEED_100MB:
|
||
|
return IAVF_AIM_MULTIPLIER_1G;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static unsigned int iavf_itr_divisor(struct iavf_adapter *adapter)
|
||
|
{
|
||
|
if (ADV_LINK_SUPPORT(adapter))
|
||
|
return IAVF_ITR_ADAPTIVE_MIN_INC *
|
||
|
iavf_mbps_itr_multiplier(adapter->link_speed_mbps);
|
||
|
else
|
||
|
return IAVF_ITR_ADAPTIVE_MIN_INC *
|
||
|
iavf_virtchnl_itr_multiplier(adapter->link_speed);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_update_itr - update the dynamic ITR value based on statistics
|
||
|
* @q_vector: structure containing interrupt and ring information
|
||
|
* @rc: structure containing ring performance data
|
||
|
*
|
||
|
* Stores a new ITR value based on packets and byte
|
||
|
* counts during the last interrupt. The advantage of per interrupt
|
||
|
* computation is faster updates and more accurate ITR for the current
|
||
|
* traffic pattern. Constants in this function were computed
|
||
|
* based on theoretical maximum wire speed and thresholds were set based
|
||
|
* on testing data as well as attempting to minimize response time
|
||
|
* while increasing bulk throughput.
|
||
|
**/
|
||
|
static void iavf_update_itr(struct iavf_q_vector *q_vector,
|
||
|
struct iavf_ring_container *rc)
|
||
|
{
|
||
|
unsigned int avg_wire_size, packets, bytes, itr;
|
||
|
unsigned long next_update = jiffies;
|
||
|
|
||
|
/* If we don't have any rings just leave ourselves set for maximum
|
||
|
* possible latency so we take ourselves out of the equation.
|
||
|
*/
|
||
|
if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
|
||
|
return;
|
||
|
|
||
|
/* For Rx we want to push the delay up and default to low latency.
|
||
|
* for Tx we want to pull the delay down and default to high latency.
|
||
|
*/
|
||
|
itr = iavf_container_is_rx(q_vector, rc) ?
|
||
|
IAVF_ITR_ADAPTIVE_MIN_USECS | IAVF_ITR_ADAPTIVE_LATENCY :
|
||
|
IAVF_ITR_ADAPTIVE_MAX_USECS | IAVF_ITR_ADAPTIVE_LATENCY;
|
||
|
|
||
|
/* If we didn't update within up to 1 - 2 jiffies we can assume
|
||
|
* that either packets are coming in so slow there hasn't been
|
||
|
* any work, or that there is so much work that NAPI is dealing
|
||
|
* with interrupt moderation and we don't need to do anything.
|
||
|
*/
|
||
|
if (time_after(next_update, rc->next_update))
|
||
|
goto clear_counts;
|
||
|
|
||
|
/* If itr_countdown is set it means we programmed an ITR within
|
||
|
* the last 4 interrupt cycles. This has a side effect of us
|
||
|
* potentially firing an early interrupt. In order to work around
|
||
|
* this we need to throw out any data received for a few
|
||
|
* interrupts following the update.
|
||
|
*/
|
||
|
if (q_vector->itr_countdown) {
|
||
|
itr = rc->target_itr;
|
||
|
goto clear_counts;
|
||
|
}
|
||
|
|
||
|
packets = rc->total_packets;
|
||
|
bytes = rc->total_bytes;
|
||
|
|
||
|
if (iavf_container_is_rx(q_vector, rc)) {
|
||
|
/* If Rx there are 1 to 4 packets and bytes are less than
|
||
|
* 9000 assume insufficient data to use bulk rate limiting
|
||
|
* approach unless Tx is already in bulk rate limiting. We
|
||
|
* are likely latency driven.
|
||
|
*/
|
||
|
if (packets && packets < 4 && bytes < 9000 &&
|
||
|
(q_vector->tx.target_itr & IAVF_ITR_ADAPTIVE_LATENCY)) {
|
||
|
itr = IAVF_ITR_ADAPTIVE_LATENCY;
|
||
|
goto adjust_by_size;
|
||
|
}
|
||
|
} else if (packets < 4) {
|
||
|
/* If we have Tx and Rx ITR maxed and Tx ITR is running in
|
||
|
* bulk mode and we are receiving 4 or fewer packets just
|
||
|
* reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
|
||
|
* that the Rx can relax.
|
||
|
*/
|
||
|
if (rc->target_itr == IAVF_ITR_ADAPTIVE_MAX_USECS &&
|
||
|
(q_vector->rx.target_itr & IAVF_ITR_MASK) ==
|
||
|
IAVF_ITR_ADAPTIVE_MAX_USECS)
|
||
|
goto clear_counts;
|
||
|
} else if (packets > 32) {
|
||
|
/* If we have processed over 32 packets in a single interrupt
|
||
|
* for Tx assume we need to switch over to "bulk" mode.
|
||
|
*/
|
||
|
rc->target_itr &= ~IAVF_ITR_ADAPTIVE_LATENCY;
|
||
|
}
|
||
|
|
||
|
/* We have no packets to actually measure against. This means
|
||
|
* either one of the other queues on this vector is active or
|
||
|
* we are a Tx queue doing TSO with too high of an interrupt rate.
|
||
|
*
|
||
|
* Between 4 and 56 we can assume that our current interrupt delay
|
||
|
* is only slightly too low. As such we should increase it by a small
|
||
|
* fixed amount.
|
||
|
*/
|
||
|
if (packets < 56) {
|
||
|
itr = rc->target_itr + IAVF_ITR_ADAPTIVE_MIN_INC;
|
||
|
if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
|
||
|
itr &= IAVF_ITR_ADAPTIVE_LATENCY;
|
||
|
itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
|
||
|
}
|
||
|
goto clear_counts;
|
||
|
}
|
||
|
|
||
|
if (packets <= 256) {
|
||
|
itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
|
||
|
itr &= IAVF_ITR_MASK;
|
||
|
|
||
|
/* Between 56 and 112 is our "goldilocks" zone where we are
|
||
|
* working out "just right". Just report that our current
|
||
|
* ITR is good for us.
|
||
|
*/
|
||
|
if (packets <= 112)
|
||
|
goto clear_counts;
|
||
|
|
||
|
/* If packet count is 128 or greater we are likely looking
|
||
|
* at a slight overrun of the delay we want. Try halving
|
||
|
* our delay to see if that will cut the number of packets
|
||
|
* in half per interrupt.
|
||
|
*/
|
||
|
itr /= 2;
|
||
|
itr &= IAVF_ITR_MASK;
|
||
|
if (itr < IAVF_ITR_ADAPTIVE_MIN_USECS)
|
||
|
itr = IAVF_ITR_ADAPTIVE_MIN_USECS;
|
||
|
|
||
|
goto clear_counts;
|
||
|
}
|
||
|
|
||
|
/* The paths below assume we are dealing with a bulk ITR since
|
||
|
* number of packets is greater than 256. We are just going to have
|
||
|
* to compute a value and try to bring the count under control,
|
||
|
* though for smaller packet sizes there isn't much we can do as
|
||
|
* NAPI polling will likely be kicking in sooner rather than later.
|
||
|
*/
|
||
|
itr = IAVF_ITR_ADAPTIVE_BULK;
|
||
|
|
||
|
adjust_by_size:
|
||
|
/* If packet counts are 256 or greater we can assume we have a gross
|
||
|
* overestimation of what the rate should be. Instead of trying to fine
|
||
|
* tune it just use the formula below to try and dial in an exact value
|
||
|
* give the current packet size of the frame.
|
||
|
*/
|
||
|
avg_wire_size = bytes / packets;
|
||
|
|
||
|
/* The following is a crude approximation of:
|
||
|
* wmem_default / (size + overhead) = desired_pkts_per_int
|
||
|
* rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
|
||
|
* (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
|
||
|
*
|
||
|
* Assuming wmem_default is 212992 and overhead is 640 bytes per
|
||
|
* packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
|
||
|
* formula down to
|
||
|
*
|
||
|
* (170 * (size + 24)) / (size + 640) = ITR
|
||
|
*
|
||
|
* We first do some math on the packet size and then finally bitshift
|
||
|
* by 8 after rounding up. We also have to account for PCIe link speed
|
||
|
* difference as ITR scales based on this.
|
||
|
*/
|
||
|
if (avg_wire_size <= 60) {
|
||
|
/* Start at 250k ints/sec */
|
||
|
avg_wire_size = 4096;
|
||
|
} else if (avg_wire_size <= 380) {
|
||
|
/* 250K ints/sec to 60K ints/sec */
|
||
|
avg_wire_size *= 40;
|
||
|
avg_wire_size += 1696;
|
||
|
} else if (avg_wire_size <= 1084) {
|
||
|
/* 60K ints/sec to 36K ints/sec */
|
||
|
avg_wire_size *= 15;
|
||
|
avg_wire_size += 11452;
|
||
|
} else if (avg_wire_size <= 1980) {
|
||
|
/* 36K ints/sec to 30K ints/sec */
|
||
|
avg_wire_size *= 5;
|
||
|
avg_wire_size += 22420;
|
||
|
} else {
|
||
|
/* plateau at a limit of 30K ints/sec */
|
||
|
avg_wire_size = 32256;
|
||
|
}
|
||
|
|
||
|
/* If we are in low latency mode halve our delay which doubles the
|
||
|
* rate to somewhere between 100K to 16K ints/sec
|
||
|
*/
|
||
|
if (itr & IAVF_ITR_ADAPTIVE_LATENCY)
|
||
|
avg_wire_size /= 2;
|
||
|
|
||
|
/* Resultant value is 256 times larger than it needs to be. This
|
||
|
* gives us room to adjust the value as needed to either increase
|
||
|
* or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
|
||
|
*
|
||
|
* Use addition as we have already recorded the new latency flag
|
||
|
* for the ITR value.
