linux-zen-server/drivers/net/ethernet/marvell/octeon_ep/octep_main.c

1207 lines
29 KiB
C
Raw Permalink Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0
/* Marvell Octeon EP (EndPoint) Ethernet Driver
*
* Copyright (C) 2020 Marvell.
*
*/
#include <linux/types.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/aer.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/rtnetlink.h>
#include <linux/vmalloc.h>
#include "octep_config.h"
#include "octep_main.h"
#include "octep_ctrl_net.h"
struct workqueue_struct *octep_wq;
/* Supported Devices */
static const struct pci_device_id octep_pci_id_tbl[] = {
{PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CN93_PF)},
{PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CNF95N_PF)},
{0, },
};
MODULE_DEVICE_TABLE(pci, octep_pci_id_tbl);
MODULE_AUTHOR("Veerasenareddy Burru <vburru@marvell.com>");
MODULE_DESCRIPTION(OCTEP_DRV_STRING);
MODULE_LICENSE("GPL");
/**
* octep_alloc_ioq_vectors() - Allocate Tx/Rx Queue interrupt info.
*
* @oct: Octeon device private data structure.
*
* Allocate resources to hold per Tx/Rx queue interrupt info.
* This is the information passed to interrupt handler, from which napi poll
* is scheduled and includes quick access to private data of Tx/Rx queue
* corresponding to the interrupt being handled.
*
* Return: 0, on successful allocation of resources for all queue interrupts.
* -1, if failed to allocate any resource.
*/
static int octep_alloc_ioq_vectors(struct octep_device *oct)
{
int i;
struct octep_ioq_vector *ioq_vector;
for (i = 0; i < oct->num_oqs; i++) {
oct->ioq_vector[i] = vzalloc(sizeof(*oct->ioq_vector[i]));
if (!oct->ioq_vector[i])
goto free_ioq_vector;
ioq_vector = oct->ioq_vector[i];
ioq_vector->iq = oct->iq[i];
ioq_vector->oq = oct->oq[i];
ioq_vector->octep_dev = oct;
}
dev_info(&oct->pdev->dev, "Allocated %d IOQ vectors\n", oct->num_oqs);
return 0;
free_ioq_vector:
while (i) {
i--;
vfree(oct->ioq_vector[i]);
oct->ioq_vector[i] = NULL;
}
return -1;
}
/**
* octep_free_ioq_vectors() - Free Tx/Rx Queue interrupt vector info.
*
* @oct: Octeon device private data structure.
*/
static void octep_free_ioq_vectors(struct octep_device *oct)
{
int i;
for (i = 0; i < oct->num_oqs; i++) {
if (oct->ioq_vector[i]) {
vfree(oct->ioq_vector[i]);
oct->ioq_vector[i] = NULL;
}
}
netdev_info(oct->netdev, "Freed IOQ Vectors\n");
}
/**
* octep_enable_msix_range() - enable MSI-x interrupts.
*
* @oct: Octeon device private data structure.
*
* Allocate and enable all MSI-x interrupts (queue and non-queue interrupts)
* for the Octeon device.
*
* Return: 0, on successfully enabling all MSI-x interrupts.
* -1, if failed to enable any MSI-x interrupt.
*/
static int octep_enable_msix_range(struct octep_device *oct)
{
int num_msix, msix_allocated;
int i;
/* Generic interrupts apart from input/output queues */
num_msix = oct->num_oqs + CFG_GET_NON_IOQ_MSIX(oct->conf);
oct->msix_entries = kcalloc(num_msix,
sizeof(struct msix_entry), GFP_KERNEL);
if (!oct->msix_entries)
goto msix_alloc_err;
for (i = 0; i < num_msix; i++)
oct->msix_entries[i].entry = i;
msix_allocated = pci_enable_msix_range(oct->pdev, oct->msix_entries,
num_msix, num_msix);
if (msix_allocated != num_msix) {
dev_err(&oct->pdev->dev,
"Failed to enable %d msix irqs; got only %d\n",
num_msix, msix_allocated);
goto enable_msix_err;
}
oct->num_irqs = msix_allocated;
dev_info(&oct->pdev->dev, "MSI-X enabled successfully\n");
return 0;
enable_msix_err:
if (msix_allocated > 0)
pci_disable_msix(oct->pdev);
kfree(oct->msix_entries);
oct->msix_entries = NULL;
msix_alloc_err:
return -1;
}
/**
* octep_disable_msix() - disable MSI-x interrupts.
*
* @oct: Octeon device private data structure.
*
* Disable MSI-x on the Octeon device.
*/
static void octep_disable_msix(struct octep_device *oct)
{
pci_disable_msix(oct->pdev);
kfree(oct->msix_entries);
oct->msix_entries = NULL;
dev_info(&oct->pdev->dev, "Disabled MSI-X\n");
}
/**
* octep_non_ioq_intr_handler() - common handler for all generic interrupts.
*
* @irq: Interrupt number.
* @data: interrupt data.
*
* this is common handler for all non-queue (generic) interrupts.
*/
static irqreturn_t octep_non_ioq_intr_handler(int irq, void *data)
{
struct octep_device *oct = data;
return oct->hw_ops.non_ioq_intr_handler(oct);
}
/**
* octep_ioq_intr_handler() - handler for all Tx/Rx queue interrupts.
*
* @irq: Interrupt number.
* @data: interrupt data contains pointers to Tx/Rx queue private data
* and correspong NAPI context.
*
* this is common handler for all non-queue (generic) interrupts.
*/
static irqreturn_t octep_ioq_intr_handler(int irq, void *data)
{
struct octep_ioq_vector *ioq_vector = data;
struct octep_device *oct = ioq_vector->octep_dev;
return oct->hw_ops.ioq_intr_handler(ioq_vector);
}
/**
* octep_request_irqs() - Register interrupt handlers.
*
* @oct: Octeon device private data structure.
*
* Register handlers for all queue and non-queue interrupts.
*
* Return: 0, on successful registration of all interrupt handlers.
* -1, on any error.
*/
static int octep_request_irqs(struct octep_device *oct)
{
struct net_device *netdev = oct->netdev;
struct octep_ioq_vector *ioq_vector;
struct msix_entry *msix_entry;
char **non_ioq_msix_names;
int num_non_ioq_msix;
int ret, i, j;
num_non_ioq_msix = CFG_GET_NON_IOQ_MSIX(oct->conf);
non_ioq_msix_names = CFG_GET_NON_IOQ_MSIX_NAMES(oct->conf);
oct->non_ioq_irq_names = kcalloc(num_non_ioq_msix,
OCTEP_MSIX_NAME_SIZE, GFP_KERNEL);
if (!oct->non_ioq_irq_names)
goto alloc_err;
/* First few MSI-X interrupts are non-queue interrupts */
for (i = 0; i < num_non_ioq_msix; i++) {
char *irq_name;
irq_name = &oct->non_ioq_irq_names[i * OCTEP_MSIX_NAME_SIZE];
msix_entry = &oct->msix_entries[i];
snprintf(irq_name, OCTEP_MSIX_NAME_SIZE,
"%s-%s", netdev->name, non_ioq_msix_names[i]);
ret = request_irq(msix_entry->vector,
octep_non_ioq_intr_handler, 0,
irq_name, oct);
if (ret) {
netdev_err(netdev,
"request_irq failed for %s; err=%d",
irq_name, ret);
goto non_ioq_irq_err;
}
}
/* Request IRQs for Tx/Rx queues */
for (j = 0; j < oct->num_oqs; j++) {
ioq_vector = oct->ioq_vector[j];
msix_entry = &oct->msix_entries[j + num_non_ioq_msix];
snprintf(ioq_vector->name, sizeof(ioq_vector->name),
"%s-q%d", netdev->name, j);
ret = request_irq(msix_entry->vector,
octep_ioq_intr_handler, 0,
ioq_vector->name, ioq_vector);
if (ret) {
netdev_err(netdev,
"request_irq failed for Q-%d; err=%d",
j, ret);
goto ioq_irq_err;
}
cpumask_set_cpu(j % num_online_cpus(),
&ioq_vector->affinity_mask);
irq_set_affinity_hint(msix_entry->vector,
&ioq_vector->affinity_mask);
}
return 0;
ioq_irq_err:
while (j) {
--j;
ioq_vector = oct->ioq_vector[j];
msix_entry = &oct->msix_entries[j + num_non_ioq_msix];
irq_set_affinity_hint(msix_entry->vector, NULL);
free_irq(msix_entry->vector, ioq_vector);
}
non_ioq_irq_err:
while (i) {
--i;
free_irq(oct->msix_entries[i].vector, oct);
}
kfree(oct->non_ioq_irq_names);
oct->non_ioq_irq_names = NULL;
alloc_err:
return -1;
}
/**
* octep_free_irqs() - free all registered interrupts.