|
||
|
*/
|
||
|
itr += DIV_ROUND_UP(avg_wire_size,
|
||
|
iavf_itr_divisor(q_vector->adapter)) *
|
||
|
IAVF_ITR_ADAPTIVE_MIN_INC;
|
||
|
|
||
|
if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
|
||
|
itr &= IAVF_ITR_ADAPTIVE_LATENCY;
|
||
|
itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
|
||
|
}
|
||
|
|
||
|
clear_counts:
|
||
|
/* write back value */
|
||
|
rc->target_itr = itr;
|
||
|
|
||
|
/* next update should occur within next jiffy */
|
||
|
rc->next_update = next_update + 1;
|
||
|
|
||
|
rc->total_bytes = 0;
|
||
|
rc->total_packets = 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_setup_tx_descriptors - Allocate the Tx descriptors
|
||
|
* @tx_ring: the tx ring to set up
|
||
|
*
|
||
|
* Return 0 on success, negative on error
|
||
|
**/
|
||
|
int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring)
|
||
|
{
|
||
|
struct device *dev = tx_ring->dev;
|
||
|
int bi_size;
|
||
|
|
||
|
if (!dev)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
/* warn if we are about to overwrite the pointer */
|
||
|
WARN_ON(tx_ring->tx_bi);
|
||
|
bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
|
||
|
tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
|
||
|
if (!tx_ring->tx_bi)
|
||
|
goto err;
|
||
|
|
||
|
/* round up to nearest 4K */
|
||
|
tx_ring->size = tx_ring->count * sizeof(struct iavf_tx_desc);
|
||
|
tx_ring->size = ALIGN(tx_ring->size, 4096);
|
||
|
tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
|
||
|
&tx_ring->dma, GFP_KERNEL);
|
||
|
if (!tx_ring->desc) {
|
||
|
dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
|
||
|
tx_ring->size);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
tx_ring->next_to_use = 0;
|
||
|
tx_ring->next_to_clean = 0;
|
||
|
tx_ring->tx_stats.prev_pkt_ctr = -1;
|
||
|
return 0;
|
||
|
|
||
|
err:
|
||
|
kfree(tx_ring->tx_bi);
|
||
|
tx_ring->tx_bi = NULL;
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_clean_rx_ring - Free Rx buffers
|
||
|
* @rx_ring: ring to be cleaned
|
||
|
**/
|
||
|
void iavf_clean_rx_ring(struct iavf_ring *rx_ring)
|
||
|
{
|
||
|
unsigned long bi_size;
|
||
|
u16 i;
|
||
|
|
||
|
/* ring already cleared, nothing to do */
|
||
|
if (!rx_ring->rx_bi)
|
||
|
return;
|
||
|
|
||
|
if (rx_ring->skb) {
|
||
|
dev_kfree_skb(rx_ring->skb);
|
||
|
rx_ring->skb = NULL;
|
||
|
}
|
||
|
|
||
|
/* Free all the Rx ring sk_buffs */
|
||
|
for (i = 0; i < rx_ring->count; i++) {
|
||
|
struct iavf_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
|
||
|
|
||
|
if (!rx_bi->page)
|
||
|
continue;
|
||
|
|
||
|
/* Invalidate cache lines that may have been written to by
|
||
|
* device so that we avoid corrupting memory.
|
||
|
*/
|
||
|
dma_sync_single_range_for_cpu(rx_ring->dev,
|
||
|
rx_bi->dma,
|
||
|
rx_bi->page_offset,
|
||
|
rx_ring->rx_buf_len,
|
||
|
DMA_FROM_DEVICE);
|
||
|
|
||
|
/* free resources associated with mapping */
|
||
|
dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
|
||
|
iavf_rx_pg_size(rx_ring),
|
||
|
DMA_FROM_DEVICE,
|
||
|
IAVF_RX_DMA_ATTR);
|
||
|
|
||
|
__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
|
||
|
|
||
|
rx_bi->page = NULL;
|
||
|
rx_bi->page_offset = 0;
|
||
|
}
|
||
|
|
||
|
bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
|
||
|
memset(rx_ring->rx_bi, 0, bi_size);
|
||
|
|
||
|
/* Zero out the descriptor ring */
|
||
|
memset(rx_ring->desc, 0, rx_ring->size);
|
||
|
|
||
|
rx_ring->next_to_alloc = 0;
|
||
|
rx_ring->next_to_clean = 0;
|
||
|
rx_ring->next_to_use = 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_free_rx_resources - Free Rx resources
|
||
|
* @rx_ring: ring to clean the resources from
|
||
|
*
|
||
|
* Free all receive software resources
|
||
|
**/
|
||
|
void iavf_free_rx_resources(struct iavf_ring *rx_ring)
|
||
|
{
|
||
|
iavf_clean_rx_ring(rx_ring);
|
||
|
kfree(rx_ring->rx_bi);
|
||
|
rx_ring->rx_bi = NULL;
|
||
|
|
||
|
if (rx_ring->desc) {
|
||
|
dma_free_coherent(rx_ring->dev, rx_ring->size,
|
||
|
rx_ring->desc, rx_ring->dma);
|
||
|
rx_ring->desc = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_setup_rx_descriptors - Allocate Rx descriptors
|
||
|
* @rx_ring: Rx descriptor ring (for a specific queue) to setup
|
||
|
*
|
||
|
* Returns 0 on success, negative on failure
|
||
|
**/
|
||
|
int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring)
|
||
|
{
|
||
|
struct device *dev = rx_ring->dev;
|
||
|
int bi_size;
|
||
|
|
||
|
/* warn if we are about to overwrite the pointer */
|
||
|
WARN_ON(rx_ring->rx_bi);
|
||
|
bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
|
||
|
rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
|
||
|
if (!rx_ring->rx_bi)
|
||
|
goto err;
|
||
|
|
||
|
u64_stats_init(&rx_ring->syncp);
|
||
|
|
||
|
/* Round up to nearest 4K */
|
||
|
rx_ring->size = rx_ring->count * sizeof(union iavf_32byte_rx_desc);
|
||
|
rx_ring->size = ALIGN(rx_ring->size, 4096);
|
||
|
rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
|
||
|
&rx_ring->dma, GFP_KERNEL);
|
||
|
|
||
|
if (!rx_ring->desc) {
|
||
|
dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
|
||
|
rx_ring->size);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
rx_ring->next_to_alloc = 0;
|
||
|
rx_ring->next_to_clean = 0;
|
||
|
rx_ring->next_to_use = 0;
|
||
|
|
||
|
return 0;
|
||
|
err:
|
||
|
kfree(rx_ring->rx_bi);
|
||
|
rx_ring->rx_bi = NULL;
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_release_rx_desc - Store the new tail and head values
|
||
|
* @rx_ring: ring to bump
|
||
|
* @val: new head index
|
||
|
**/
|
||
|
static inline void iavf_release_rx_desc(struct iavf_ring *rx_ring, u32 val)
|
||
|
{
|
||
|
rx_ring->next_to_use = val;
|
||
|
|
||
|
/* update next to alloc since we have filled the ring */
|
||
|
rx_ring->next_to_alloc = val;
|
||
|
|
||
|
/* Force memory writes to complete before letting h/w
|
||
|
* know there are new descriptors to fetch. (Only
|
||
|
* applicable for weak-ordered memory model archs,
|
||
|
* such as IA-64).
|
||
|
*/
|
||
|
wmb();
|
||
|
writel(val, rx_ring->tail);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_rx_offset - Return expected offset into page to access data
|
||
|
* @rx_ring: Ring we are requesting offset of
|
||
|
*
|
||
|
* Returns the offset value for ring into the data buffer.
|
||
|
*/
|
||
|
static inline unsigned int iavf_rx_offset(struct iavf_ring *rx_ring)
|
||
|
{
|
||
|
return ring_uses_build_skb(rx_ring) ? IAVF_SKB_PAD : 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_alloc_mapped_page - recycle or make a new page
|
||
|
* @rx_ring: ring to use
|
||
|
* @bi: rx_buffer struct to modify
|
||
|
*
|
||
|
* Returns true if the page was successfully allocated or
|
||
|
* reused.
|
||
|
**/
|
||
|
static bool iavf_alloc_mapped_page(struct iavf_ring *rx_ring,
|
||
|
struct iavf_rx_buffer *bi)
|
||
|
{
|
||
|
struct page *page = bi->page;
|
||
|
dma_addr_t dma;
|
||
|
|
||
|
/* since we are recycling buffers we should seldom need to alloc */
|
||
|
if (likely(page)) {
|
||
|
rx_ring->rx_stats.page_reuse_count++;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/* alloc new page for storage */
|
||
|
page = dev_alloc_pages(iavf_rx_pg_order(rx_ring));
|
||
|
if (unlikely(!page)) {
|
||
|
rx_ring->rx_stats.alloc_page_failed++;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/* map page for use */
|
||
|
dma = dma_map_page_attrs(rx_ring->dev, page, 0,
|
||
|
iavf_rx_pg_size(rx_ring),
|
||
|
DMA_FROM_DEVICE,
|
||
|
IAVF_RX_DMA_ATTR);
|
||
|
|
||
|
/* if mapping failed free memory back to system since
|
||
|
* there isn't much point in holding memory we can't use
|
||
|
*/
|
||
|
if (dma_mapping_error(rx_ring->dev, dma)) {
|
||
|
__free_pages(page, iavf_rx_pg_order(rx_ring));
|
||
|
rx_ring->rx_stats.alloc_page_failed++;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
bi->dma = dma;
|
||
|
bi->page = page;
|
||
|
bi->page_offset = iavf_rx_offset(rx_ring);
|
||
|
|
||
|
/* initialize pagecnt_bias to 1 representing we fully own page */
|
||
|
bi->pagecnt_bias = 1;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_receive_skb - Send a completed packet up the stack
|
||
|
* @rx_ring: rx ring in play
|
||
|
* @skb: packet to send up
|
||
|
* @vlan_tag: vlan tag for packet
|
||
|
**/
|
||
|
static void iavf_receive_skb(struct iavf_ring *rx_ring,
|
||
|
struct sk_buff *skb, u16 vlan_tag)
|
||
|
{
|
||
|
struct iavf_q_vector *q_vector = rx_ring->q_vector;
|
||
|
|
||
|
if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
|
||
|
(vlan_tag & VLAN_VID_MASK))
|
||
|
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
|
||
|
else if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_STAG_RX) &&
|
||
|
vlan_tag & VLAN_VID_MASK)
|
||
|
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021AD), vlan_tag);
|
||
|
|
||
|
napi_gro_receive(&q_vector->napi, skb);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_alloc_rx_buffers - Replace used receive buffers
|
||
|
* @rx_ring: ring to place buffers on
|
||
|
* @cleaned_count: number of buffers to replace
|
||
|
*
|
||
|
* Returns false if all allocations were successful, true if any fail
|
||
|
**/
|
||
|
bool iavf_alloc_rx_buffers(struct iavf_ring *rx_ring, u16 cleaned_count)
|
||
|
{
|
||
|
u16 ntu = rx_ring->next_to_use;
|
||
|
union iavf_rx_desc *rx_desc;
|
||
|
struct iavf_rx_buffer *bi;
|
||
|
|
||
|
/* do nothing if no valid netdev defined */
|
||
|
if (!rx_ring->netdev || !cleaned_count)
|
||
|
return false;
|
||
|
|
||
|
rx_desc = IAVF_RX_DESC(rx_ring, ntu);
|
||
|
bi = &rx_ring->rx_bi[ntu];
|
||
|
|
||
|
do {
|
||
|
if (!iavf_alloc_mapped_page(rx_ring, bi))
|
||
|
goto no_buffers;
|
||
|
|
||
|
/* sync the buffer for use by the device */
|
||
|
dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
|
||
|
bi->page_offset,
|
||
|
rx_ring->rx_buf_len,
|
||
|
DMA_FROM_DEVICE);
|
||
|
|
||
|
/* Refresh the desc even if buffer_addrs didn't change
|
||
|
* because each write-back erases this info.
|
||
|
*/
|
||
|
rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
|
||
|
|
||
|
rx_desc++;
|
||
|
bi++;
|
||
|
ntu++;
|
||
|
if (unlikely(ntu == rx_ring->count)) {
|
||
|
rx_desc = IAVF_RX_DESC(rx_ring, 0);
|
||
|
bi = rx_ring->rx_bi;
|
||
|
ntu = 0;
|
||
|
}
|
||
|
|
||
|
/* clear the status bits for the next_to_use descriptor */
|
||
|
rx_desc->wb.qword1.status_error_len = 0;
|
||
|
|
||
|
cleaned_count--;
|
||
|
} while (cleaned_count);
|
||
|
|
||
|
if (rx_ring->next_to_use != ntu)
|
||
|
iavf_release_rx_desc(rx_ring, ntu);
|
||
|
|
||
|
return false;
|
||
|
|
||
|
no_buffers:
|
||
|
if (rx_ring->next_to_use != ntu)
|
||
|
iavf_release_rx_desc(rx_ring, ntu);
|
||
|
|
||
|
/* make sure to come back via polling to try again after
|
||
|
* allocation failure
|
||
|
*/
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_rx_checksum - Indicate in skb if hw indicated a good cksum
|
||
|
* @vsi: the VSI we care about
|
||
|
* @skb: skb currently being received and modified
|
||
|
* @rx_desc: the receive descriptor
|
||
|
**/
|
||
|
static inline void iavf_rx_checksum(struct iavf_vsi *vsi,
|
||
|
struct sk_buff *skb,
|
||
|
union iavf_rx_desc *rx_desc)
|
||
|
{
|
||
|
struct iavf_rx_ptype_decoded decoded;
|
||
|
u32 rx_error, rx_status;
|
||
|
bool ipv4, ipv6;
|
||
|
u8 ptype;
|
||
|
u64 qword;
|
||
|
|
||
|
qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
|
||
|
ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT;
|
||
|
rx_error = (qword & IAVF_RXD_QW1_ERROR_MASK) >>
|
||
|
IAVF_RXD_QW1_ERROR_SHIFT;
|
||
|
rx_status = (qword & IAVF_RXD_QW1_STATUS_MASK) >>
|
||
|
IAVF_RXD_QW1_STATUS_SHIFT;
|
||
|
decoded = decode_rx_desc_ptype(ptype);
|
||
|
|
||
|
skb->ip_summed = CHECKSUM_NONE;
|
||
|
|
||
|
skb_checksum_none_assert(skb);
|
||
|
|
||
|
/* Rx csum enabled and ip headers found? */
|
||
|
if (!(vsi->netdev->features & NETIF_F_RXCSUM))
|
||
|
return;
|
||
|
|
||
|
/* did the hardware decode the packet and checksum? */
|
||
|
if (!(rx_status & BIT(IAVF_RX_DESC_STATUS_L3L4P_SHIFT)))
|
||
|
return;
|
||
|
|
||
|
/* both known and outer_ip must be set for the below code to work */
|
||
|
if (!(decoded.known && decoded.outer_ip))
|
||
|
return;
|
||
|
|
||
|
ipv4 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
|
||
|
(decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV4);
|
||
|
ipv6 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
|
||
|
(decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV6);
|
||
|
|
||
|
if (ipv4 &&
|
||
|
(rx_error & (BIT(IAVF_RX_DESC_ERROR_IPE_SHIFT) |
|
||
|
BIT(IAVF_RX_DESC_ERROR_EIPE_SHIFT))))
|
||
|
goto checksum_fail;
|
||
|
|
||
|
/* likely incorrect csum if alternate IP extension headers found */
|
||
|
if (ipv6 &&
|
||
|
rx_status & BIT(IAVF_RX_DESC_STATUS_IPV6EXADD_SHIFT))
|
||
|
/* don't increment checksum err here, non-fatal err */
|
||
|
return;
|
||
|
|
||
|
/* there was some L4 error, count error and punt packet to the stack */
|
||
|
if (rx_error & BIT(IAVF_RX_DESC_ERROR_L4E_SHIFT))
|
||
|
goto checksum_fail;
|
||
|
|
||
|
/* handle packets that were not able to be checksummed due
|
||
|
* to arrival speed, in this case the stack can compute
|
||
|
* the csum.
|
||
|
*/
|
||
|
if (rx_error & BIT(IAVF_RX_DESC_ERROR_PPRS_SHIFT))
|
||
|
return;
|
||
|
|
||
|
/* Only report checksum unnecessary for TCP, UDP, or SCTP */
|
||
|
switch (decoded.inner_prot) {
|
||
|
case IAVF_RX_PTYPE_INNER_PROT_TCP:
|
||
|
case IAVF_RX_PTYPE_INNER_PROT_UDP:
|
||
|
case IAVF_RX_PTYPE_INNER_PROT_SCTP:
|
||
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
||
|
fallthrough;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
|
||
|
checksum_fail:
|
||
|
vsi->back->hw_csum_rx_error++;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_ptype_to_htype - get a hash type
|
||
|
* @ptype: the ptype value from the descriptor
|
||
|
*
|
||
|
* Returns a hash type to be used by skb_set_hash
|
||
|
**/
|
||
|
static inline int iavf_ptype_to_htype(u8 ptype)
|
||
|
{
|
||
|
struct iavf_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
|
||
|
|
||
|
if (!decoded.known)
|
||
|
return PKT_HASH_TYPE_NONE;
|
||
|
|
||
|
if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
|
||
|
decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY4)
|
||
|
return PKT_HASH_TYPE_L4;
|
||
|
else if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
|
||
|
decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY3)
|
||
|
return PKT_HASH_TYPE_L3;
|
||
|
else
|
||
|
return PKT_HASH_TYPE_L2;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_rx_hash - set the hash value in the skb
|
||
|
* @ring: descriptor ring
|
||
|
* @rx_desc: specific descriptor
|
||
|
* @skb: skb currently being received and modified
|
||
|
* @rx_ptype: Rx packet type
|
||
|
**/
|
||
|
static inline void iavf_rx_hash(struct iavf_ring *ring,
|
||
|
union iavf_rx_desc *rx_desc,
|
||
|
struct sk_buff *skb,
|
||
|
u8 rx_ptype)
|
||
|
{
|
||
|
u32 hash;
|
||
|
const __le64 rss_mask =
|
||
|
cpu_to_le64((u64)IAVF_RX_DESC_FLTSTAT_RSS_HASH <<
|
||
|
IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT);
|
||
|
|
||
|
if (!(ring->netdev->features & NETIF_F_RXHASH))
|
||
|
return;
|
||
|
|
||
|
if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
|
||
|
hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
|
||
|
skb_set_hash(skb, hash, iavf_ptype_to_htype(rx_ptype));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_process_skb_fields - Populate skb header fields from Rx descriptor
|
||
|
* @rx_ring: rx descriptor ring packet is being transacted on
|
||
|
* @rx_desc: pointer to the EOP Rx descriptor
|
||
|
* @skb: pointer to current skb being populated
|
||
|
* @rx_ptype: the packet type decoded by hardware
|
||
|
*
|
||
|
* This function checks the ring, descriptor, and packet information in
|
||
|
* order to populate the hash, checksum, VLAN, protocol, and
|
||
|
* other fields within the skb.
|
||
|
**/
|
||
|
static inline
|
||
|
void iavf_process_skb_fields(struct iavf_ring *rx_ring,
|
||
|
union iavf_rx_desc *rx_desc, struct sk_buff *skb,
|
||
|
u8 rx_ptype)
|
||
|
{
|
||
|
iavf_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
|
||
|
|
||
|
iavf_rx_checksum(rx_ring->vsi, skb, rx_desc);
|
||
|
|
||
|
skb_record_rx_queue(skb, rx_ring->queue_index);
|
||
|
|
||
|
/* modifies the skb - consumes the enet header */
|
||
|
skb->protocol = eth_type_trans(skb, rx_ring->netdev);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_cleanup_headers - Correct empty headers
|
||
|
* @rx_ring: rx descriptor ring packet is being transacted on
|
||
|
* @skb: pointer to current skb being fixed
|
||
|
*
|
||
|
* Also address the case where we are pulling data in on pages only
|
||
|
* and as such no data is present in the skb header.
|
||
|
*
|
||
|
* In addition if skb is not at least 60 bytes we need to pad it so that
|
||
|
* it is large enough to qualify as a valid Ethernet frame.
|
||
|
*
|
||
|
* Returns true if an error was encountered and skb was freed.
|
||
|
**/
|
||
|
static bool iavf_cleanup_headers(struct iavf_ring *rx_ring, struct sk_buff *skb)
|
||
|
{
|
||
|
/* if eth_skb_pad returns an error the skb was freed */
|
||
|
if (eth_skb_pad(skb))
|
||
|
return true;
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_reuse_rx_page - page flip buffer and store it back on the ring
|
||
|
* @rx_ring: rx descriptor ring to store buffers on
|
||
|
* @old_buff: donor buffer to have page reused
|
||
|
*
|
||
|
* Synchronizes page for reuse by the adapter
|
||
|
**/
|
||
|
static void iavf_reuse_rx_page(struct iavf_ring *rx_ring,
|
||
|
struct iavf_rx_buffer *old_buff)
|
||
|
{
|
||
|
struct iavf_rx_buffer *new_buff;
|
||
|
u16 nta = rx_ring->next_to_alloc;
|
||
|
|
||
|
new_buff = &rx_ring->rx_bi[nta];
|
||
|
|
||
|
/* update, and store next to alloc */
|
||
|
nta++;
|
||
|
rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
|
||
|
|
||
|
/* transfer page from old buffer to new buffer */
|
||
|
new_buff->dma = old_buff->dma;
|
||
|
new_buff->page = old_buff->page;
|
||
|
new_buff->page_offset = old_buff->page_offset;
|
||
|
new_buff->pagecnt_bias = old_buff->pagecnt_bias;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_can_reuse_rx_page - Determine if this page can be reused by
|
||
|
* the adapter for another receive
|
||
|
*
|
||
|
* @rx_buffer: buffer containing the page
|
||
|
*
|
||
|
* If page is reusable, rx_buffer->page_offset is adjusted to point to
|
||
|
* an unused region in the page.
|
||
|
*
|
||
|
* For small pages, @truesize will be a constant value, half the size
|
||
|
* of the memory at page. We'll attempt to alternate between high and
|
||
|
* low halves of the page, with one half ready for use by the hardware
|
||
|
* and the other half being consumed by the stack. We use the page
|
||
|
* ref count to determine whether the stack has finished consuming the
|
||
|
* portion of this page that was passed up with a previous packet. If
|
||
|
* the page ref count is >1, we'll assume the "other" half page is
|
||
|
* still busy, and this page cannot be reused.
|
||
|
*
|
||
|
* For larger pages, @truesize will be the actual space used by the
|
||
|
* received packet (adjusted upward to an even multiple of the cache
|
||
|
* line size). This will advance through the page by the amount
|
||
|
* actually consumed by the received packets while there is still
|
||
|
* space for a buffer. Each region of larger pages will be used at
|
||
|
* most once, after which the page will not be reused.
|
||
|
*
|
||
|
* In either case, if the page is reusable its refcount is increased.
|
||
|
**/
|
||
|
static bool iavf_can_reuse_rx_page(struct iavf_rx_buffer *rx_buffer)
|
||
|
{
|
||
|
unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
|
||
|
struct page *page = rx_buffer->page;
|
||
|
|
||
|
/* Is any reuse possible? */
|
||
|
if (!dev_page_is_reusable(page))
|
||
|
return false;
|
||
|
|
||
|
#if (PAGE_SIZE < 8192)
|
||
|
/* if we are only owner of page we can reuse it */
|
||
|
if (unlikely((page_count(page) - pagecnt_bias) > 1))
|
||
|
return false;
|
||
|
#else
|
||
|
#define IAVF_LAST_OFFSET \
|
||
|
(SKB_WITH_OVERHEAD(PAGE_SIZE) - IAVF_RXBUFFER_2048)
|
||
|
if (rx_buffer->page_offset > IAVF_LAST_OFFSET)
|
||
|
return false;
|
||
|
#endif
|
||
|
|
||
|
/* If we have drained the page fragment pool we need to update
|
||
|
* the pagecnt_bias and page count so that we fully restock the
|
||
|
* number of references the driver holds.
|
||
|
*/
|
||
|
if (unlikely(!pagecnt_bias)) {
|
||
|
page_ref_add(page, USHRT_MAX);
|
||
|
rx_buffer->pagecnt_bias = USHRT_MAX;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_add_rx_frag - Add contents of Rx buffer to sk_buff
|
||
|
* @rx_ring: rx descriptor ring to transact packets on
|
||
|
* @rx_buffer: buffer containing page to add
|
||
|
* @skb: sk_buff to place the data into
|
||
|
* @size: packet length from rx_desc
|
||
|
*
|
||
|
* This function will add the data contained in rx_buffer->page to the skb.
|
||
|
* It will just attach the page as a frag to the skb.
|
||
|
*
|
||
|
* The function will then update the page offset.
|
||
|
**/
|
||
|
static void iavf_add_rx_frag(struct iavf_ring *rx_ring,
|
||
|
struct iavf_rx_buffer *rx_buffer,
|
||
|
struct sk_buff *skb,
|
||
|
unsigned int size)
|
||
|
{
|
||
|
#if (PAGE_SIZE < 8192)
|
||
|
unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
|
||
|
#else
|
||
|
unsigned int truesize = SKB_DATA_ALIGN(size + iavf_rx_offset(rx_ring));
|
||
|
#endif
|
||
|
|
||
|
if (!size)
|
||
|
return;
|
||
|
|
||
|
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
|
||
|
rx_buffer->page_offset, size, truesize);
|
||
|
|
||
|
/* page is being used so we must update the page offset */
|
||
|
#if (PAGE_SIZE < 8192)
|
||
|
rx_buffer->page_offset ^= truesize;
|
||
|
#else
|
||
|
rx_buffer->page_offset += truesize;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_get_rx_buffer - Fetch Rx buffer and synchronize data for use
|
||
|
* @rx_ring: rx descriptor ring to transact packets on
|
||
|
* @size: size of buffer to add to skb
|
||
|
*
|
||
|
* This function will pull an Rx buffer from the ring and synchronize it
|
||
|
* for use by the CPU.
|
||
|
*/
|
||
|
static struct iavf_rx_buffer *iavf_get_rx_buffer(struct iavf_ring *rx_ring,
|
||
|
const unsigned int size)
|
||
|
{
|
||
|
struct iavf_rx_buffer *rx_buffer;
|
||
|
|
||
|
rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
|
||
|
prefetchw(rx_buffer->page);
|
||
|
if (!size)
|
||
|
return rx_buffer;
|
||
|
|
||
|
/* we are reusing so sync this buffer for CPU use */
|
||
|
dma_sync_single_range_for_cpu(rx_ring->dev,
|
||
|
rx_buffer->dma,
|
||
|
rx_buffer->page_offset,
|
||
|
size,
|
||
|
DMA_FROM_DEVICE);
|
||
|
|
||
|
/* We have pulled a buffer for use, so decrement pagecnt_bias */
|
||
|
rx_buffer->pagecnt_bias--;
|
||
|
|
||
|
return rx_buffer;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_construct_skb - Allocate skb and populate it
|
||
|
* @rx_ring: rx descriptor ring to transact packets on
|
||
|
* @rx_buffer: rx buffer to pull data from
|
||
|
* @size: size of buffer to add to skb
|
||
|
*
|
||
|
* This function allocates an skb. It then populates it with the page
|
||
|
* data from the current receive descriptor, taking care to set up the
|
||
|
* skb correctly.
|
||
|
*/
|
||
|
static struct sk_buff *iavf_construct_skb(struct iavf_ring *rx_ring,
|
||
|
struct iavf_rx_buffer *rx_buffer,
|
||
|
unsigned int size)
|
||
|
{
|
||
|
void *va;
|
||
|
#if (PAGE_SIZE < 8192)
|
||
|
unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
|
||
|
#else
|
||
|
unsigned int truesize = SKB_DATA_ALIGN(size);
|
||
|
#endif
|
||
|
unsigned int headlen;
|
||
|
struct sk_buff *skb;
|
||
|
|
||
|
if (!rx_buffer)
|
||
|
return NULL;
|
||
|
/* prefetch first cache line of first page */
|
||
|
va = page_address(rx_buffer->page) + rx_buffer->page_offset;
|
||
|
net_prefetch(va);
|
||
|
|
||
|
/* allocate a skb to store the frags */
|
||
|
skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
|
||
|
IAVF_RX_HDR_SIZE,
|
||
|
GFP_ATOMIC | __GFP_NOWARN);
|
||
|
if (unlikely(!skb))
|
||
|
return NULL;
|
||
|
|
||
|
/* Determine available headroom for copy */
|
||
|
headlen = size;
|
||
|
if (headlen > IAVF_RX_HDR_SIZE)
|
||
|
headlen = eth_get_headlen(skb->dev, va, IAVF_RX_HDR_SIZE);
|
||
|
|
||
|
/* align pull length to size of long to optimize memcpy performance */
|
||
|
memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
|
||
|
|
||
|
/* update all of the pointers */
|
||
|
size -= headlen;
|
||
|
if (size) {
|
||
|
skb_add_rx_frag(skb, 0, rx_buffer->page,
|
||
|
rx_buffer->page_offset + headlen,
|
||
|
size, truesize);
|
||
|
|
||
|
/* buffer is used by skb, update page_offset */
|
||
|
#if (PAGE_SIZE < 8192)
|
||
|
rx_buffer->page_offset ^= truesize;
|
||
|
#else
|
||
|
rx_buffer->page_offset += truesize;
|
||
|
#endif
|
||
|
} else {
|
||
|
/* buffer is unused, reset bias back to rx_buffer */
|
||
|
rx_buffer->pagecnt_bias++;
|
||
|
}
|
||
|
|
||
|
return skb;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_build_skb - Build skb around an existing buffer
|
||
|
* @rx_ring: Rx descriptor ring to transact packets on
|
||
|
* @rx_buffer: Rx buffer to pull data from
|
||
|
* @size: size of buffer to add to skb
|
||
|
*
|
||
|
* This function builds an skb around an existing Rx buffer, taking care
|
||
|
* to set up the skb correctly and avoid any memcpy overhead.
|
||
|
*/
|
||
|
static struct sk_buff *iavf_build_skb(struct iavf_ring *rx_ring,
|
||
|
struct iavf_rx_buffer *rx_buffer,
|
||
|
unsigned int size)
|
||
|
{
|
||
|
void *va;
|
||
|
#if (PAGE_SIZE < 8192)
|
||
|
unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
|
||
|
#else
|
||
|
unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
|
||
|
SKB_DATA_ALIGN(IAVF_SKB_PAD + size);
|
||
|
#endif
|
||
|
struct sk_buff *skb;
|
||
|
|
||
|
if (!rx_buffer || !size)
|
||
|
return NULL;
|
||
|
/* prefetch first cache line of first page */
|
||
|
va = page_address(rx_buffer->page) + rx_buffer->page_offset;
|
||
|
net_prefetch(va);
|
||
|
|
||
|
/* build an skb around the page buffer */
|
||
|
skb = napi_build_skb(va - IAVF_SKB_PAD, truesize);
|
||
|
if (unlikely(!skb))
|
||
|
return NULL;
|
||
|
|
||
|
/* update pointers within the skb to store the data */
|
||
|
skb_reserve(skb, IAVF_SKB_PAD);
|
||
|
__skb_put(skb, size);
|
||
|
|
||
|
/* buffer is used by skb, update page_offset */
|
||
|
#if (PAGE_SIZE < 8192)
|
||
|
rx_buffer->page_offset ^= truesize;
|
||
|
#else
|
||
|
rx_buffer->page_offset += truesize;
|
||
|
#endif
|
||
|
|
||
|
return skb;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_put_rx_buffer - Clean up used buffer and either recycle or free
|
||
|
* @rx_ring: rx descriptor ring to transact packets on
|
||
|
* @rx_buffer: rx buffer to pull data from
|
||
|
*
|
||
|
* This function will clean up the contents of the rx_buffer. It will
|
||
|
* either recycle the buffer or unmap it and free the associated resources.
|
||
|
*/
|
||
|
static void iavf_put_rx_buffer(struct iavf_ring *rx_ring,
|
||
|
struct iavf_rx_buffer *rx_buffer)
|
||
|
{
|
||
|
if (!rx_buffer)
|
||
|
return;
|
||
|
|
||
|
if (iavf_can_reuse_rx_page(rx_buffer)) {
|
||
|
/* hand second half of page back to the ring */
|
||
|
iavf_reuse_rx_page(rx_ring, rx_buffer);
|
||
|
rx_ring->rx_stats.page_reuse_count++;
|
||
|
} else {
|
||
|
/* we are not reusing the buffer so unmap it */
|
||
|
dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
|
||
|
iavf_rx_pg_size(rx_ring),
|
||
|
DMA_FROM_DEVICE, IAVF_RX_DMA_ATTR);
|
||
|
__page_frag_cache_drain(rx_buffer->page,
|
||
|
rx_buffer->pagecnt_bias);
|
||
|
}
|
||
|
|
||
|
/* clear contents of buffer_info */
|
||
|
rx_buffer->page = NULL;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_is_non_eop - process handling of non-EOP buffers
|
||
|
* @rx_ring: Rx ring being processed
|
||
|
* @rx_desc: Rx descriptor for current buffer
|
||
|
* @skb: Current socket buffer containing buffer in progress
|
||
|
*
|
||
|
* This function updates next to clean. If the buffer is an EOP buffer
|
||
|
* this function exits returning false, otherwise it will place the
|
||
|
* sk_buff in the next buffer to be chained and return true indicating
|
||
|
* that this is in fact a non-EOP buffer.
|
||
|
**/
|
||
|
static bool iavf_is_non_eop(struct iavf_ring *rx_ring,
|
||
|
union iavf_rx_desc *rx_desc,
|
||
|
struct sk_buff *skb)
|
||
|
{
|
||
|
u32 ntc = rx_ring->next_to_clean + 1;
|
||
|
|
||
|
/* fetch, update, and store next to clean */
|
||
|
ntc = (ntc < rx_ring->count) ? ntc : 0;
|
||
|
rx_ring->next_to_clean = ntc;
|
||
|
|
||
|
prefetch(IAVF_RX_DESC(rx_ring, ntc));
|
||
|
|
||
|
/* if we are the last buffer then there is nothing else to do */
|
||
|
#define IAVF_RXD_EOF BIT(IAVF_RX_DESC_STATUS_EOF_SHIFT)
|
||
|
if (likely(iavf_test_staterr(rx_desc, IAVF_RXD_EOF)))
|
||
|
return false;
|
||
|
|
||
|
rx_ring->rx_stats.non_eop_descs++;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
|
||
|
* @rx_ring: rx descriptor ring to transact packets on
|
||
|
* @budget: Total limit on number of packets to process
|
||
|
*
|
||
|
* This function provides a "bounce buffer" approach to Rx interrupt
|
||
|
* processing. The advantage to this is that on systems that have
|
||
|
* expensive overhead for IOMMU access this provides a means of avoiding
|
||
|
* it by maintaining the mapping of the page to the system.
|
||
|
*
|
||
|
* Returns amount of work completed
|
||
|
**/
|
||
|
static int iavf_clean_rx_irq(struct iavf_ring *rx_ring, int budget)
|
||
|
{
|
||
|
unsigned int total_rx_bytes = 0, total_rx_packets = 0;
|
||
|
struct sk_buff *skb = rx_ring->skb;
|
||
|
u16 cleaned_count = IAVF_DESC_UNUSED(rx_ring);
|
||
|
bool failure = false;
|
||
|
|
||
|
while (likely(total_rx_packets < (unsigned int)budget)) {
|
||
|
struct iavf_rx_buffer *rx_buffer;
|
||
|
union iavf_rx_desc *rx_desc;
|
||
|
unsigned int size;
|
||
|
u16 vlan_tag = 0;
|
||
|
u8 rx_ptype;
|
||
|
u64 qword;
|
||
|
|
||
|
/* return some buffers to hardware, one at a time is too slow */
|
||
|
if (cleaned_count >= IAVF_RX_BUFFER_WRITE) {
|
||
|
failure = failure ||
|
||
|
iavf_alloc_rx_buffers(rx_ring, cleaned_count);
|
||
|
cleaned_count = 0;
|
||
|
}
|
||
|
|
||
|
rx_desc = IAVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
|
||
|
|
||
|
/* status_error_len will always be zero for unused descriptors
|
||
|
* because it's cleared in cleanup, and overlaps with hdr_addr
|
||
|
* which is always zero because packet split isn't used, if the
|
||
|
* hardware wrote DD then the length will be non-zero
|
||
|
*/
|
||
|
qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
|
||
|
|
||
|
/* This memory barrier is needed to keep us from reading
|
||
|
* any other fields out of the rx_desc until we have
|
||
|
* verified the descriptor has been written back.
|
||
|
*/
|
||
|
dma_rmb();
|
||
|
#define IAVF_RXD_DD BIT(IAVF_RX_DESC_STATUS_DD_SHIFT)
|
||
|
if (!iavf_test_staterr(rx_desc, IAVF_RXD_DD))
|
||
|
break;
|
||
|
|
||
|
size = (qword & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
|
||
|
IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
|
||
|
|
||
|
iavf_trace(clean_rx_irq, rx_ring, rx_desc, skb);
|
||
|
rx_buffer = iavf_get_rx_buffer(rx_ring, size);
|
||
|
|
||
|
/* retrieve a buffer from the ring */
|
||
|
if (skb)
|
||
|
iavf_add_rx_frag(rx_ring, rx_buffer, skb, size);
|
||
|
else if (ring_uses_build_skb(rx_ring))
|
||
|
skb = iavf_build_skb(rx_ring, rx_buffer, size);
|
||
|
else
|
||
|
skb = iavf_construct_skb(rx_ring, rx_buffer, size);
|
||
|
|
||
|
/* exit if we failed to retrieve a buffer */
|
||
|
if (!skb) {
|
||
|
rx_ring->rx_stats.alloc_buff_failed++;
|
||
|
if (rx_buffer && size)
|
||
|
rx_buffer->pagecnt_bias++;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
iavf_put_rx_buffer(rx_ring, rx_buffer);
|
||
|
cleaned_count++;
|
||
|
|
||
|
if (iavf_is_non_eop(rx_ring, rx_desc, skb))
|
||
|
continue;
|
||
|
|
||
|
/* ERR_MASK will only have valid bits if EOP set, and
|
||
|
* what we are doing here is actually checking
|
||
|
* IAVF_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
|
||
|
* the error field
|
||
|
*/
|
||
|
if (unlikely(iavf_test_staterr(rx_desc, BIT(IAVF_RXD_QW1_ERROR_SHIFT)))) {
|
||
|
dev_kfree_skb_any(skb);
|
||
|
skb = NULL;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (iavf_cleanup_headers(rx_ring, skb)) {
|
||
|
skb = NULL;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* probably a little skewed due to removing CRC */
|
||
|
total_rx_bytes += skb->len;
|
||
|
|
||
|
qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
|
||
|
rx_ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >>
|
||
|
IAVF_RXD_QW1_PTYPE_SHIFT;
|
||
|
|
||
|
/* populate checksum, VLAN, and protocol */
|
||
|
iavf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
|
||
|
|
||
|
if (qword & BIT(IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT) &&
|
||
|
rx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1)
|
||
|
vlan_tag = le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1);
|
||
|
if (rx_desc->wb.qword2.ext_status &
|
||
|
cpu_to_le16(BIT(IAVF_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) &&
|
||
|
rx_ring->flags & IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2)
|
||
|
vlan_tag = le16_to_cpu(rx_desc->wb.qword2.l2tag2_2);
|
||
|
|
||
|
iavf_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
|
||
|
iavf_receive_skb(rx_ring, skb, vlan_tag);
|
||
|
skb = NULL;
|
||
|
|
||
|
/* update budget accounting */
|
||
|
total_rx_packets++;
|
||
|
}
|
||
|
|
||
|
rx_ring->skb = skb;
|
||
|
|
||
|
u64_stats_update_begin(&rx_ring->syncp);
|
||
|
rx_ring->stats.packets += total_rx_packets;
|
||
|
rx_ring->stats.bytes += total_rx_bytes;
|
||
|
u64_stats_update_end(&rx_ring->syncp);
|
||
|
rx_ring->q_vector->rx.total_packets += total_rx_packets;
|
||
|
rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
|
||
|
|
||
|
/* guarantee a trip back through this routine if there was a failure */
|
||
|
return failure ? budget : (int)total_rx_packets;
|
||
|
}
|
||
|
|
||
|
static inline u32 iavf_buildreg_itr(const int type, u16 itr)
|
||
|
{
|
||
|
u32 val;
|
||
|
|
||
|
/* We don't bother with setting the CLEARPBA bit as the data sheet
|
||
|
* points out doing so is "meaningless since it was already
|
||
|
* auto-cleared". The auto-clearing happens when the interrupt is
|
||
|
* asserted.
|
||
|
*
|
||
|
* Hardware errata 28 for also indicates that writing to a
|
||
|
* xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
|
||
|
* an event in the PBA anyway so we need to rely on the automask
|
||
|
* to hold pending events for us until the interrupt is re-enabled
|
||
|
*
|
||
|
* The itr value is reported in microseconds, and the register
|
||
|
* value is recorded in 2 microsecond units. For this reason we
|
||
|
* only need to shift by the interval shift - 1 instead of the
|
||
|
* full value.
|
||
|
*/
|
||
|
itr &= IAVF_ITR_MASK;
|
||
|
|
||
|
val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
|
||
|
(type << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
|
||
|
(itr << (IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT - 1));
|
||
|
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
/* a small macro to shorten up some long lines */
|
||
|
#define INTREG IAVF_VFINT_DYN_CTLN1
|
||
|
|
||
|
/* The act of updating the ITR will cause it to immediately trigger. In order
|
||
|
* to prevent this from throwing off adaptive update statistics we defer the
|
||
|
* update so that it can only happen so often. So after either Tx or Rx are
|
||
|
* updated we make the adaptive scheme wait until either the ITR completely
|
||
|
* expires via the next_update expiration or we have been through at least
|
||
|
* 3 interrupts.
|
||
|
*/
|
||
|
#define ITR_COUNTDOWN_START 3
|
||
|
|
||
|
/**
|
||
|
* iavf_update_enable_itr - Update itr and re-enable MSIX interrupt
|
||
|
* @vsi: the VSI we care about
|
||
|
* @q_vector: q_vector for which itr is being updated and interrupt enabled
|
||
|
*
|
||
|
**/
|
||
|
static inline void iavf_update_enable_itr(struct iavf_vsi *vsi,
|
||
|
struct iavf_q_vector *q_vector)
|
||
|
{
|
||
|
struct iavf_hw *hw = &vsi->back->hw;
|
||
|
u32 intval;
|
||
|
|
||
|
/* These will do nothing if dynamic updates are not enabled */
|
||
|
iavf_update_itr(q_vector, &q_vector->tx);
|
||
|
iavf_update_itr(q_vector, &q_vector->rx);
|
||
|
|
||
|
/* This block of logic allows us to get away with only updating
|
||
|
* one ITR value with each interrupt. The idea is to perform a
|
||
|
* pseudo-lazy update with the following criteria.
|
||
|
*
|
||
|
* 1. Rx is given higher priority than Tx if both are in same state
|
||
|
* 2. If we must reduce an ITR that is given highest priority.
|
||
|
* 3. We then give priority to increasing ITR based on amount.
|
||
|
*/
|
||
|
if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
|
||
|
/* Rx ITR needs to be reduced, this is highest priority */
|
||
|
intval = iavf_buildreg_itr(IAVF_RX_ITR,
|
||
|
q_vector->rx.target_itr);
|
||
|
q_vector->rx.current_itr = q_vector->rx.target_itr;
|
||
|
q_vector->itr_countdown = ITR_COUNTDOWN_START;
|
||
|
} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
|
||
|
((q_vector->rx.target_itr - q_vector->rx.current_itr) <
|
||
|
(q_vector->tx.target_itr - q_vector->tx.current_itr))) {
|
||
|
/* Tx ITR needs to be reduced, this is second priority
|
||
|
* Tx ITR needs to be increased more than Rx, fourth priority
|
||
|
*/
|
||
|
intval = iavf_buildreg_itr(IAVF_TX_ITR,
|
||
|
q_vector->tx.target_itr);
|
||
|
q_vector->tx.current_itr = q_vector->tx.target_itr;
|
||
|
q_vector->itr_countdown = ITR_COUNTDOWN_START;
|
||
|
} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
|
||
|
/* Rx ITR needs to be increased, third priority */
|
||
|
intval = iavf_buildreg_itr(IAVF_RX_ITR,
|
||
|
q_vector->rx.target_itr);
|
||
|
q_vector->rx.current_itr = q_vector->rx.target_itr;
|
||
|
q_vector->itr_countdown = ITR_COUNTDOWN_START;
|
||
|
} else {
|
||
|
/* No ITR update, lowest priority */
|
||
|
intval = iavf_buildreg_itr(IAVF_ITR_NONE, 0);
|
||
|
if (q_vector->itr_countdown)
|
||
|
q_vector->itr_countdown--;
|
||
|
}
|
||
|
|
||
|
if (!test_bit(__IAVF_VSI_DOWN, vsi->state))
|
||
|
wr32(hw, INTREG(q_vector->reg_idx), intval);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_napi_poll - NAPI polling Rx/Tx cleanup routine
|
||
|
* @napi: napi struct with our devices info in it
|
||
|
* @budget: amount of work driver is allowed to do this pass, in packets
|
||
|
*
|
||
|
* This function will clean all queues associated with a q_vector.
|
||
|
*
|
||
|
* Returns the amount of work done
|
||
|
**/
|
||
|
int iavf_napi_poll(struct napi_struct *napi, int budget)
|
||
|
{
|
||
|
struct iavf_q_vector *q_vector =
|
||
|
container_of(napi, struct iavf_q_vector, napi);
|
||
|
struct iavf_vsi *vsi = q_vector->vsi;
|
||
|
struct iavf_ring *ring;
|
||
|
bool clean_complete = true;
|
||
|
bool arm_wb = false;
|
||
|
int budget_per_ring;
|
||
|
int work_done = 0;
|
||
|
|
||
|
if (test_bit(__IAVF_VSI_DOWN, vsi->state)) {
|
||
|
napi_complete(napi);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Since the actual Tx work is minimal, we can give the Tx a larger
|
||
|
* budget and be more aggressive about cleaning up the Tx descriptors.
|
||
|
*/
|
||
|
iavf_for_each_ring(ring, q_vector->tx) {
|
||
|
if (!iavf_clean_tx_irq(vsi, ring, budget)) {
|
||
|
clean_complete = false;
|
||
|
continue;
|
||
|
}
|
||
|
arm_wb |= ring->arm_wb;
|
||
|
ring->arm_wb = false;
|
||
|
}
|
||
|
|
||
|
/* Handle case where we are called by netpoll with a budget of 0 */
|
||
|
if (budget <= 0)
|
||
|
goto tx_only;
|
||
|
|
||
|
/* We attempt to distribute budget to each Rx queue fairly, but don't
|
||
|
* allow the budget to go below 1 because that would exit polling early.
|
||
|
*/
|
||
|
budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
|
||
|
|
||
|
iavf_for_each_ring(ring, q_vector->rx) {
|
||
|
int cleaned = iavf_clean_rx_irq(ring, budget_per_ring);
|
||
|
|
||
|
work_done += cleaned;
|
||
|
/* if we clean as many as budgeted, we must not be done */
|
||
|
if (cleaned >= budget_per_ring)
|
||
|
clean_complete = false;
|
||
|
}
|
||
|
|
||
|
/* If work not completed, return budget and polling will return */
|
||
|
if (!clean_complete) {
|
||
|
int cpu_id = smp_processor_id();
|
||
|
|
||
|
/* It is possible that the interrupt affinity has changed but,
|
||
|
* if the cpu is pegged at 100%, polling will never exit while
|
||
|
* traffic continues and the interrupt will be stuck on this
|
||
|
* cpu. We check to make sure affinity is correct before we
|
||
|
* continue to poll, otherwise we must stop polling so the
|
||
|
* interrupt can move to the correct cpu.
|
||
|
*/
|
||
|
if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
|
||
|
/* Tell napi that we are done polling */
|
||
|
napi_complete_done(napi, work_done);
|
||
|
|
||
|
/* Force an interrupt */
|
||
|
iavf_force_wb(vsi, q_vector);
|
||
|
|
||
|
/* Return budget-1 so that polling stops */
|
||
|
return budget - 1;
|
||
|
}
|
||
|
tx_only:
|
||
|
if (arm_wb) {
|
||
|
q_vector->tx.ring[0].tx_stats.tx_force_wb++;
|
||
|
iavf_enable_wb_on_itr(vsi, q_vector);
|
||
|
}
|
||
|
return budget;
|
||
|
}
|
||
|
|
||
|
if (vsi->back->flags & IAVF_TXR_FLAGS_WB_ON_ITR)
|
||
|
q_vector->arm_wb_state = false;
|
||
|
|
||
|
/* Exit the polling mode, but don't re-enable interrupts if stack might
|
||
|
* poll us due to busy-polling
|
||
|
*/
|
||
|
if (likely(napi_complete_done(napi, work_done)))
|
||
|
iavf_update_enable_itr(vsi, q_vector);
|
||
|
|
||
|
return min_t(int, work_done, budget - 1);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
|
||
|
* @skb: send buffer
|
||
|
* @tx_ring: ring to send buffer on
|
||
|
* @flags: the tx flags to be set
|
||
|
*
|
||
|
* Checks the skb and set up correspondingly several generic transmit flags
|
||
|
* related to VLAN tagging for the HW, such as VLAN, DCB, etc.
|
||
|
*
|
||
|
* Returns error code indicate the frame should be dropped upon error and the
|
||
|
* otherwise returns 0 to indicate the flags has been set properly.
|
||
|
**/
|
||
|
static void iavf_tx_prepare_vlan_flags(struct sk_buff *skb,
|
||
|
struct iavf_ring *tx_ring, u32 *flags)
|
||
|
{
|
||
|
u32 tx_flags = 0;
|
||
|
|
||
|
|
||
|
/* stack will only request hardware VLAN insertion offload for protocols
|
||
|
* that the driver supports and has enabled
|
||
|
*/
|
||
|
if (!skb_vlan_tag_present(skb))
|
||
|
return;
|
||
|
|
||
|
tx_flags |= skb_vlan_tag_get(skb) << IAVF_TX_FLAGS_VLAN_SHIFT;
|
||
|
if (tx_ring->flags & IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2) {
|
||
|
tx_flags |= IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN;
|
||
|
} else if (tx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1) {
|
||
|
tx_flags |= IAVF_TX_FLAGS_HW_VLAN;
|
||
|
} else {
|
||
|
dev_dbg(tx_ring->dev, "Unsupported Tx VLAN tag location requested\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
*flags = tx_flags;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_tso - set up the tso context descriptor
|
||
|
* @first: pointer to first Tx buffer for xmit
|
||
|
* @hdr_len: ptr to the size of the packet header
|
||
|
* @cd_type_cmd_tso_mss: Quad Word 1
|
||
|
*
|
||
|
* Returns 0 if no TSO can happen, 1 if tso is going, or error
|
||
|
**/
|
||
|
static int iavf_tso(struct iavf_tx_buffer *first, u8 *hdr_len,
|
||
|
u64 *cd_type_cmd_tso_mss)
|
||
|
{
|
||
|
struct sk_buff *skb = first->skb;
|
||
|
u64 cd_cmd, cd_tso_len, cd_mss;
|
||
|
union {
|
||
|
struct iphdr *v4;
|
||
|
struct ipv6hdr *v6;
|
||
|
unsigned char *hdr;
|
||
|
} ip;
|
||
|
union {
|
||
|
struct tcphdr *tcp;
|
||
|
struct udphdr *udp;
|
||
|
unsigned char *hdr;
|
||
|
} l4;
|
||
|
u32 paylen, l4_offset;
|
||
|
u16 gso_segs, gso_size;
|
||
|
int err;
|
||
|
|
||
|
if (skb->ip_summed != CHECKSUM_PARTIAL)
|
||
|
return 0;
|
||
|
|
||
|
if (!skb_is_gso(skb))
|
||
|
return 0;
|
||
|
|
||
|
err = skb_cow_head(skb, 0);
|
||
|
if (err < 0)
|
||
|
return err;
|
||
|
|
||
|
ip.hdr = skb_network_header(skb);
|
||
|
l4.hdr = skb_transport_header(skb);
|
||
|
|
||
|
/* initialize outer IP header fields */
|
||
|
if (ip.v4->version == 4) {
|
||
|
ip.v4->tot_len = 0;
|
||
|
ip.v4->check = 0;
|
||
|
} else {
|
||
|
ip.v6->payload_len = 0;
|
||
|
}
|
||
|
|
||
|
if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
|
||
|
SKB_GSO_GRE_CSUM |
|
||
|
SKB_GSO_IPXIP4 |
|
||
|
SKB_GSO_IPXIP6 |
|
||
|
SKB_GSO_UDP_TUNNEL |
|
||
|
SKB_GSO_UDP_TUNNEL_CSUM)) {
|
||
|
if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
|
||
|
(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
|
||
|
l4.udp->len = 0;
|
||
|
|
||
|
/* determine offset of outer transport header */
|
||
|
l4_offset = l4.hdr - skb->data;
|
||
|
|
||
|
/* remove payload length from outer checksum */
|
||
|
paylen = skb->len - l4_offset;
|
||
|
csum_replace_by_diff(&l4.udp->check,
|
||
|
(__force __wsum)htonl(paylen));
|
||
|
}
|
||
|
|
||
|
/* reset pointers to inner headers */
|
||
|
ip.hdr = skb_inner_network_header(skb);
|
||
|
l4.hdr = skb_inner_transport_header(skb);
|
||
|
|
||
|
/* initialize inner IP header fields */
|
||
|
if (ip.v4->version == 4) {
|
||
|
ip.v4->tot_len = 0;
|
||
|
ip.v4->check = 0;
|
||
|
} else {
|
||
|
ip.v6->payload_len = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* determine offset of inner transport header */
|
||
|
l4_offset = l4.hdr - skb->data;
|
||
|
/* remove payload length from inner checksum */
|
||
|
paylen = skb->len - l4_offset;
|
||
|
|
||
|
if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
|
||
|
csum_replace_by_diff(&l4.udp->check,
|
||
|
(__force __wsum)htonl(paylen));
|
||
|
/* compute length of UDP segmentation header */
|
||
|
*hdr_len = (u8)sizeof(l4.udp) + l4_offset;
|
||
|
} else {
|
||
|
csum_replace_by_diff(&l4.tcp->check,
|
||
|
(__force __wsum)htonl(paylen));
|
||
|
/* compute length of TCP segmentation header */
|
||
|
*hdr_len = (u8)((l4.tcp->doff * 4) + l4_offset);
|
||
|
}
|
||
|
|
||
|
/* pull values out of skb_shinfo */
|
||
|
gso_size = skb_shinfo(skb)->gso_size;
|
||
|
gso_segs = skb_shinfo(skb)->gso_segs;
|
||
|
|
||
|
/* update GSO size and bytecount with header size */
|
||
|
first->gso_segs = gso_segs;
|
||
|
first->bytecount += (first->gso_segs - 1) * *hdr_len;
|
||
|
|
||
|
/* find the field values */
|
||
|
cd_cmd = IAVF_TX_CTX_DESC_TSO;
|
||
|
cd_tso_len = skb->len - *hdr_len;
|
||
|
cd_mss = gso_size;
|
||
|
*cd_type_cmd_tso_mss |= (cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
|
||
|
(cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
|
||
|
(cd_mss << IAVF_TXD_CTX_QW1_MSS_SHIFT);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_tx_enable_csum - Enable Tx checksum offloads
|
||
|
* @skb: send buffer
|
||
|
* @tx_flags: pointer to Tx flags currently set
|
||
|
* @td_cmd: Tx descriptor command bits to set
|
||
|
* @td_offset: Tx descriptor header offsets to set
|
||
|
* @tx_ring: Tx descriptor ring
|
||
|
* @cd_tunneling: ptr to context desc bits
|
||
|
**/
|
||
|
static int iavf_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
|
||
|
u32 *td_cmd, u32 *td_offset,
|
||
|
struct iavf_ring *tx_ring,
|
||
|
u32 *cd_tunneling)
|
||
|
{
|
||
|
union {
|
||
|
struct iphdr *v4;
|
||
|
struct ipv6hdr *v6;
|
||
|
unsigned char *hdr;
|
||
|
} ip;
|
||
|
union {
|
||
|
struct tcphdr *tcp;
|
||
|
struct udphdr *udp;
|
||
|
unsigned char *hdr;
|
||
|
} l4;
|
||
|
unsigned char *exthdr;
|
||
|
u32 offset, cmd = 0;
|
||
|
__be16 frag_off;
|
||
|
u8 l4_proto = 0;
|
||
|
|
||
|
if (skb->ip_summed != CHECKSUM_PARTIAL)
|
||
|
return 0;
|
||
|
|
||
|
ip.hdr = skb_network_header(skb);
|
||
|
l4.hdr = skb_transport_header(skb);
|
||
|
|
||
|
/* compute outer L2 header size */
|
||
|
offset = ((ip.hdr - skb->data) / 2) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
|
||
|
|
||
|
if (skb->encapsulation) {
|
||
|
u32 tunnel = 0;
|
||
|
/* define outer network header type */
|
||
|
if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
|
||
|
tunnel |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
|
||
|
IAVF_TX_CTX_EXT_IP_IPV4 :
|
||
|
IAVF_TX_CTX_EXT_IP_IPV4_NO_CSUM;
|
||
|
|
||
|
l4_proto = ip.v4->protocol;
|
||
|
} else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
|
||
|
tunnel |= IAVF_TX_CTX_EXT_IP_IPV6;
|
||
|
|
||
|
exthdr = ip.hdr + sizeof(*ip.v6);
|
||
|
l4_proto = ip.v6->nexthdr;
|
||
|
if (l4.hdr != exthdr)
|
||
|
ipv6_skip_exthdr(skb, exthdr - skb->data,
|
||
|
&l4_proto, &frag_off);
|
||
|
}
|
||
|
|
||
|
/* define outer transport */
|
||
|
switch (l4_proto) {
|
||
|
case IPPROTO_UDP:
|
||
|
tunnel |= IAVF_TXD_CTX_UDP_TUNNELING;
|
||
|
*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
|
||
|
break;
|
||
|
case IPPROTO_GRE:
|
||
|
tunnel |= IAVF_TXD_CTX_GRE_TUNNELING;
|
||
|
*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
|
||
|
break;
|
||
|
case IPPROTO_IPIP:
|
||
|
case IPPROTO_IPV6:
|
||
|
*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
|
||
|
l4.hdr = skb_inner_network_header(skb);
|
||
|
break;
|
||
|
default:
|
||
|
if (*tx_flags & IAVF_TX_FLAGS_TSO)
|
||
|
return -1;
|
||
|
|
||
|
skb_checksum_help(skb);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* compute outer L3 header size */
|
||
|
tunnel |= ((l4.hdr - ip.hdr) / 4) <<
|
||
|
IAVF_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
|
||
|
|
||
|
/* switch IP header pointer from outer to inner header */
|
||
|
ip.hdr = skb_inner_network_header(skb);
|
||
|
|
||
|
/* compute tunnel header size */
|
||
|
tunnel |= ((ip.hdr - l4.hdr) / 2) <<
|
||
|
IAVF_TXD_CTX_QW0_NATLEN_SHIFT;
|
||
|
|
||
|
/* indicate if we need to offload outer UDP header */
|
||
|
if ((*tx_flags & IAVF_TX_FLAGS_TSO) &&
|
||
|
!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
|
||
|
(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
|
||
|
tunnel |= IAVF_TXD_CTX_QW0_L4T_CS_MASK;
|
||
|
|
||
|
/* record tunnel offload values */
|
||
|
*cd_tunneling |= tunnel;
|
||
|
|
||
|
/* switch L4 header pointer from outer to inner */
|
||
|
l4.hdr = skb_inner_transport_header(skb);
|
||
|
l4_proto = 0;
|
||
|
|
||
|
/* reset type as we transition from outer to inner headers */
|
||
|
*tx_flags &= ~(IAVF_TX_FLAGS_IPV4 | IAVF_TX_FLAGS_IPV6);
|
||
|
if (ip.v4->version == 4)
|
||
|
*tx_flags |= IAVF_TX_FLAGS_IPV4;
|
||
|
if (ip.v6->version == 6)
|
||
|
*tx_flags |= IAVF_TX_FLAGS_IPV6;
|
||
|
}
|
||
|
|
||
|
/* Enable IP checksum offloads */
|
||
|
if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
|
||
|
l4_proto = ip.v4->protocol;
|
||
|
/* the stack computes the IP header already, the only time we
|
||
|
* need the hardware to recompute it is in the case of TSO.
|
||
|
*/
|
||
|
cmd |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
|
||
|
IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM :
|
||
|
IAVF_TX_DESC_CMD_IIPT_IPV4;
|
||
|
} else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
|
||
|
cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
|
||
|
|
||
|
exthdr = ip.hdr + sizeof(*ip.v6);
|
||
|
l4_proto = ip.v6->nexthdr;
|
||
|
if (l4.hdr != exthdr)
|
||
|
ipv6_skip_exthdr(skb, exthdr - skb->data,
|
||
|
&l4_proto, &frag_off);
|
||
|
}
|
||
|
|
||
|
/* compute inner L3 header size */
|
||
|
offset |= ((l4.hdr - ip.hdr) / 4) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
|
||
|
|
||
|
/* Enable L4 checksum offloads */
|
||
|
switch (l4_proto) {
|
||
|
case IPPROTO_TCP:
|
||
|
/* enable checksum offloads */
|
||
|
cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
|
||
|
offset |= l4.tcp->doff << IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
|
||
|
break;
|
||
|
case IPPROTO_SCTP:
|
||
|
/* enable SCTP checksum offload */
|
||
|
cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
|
||
|
offset |= (sizeof(struct sctphdr) >> 2) <<
|
||
|
IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
|
||
|
break;
|
||
|
case IPPROTO_UDP:
|
||
|
/* enable UDP checksum offload */
|
||
|
cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
|
||
|
offset |= (sizeof(struct udphdr) >> 2) <<
|
||
|
IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
|
||
|
break;
|
||
|
default:
|
||
|
if (*tx_flags & IAVF_TX_FLAGS_TSO)
|
||
|
return -1;
|
||
|
skb_checksum_help(skb);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
*td_cmd |= cmd;
|
||
|
*td_offset |= offset;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_create_tx_ctx - Build the Tx context descriptor
|
||
|
* @tx_ring: ring to create the descriptor on
|
||
|
* @cd_type_cmd_tso_mss: Quad Word 1
|
||
|
* @cd_tunneling: Quad Word 0 - bits 0-31
|
||
|
* @cd_l2tag2: Quad Word 0 - bits 32-63
|
||
|
**/
|
||
|
static void iavf_create_tx_ctx(struct iavf_ring *tx_ring,
|
||
|
const u64 cd_type_cmd_tso_mss,
|
||
|
const u32 cd_tunneling, const u32 cd_l2tag2)
|
||
|
{
|
||
|
struct iavf_tx_context_desc *context_desc;
|
||
|
int i = tx_ring->next_to_use;
|
||
|
|
||
|
if ((cd_type_cmd_tso_mss == IAVF_TX_DESC_DTYPE_CONTEXT) &&
|
||
|
!cd_tunneling && !cd_l2tag2)
|
||
|
return;
|
||
|
|
||
|
/* grab the next descriptor */
|
||
|
context_desc = IAVF_TX_CTXTDESC(tx_ring, i);
|
||
|
|
||
|
i++;
|
||
|
tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
|
||
|
|
||
|
/* cpu_to_le32 and assign to struct fields */
|
||
|
context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
|
||
|
context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
|
||
|
context_desc->rsvd = cpu_to_le16(0);
|
||
|
context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* __iavf_chk_linearize - Check if there are more than 8 buffers per packet
|
||
|
* @skb: send buffer
|
||
|
*
|
||
|
* Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
|
||
|
* and so we need to figure out the cases where we need to linearize the skb.
|
||
|
*
|
||
|
* For TSO we need to count the TSO header and segment payload separately.
|
||
|
* As such we need to check cases where we have 7 fragments or more as we
|
||
|
* can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
|
||
|
* the segment payload in the first descriptor, and another 7 for the
|
||
|
* fragments.
|
||
|
**/
|
||
|
bool __iavf_chk_linearize(struct sk_buff *skb)
|
||
|
{
|
||
|
const skb_frag_t *frag, *stale;
|
||
|
int nr_frags, sum;
|
||
|
|
||
|
/* no need to check if number of frags is less than 7 */
|
||
|
nr_frags = skb_shinfo(skb)->nr_frags;
|
||
|
if (nr_frags < (IAVF_MAX_BUFFER_TXD - 1))
|
||
|
return false;
|
||
|
|
||
|
/* We need to walk through the list and validate that each group
|
||
|
* of 6 fragments totals at least gso_size.
|
||
|
*/
|
||
|
nr_frags -= IAVF_MAX_BUFFER_TXD - 2;
|
||
|
frag = &skb_shinfo(skb)->frags[0];
|
||
|
|
||
|
/* Initialize size to the negative value of gso_size minus 1. We
|
||
|
* use this as the worst case scenerio in which the frag ahead
|
||
|
* of us only provides one byte which is why we are limited to 6
|
||
|
* descriptors for a single transmit as the header and previous
|
||
|
* fragment are already consuming 2 descriptors.
|
||
|
*/
|
||
|
sum = 1 - skb_shinfo(skb)->gso_size;
|
||
|
|
||
|
/* Add size of frags 0 through 4 to create our initial sum */
|
||
|
sum += skb_frag_size(frag++);
|
||
|
sum += skb_frag_size(frag++);
|
||
|
sum += skb_frag_size(frag++);
|
||
|
sum += skb_frag_size(frag++);
|
||
|
sum += skb_frag_size(frag++);
|
||
|
|
||
|
/* Walk through fragments adding latest fragment, testing it, and
|
||
|
* then removing stale fragments from the sum.
|
||
|
*/
|
||
|
for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
|
||
|
int stale_size = skb_frag_size(stale);
|
||
|
|
||
|
sum += skb_frag_size(frag++);
|
||
|
|
||
|
/* The stale fragment may present us with a smaller
|
||
|
* descriptor than the actual fragment size. To account
|
||
|
* for that we need to remove all the data on the front and
|
||
|
* figure out what the remainder would be in the last
|
||
|
* descriptor associated with the fragment.
|
||
|
*/
|
||
|
if (stale_size > IAVF_MAX_DATA_PER_TXD) {
|
||
|
int align_pad = -(skb_frag_off(stale)) &
|
||
|
(IAVF_MAX_READ_REQ_SIZE - 1);
|
||
|
|
||
|
sum -= align_pad;
|
||
|
stale_size -= align_pad;
|
||
|
|
||
|
do {
|
||
|
sum -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
|
||
|
stale_size -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
|
||
|
} while (stale_size > IAVF_MAX_DATA_PER_TXD);
|
||
|
}
|
||
|
|
||
|
/* if sum is negative we failed to make sufficient progress */
|
||
|
if (sum < 0)
|
||
|
return true;
|
||
|
|
||
|
if (!nr_frags--)
|
||
|
break;
|
||
|
|
||
|
sum -= stale_size;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* __iavf_maybe_stop_tx - 2nd level check for tx stop conditions
|
||
|
* @tx_ring: the ring to be checked
|
||
|
* @size: the size buffer we want to assure is available
|
||
|
*
|
||
|
* Returns -EBUSY if a stop is needed, else 0
|
||
|
**/
|
||
|
int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size)
|
||
|
{
|
||
|
netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
|
||
|
/* Memory barrier before checking head and tail */
|
||
|
smp_mb();
|
||
|
|
||
|
/* Check again in a case another CPU has just made room available. */
|
||
|
if (likely(IAVF_DESC_UNUSED(tx_ring) < size))
|
||
|
return -EBUSY;
|
||
|
|
||
|
/* A reprieve! - use start_queue because it doesn't call schedule */
|
||
|
netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
|
||
|
++tx_ring->tx_stats.restart_queue;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_tx_map - Build the Tx descriptor
|
||
|
* @tx_ring: ring to send buffer on
|
||
|
* @skb: send buffer
|
||
|
* @first: first buffer info buffer to use
|
||
|
* @tx_flags: collected send information
|
||
|
* @hdr_len: size of the packet header
|
||
|
* @td_cmd: the command field in the descriptor
|
||
|
* @td_offset: offset for checksum or crc
|
||
|
**/
|
||
|
static inline void iavf_tx_map(struct iavf_ring *tx_ring, struct sk_buff *skb,
|
||
|
struct iavf_tx_buffer *first, u32 tx_flags,
|
||
|
const u8 hdr_len, u32 td_cmd, u32 td_offset)
|
||
|
{
|
||
|
unsigned int data_len = skb->data_len;
|
||
|
unsigned int size = skb_headlen(skb);
|
||
|
skb_frag_t *frag;
|
||
|
struct iavf_tx_buffer *tx_bi;
|
||
|
struct iavf_tx_desc *tx_desc;
|
||
|
u16 i = tx_ring->next_to_use;
|
||
|
u32 td_tag = 0;
|
||
|
dma_addr_t dma;
|
||
|
|
||
|
if (tx_flags & IAVF_TX_FLAGS_HW_VLAN) {
|
||
|
td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
|
||
|
td_tag = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >>
|
||
|
IAVF_TX_FLAGS_VLAN_SHIFT;
|
||
|
}
|
||
|
|
||
|
first->tx_flags = tx_flags;
|
||
|
|
||
|
dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
|
||
|
|
||
|
tx_desc = IAVF_TX_DESC(tx_ring, i);
|
||
|
tx_bi = first;
|
||
|
|
||
|
for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
|
||
|
unsigned int max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
|
||
|
|
||
|
if (dma_mapping_error(tx_ring->dev, dma))
|
||
|
goto dma_error;
|
||
|
|
||
|
/* record length, and DMA address */
|
||
|
dma_unmap_len_set(tx_bi, len, size);
|
||
|
dma_unmap_addr_set(tx_bi, dma, dma);
|
||
|
|
||
|
/* align size to end of page */
|
||
|
max_data += -dma & (IAVF_MAX_READ_REQ_SIZE - 1);
|
||
|
tx_desc->buffer_addr = cpu_to_le64(dma);
|
||
|
|
||
|
while (unlikely(size > IAVF_MAX_DATA_PER_TXD)) {
|
||
|
tx_desc->cmd_type_offset_bsz =
|
||
|
build_ctob(td_cmd, td_offset,
|
||
|
max_data, td_tag);
|
||
|
|
||
|
tx_desc++;
|
||
|
i++;
|
||
|
|
||
|
if (i == tx_ring->count) {
|
||
|
tx_desc = IAVF_TX_DESC(tx_ring, 0);
|
||
|
i = 0;
|
||
|
}
|
||
|
|
||
|
dma += max_data;
|
||
|
size -= max_data;
|
||
|
|
||
|
max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
|
||
|
tx_desc->buffer_addr = cpu_to_le64(dma);
|
||
|
}
|
||
|
|
||
|
if (likely(!data_len))
|
||
|
break;
|
||
|
|
||
|
tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
|
||
|
size, td_tag);
|
||
|
|
||
|
tx_desc++;
|
||
|
i++;
|
||
|
|
||
|
if (i == tx_ring->count) {
|
||
|
tx_desc = IAVF_TX_DESC(tx_ring, 0);
|
||
|
i = 0;
|
||
|
}
|
||
|
|
||
|
size = skb_frag_size(frag);
|
||
|
data_len -= size;
|
||
|
|
||
|
dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
|
||
|
DMA_TO_DEVICE);
|
||
|
|
||
|
tx_bi = &tx_ring->tx_bi[i];
|
||
|
}
|
||
|
|
||
|
netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
|
||
|
|
||
|
i++;
|
||
|
if (i == tx_ring->count)
|
||
|
i = 0;
|
||
|
|
||
|
tx_ring->next_to_use = i;
|
||
|
|
||
|
iavf_maybe_stop_tx(tx_ring, DESC_NEEDED);
|
||
|
|
||
|
/* write last descriptor with RS and EOP bits */
|
||
|
td_cmd |= IAVF_TXD_CMD;
|
||
|
tx_desc->cmd_type_offset_bsz =
|
||
|
build_ctob(td_cmd, td_offset, size, td_tag);
|
||
|
|
||
|
skb_tx_timestamp(skb);
|
||
|
|
||
|
/* Force memory writes to complete before letting h/w know there
|
||
|
* are new descriptors to fetch.
|
||
|
*
|
||
|
* We also use this memory barrier to make certain all of the
|
||
|
* status bits have been updated before next_to_watch is written.
|
||
|
*/
|
||
|
wmb();
|
||
|
|
||
|
/* set next_to_watch value indicating a packet is present */
|
||
|
first->next_to_watch = tx_desc;
|
||
|
|
||
|
/* notify HW of packet */
|
||
|
if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
|
||
|
writel(i, tx_ring->tail);
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
|
||
|
dma_error:
|
||
|
dev_info(tx_ring->dev, "TX DMA map failed\n");
|
||
|
|
||
|
/* clear dma mappings for failed tx_bi map */
|
||
|
for (;;) {
|
||
|
tx_bi = &tx_ring->tx_bi[i];
|
||
|
iavf_unmap_and_free_tx_resource(tx_ring, tx_bi);
|
||
|
if (tx_bi == first)
|
||
|
break;
|
||
|
if (i == 0)
|
||
|
i = tx_ring->count;
|
||
|
i--;
|
||
|
}
|
||
|
|
||
|
tx_ring->next_to_use = i;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_xmit_frame_ring - Sends buffer on Tx ring
|
||
|
* @skb: send buffer
|
||
|
* @tx_ring: ring to send buffer on
|
||
|
*
|
||
|
* Returns NETDEV_TX_OK if sent, else an error code
|
||
|
**/
|
||
|
static netdev_tx_t iavf_xmit_frame_ring(struct sk_buff *skb,
|
||
|
struct iavf_ring *tx_ring)
|
||
|
{
|
||
|
u64 cd_type_cmd_tso_mss = IAVF_TX_DESC_DTYPE_CONTEXT;
|
||
|
u32 cd_tunneling = 0, cd_l2tag2 = 0;
|
||
|
struct iavf_tx_buffer *first;
|
||
|
u32 td_offset = 0;
|
||
|
u32 tx_flags = 0;
|
||
|
__be16 protocol;
|
||
|
u32 td_cmd = 0;
|
||
|
u8 hdr_len = 0;
|
||
|
int tso, count;
|
||
|
|
||
|
/* prefetch the data, we'll need it later */
|
||
|
prefetch(skb->data);
|
||
|
|
||
|
iavf_trace(xmit_frame_ring, skb, tx_ring);
|
||
|
|
||
|
count = iavf_xmit_descriptor_count(skb);
|
||
|
if (iavf_chk_linearize(skb, count)) {
|
||
|
if (__skb_linearize(skb)) {
|
||
|
dev_kfree_skb_any(skb);
|
||
|
return NETDEV_TX_OK;
|
||
|
}
|
||
|
count = iavf_txd_use_count(skb->len);
|
||
|
tx_ring->tx_stats.tx_linearize++;
|
||
|
}
|
||
|
|
||
|
/* need: 1 descriptor per page * PAGE_SIZE/IAVF_MAX_DATA_PER_TXD,
|
||
|
* + 1 desc for skb_head_len/IAVF_MAX_DATA_PER_TXD,
|
||
|
* + 4 desc gap to avoid the cache line where head is,
|
||
|
* + 1 desc for context descriptor,
|
||
|
* otherwise try next time
|
||
|
*/
|
||
|
if (iavf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
|
||
|
tx_ring->tx_stats.tx_busy++;
|
||
|
return NETDEV_TX_BUSY;
|
||
|
}
|
||
|
|
||
|
/* record the location of the first descriptor for this packet */
|
||
|
first = &tx_ring->tx_bi[tx_ring->next_to_use];
|
||
|
first->skb = skb;
|
||
|
first->bytecount = skb->len;
|
||
|
first->gso_segs = 1;
|
||
|
|
||
|
/* prepare the xmit flags */
|
||
|
iavf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags);
|
||
|
if (tx_flags & IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN) {
|
||
|
cd_type_cmd_tso_mss |= IAVF_TX_CTX_DESC_IL2TAG2 <<
|
||
|
IAVF_TXD_CTX_QW1_CMD_SHIFT;
|
||
|
cd_l2tag2 = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >>
|
||
|
IAVF_TX_FLAGS_VLAN_SHIFT;
|
||
|
}
|
||
|
|
||
|
/* obtain protocol of skb */
|
||
|
protocol = vlan_get_protocol(skb);
|
||
|
|
||
|
/* setup IPv4/IPv6 offloads */
|
||
|
if (protocol == htons(ETH_P_IP))
|
||
|
tx_flags |= IAVF_TX_FLAGS_IPV4;
|
||
|
else if (protocol == htons(ETH_P_IPV6))
|
||
|
tx_flags |= IAVF_TX_FLAGS_IPV6;
|
||
|
|
||
|
tso = iavf_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
|
||
|
|
||
|
if (tso < 0)
|
||
|
goto out_drop;
|
||
|
else if (tso)
|
||
|
tx_flags |= IAVF_TX_FLAGS_TSO;
|
||
|
|
||
|
/* Always offload the checksum, since it's in the data descriptor */
|
||
|
tso = iavf_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
|
||
|
tx_ring, &cd_tunneling);
|
||
|
if (tso < 0)
|
||
|
goto out_drop;
|
||
|
|
||
|
/* always enable CRC insertion offload */
|
||
|
td_cmd |= IAVF_TX_DESC_CMD_ICRC;
|
||
|
|
||
|
iavf_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
|
||
|
cd_tunneling, cd_l2tag2);
|
||
|
|
||
|
iavf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
|
||
|
td_cmd, td_offset);
|
||
|
|
||
|
return NETDEV_TX_OK;
|
||
|
|
||
|
out_drop:
|
||
|
iavf_trace(xmit_frame_ring_drop, first->skb, tx_ring);
|
||
|
dev_kfree_skb_any(first->skb);
|
||
|
first->skb = NULL;
|
||
|
return NETDEV_TX_OK;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iavf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
|
||
|
* @skb: send buffer
|
||
|
* @netdev: network interface device structure
|
||
|
*
|
||
|
* Returns NETDEV_TX_OK if sent, else an error code
|
||
|
**/
|
||
|
netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
|
||
|
{
|
||
|
struct iavf_adapter *adapter = netdev_priv(netdev);
|
||
|
struct iavf_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
|
||
|
|
||
|
/* hardware can't handle really short frames, hardware padding works
|
||
|
* beyond this point
|
||
|
*/
|
||
|
if (unlikely(skb->len < IAVF_MIN_TX_LEN)) {
|
||
|
if (skb_pad(skb, IAVF_MIN_TX_LEN - skb->len))
|
||
|
return NETDEV_TX_OK;
|
||
|
skb->len = IAVF_MIN_TX_LEN;
|
||
|
skb_set_tail_pointer(skb, IAVF_MIN_TX_LEN);
|
||
|
}
|
||
|
|
||
|
return iavf_xmit_frame_ring(skb, tx_ring);
|
||
|
}
|