*
* @oct: Octeon device private data structure.
*
* Free all queue and non-queue interrupts of the Octeon device.
*/
static void octep_free_irqs(struct octep_device *oct)
{
int i;
/* First few MSI-X interrupts are non queue interrupts; free them */
for (i = 0; i < CFG_GET_NON_IOQ_MSIX(oct->conf); i++)
free_irq(oct->msix_entries[i].vector, oct);
kfree(oct->non_ioq_irq_names);
/* Free IRQs for Input/Output (Tx/Rx) queues */
for (i = CFG_GET_NON_IOQ_MSIX(oct->conf); i < oct->num_irqs; i++) {
irq_set_affinity_hint(oct->msix_entries[i].vector, NULL);
free_irq(oct->msix_entries[i].vector,
oct->ioq_vector[i - CFG_GET_NON_IOQ_MSIX(oct->conf)]);
}
netdev_info(oct->netdev, "IRQs freed\n");
}
/**
* octep_setup_irqs() - setup interrupts for the Octeon device.
*
* @oct: Octeon device private data structure.
*
* Allocate data structures to hold per interrupt information, allocate/enable
* MSI-x interrupt and register interrupt handlers.
*
* Return: 0, on successful allocation and registration of all interrupts.
* -1, on any error.
*/
static int octep_setup_irqs(struct octep_device *oct)
{
if (octep_alloc_ioq_vectors(oct))
goto ioq_vector_err;
if (octep_enable_msix_range(oct))
goto enable_msix_err;
if (octep_request_irqs(oct))
goto request_irq_err;
return 0;
request_irq_err:
octep_disable_msix(oct);
enable_msix_err:
octep_free_ioq_vectors(oct);
ioq_vector_err:
return -1;
}
/**
* octep_clean_irqs() - free all interrupts and its resources.
*
* @oct: Octeon device private data structure.
*/
static void octep_clean_irqs(struct octep_device *oct)
{
octep_free_irqs(oct);
octep_disable_msix(oct);
octep_free_ioq_vectors(oct);
}
/**
* octep_enable_ioq_irq() - Enable MSI-x interrupt of a Tx/Rx queue.
*
* @iq: Octeon Tx queue data structure.
* @oq: Octeon Rx queue data structure.
*/
static void octep_enable_ioq_irq(struct octep_iq *iq, struct octep_oq *oq)
{
u32 pkts_pend = oq->pkts_pending;
netdev_dbg(iq->netdev, "enabling intr for Q-%u\n", iq->q_no);
if (iq->pkts_processed) {
writel(iq->pkts_processed, iq->inst_cnt_reg);
iq->pkt_in_done -= iq->pkts_processed;
iq->pkts_processed = 0;
}
if (oq->last_pkt_count - pkts_pend) {
writel(oq->last_pkt_count - pkts_pend, oq->pkts_sent_reg);
oq->last_pkt_count = pkts_pend;
}
/* Flush the previous wrties before writing to RESEND bit */
wmb();
writeq(1UL << OCTEP_OQ_INTR_RESEND_BIT, oq->pkts_sent_reg);
writeq(1UL << OCTEP_IQ_INTR_RESEND_BIT, iq->inst_cnt_reg);
}
/**
* octep_napi_poll() - NAPI poll function for Tx/Rx.
*
* @napi: pointer to napi context.
* @budget: max number of packets to be processed in single invocation.
*/
static int octep_napi_poll(struct napi_struct *napi, int budget)
{
struct octep_ioq_vector *ioq_vector =
container_of(napi, struct octep_ioq_vector, napi);
u32 tx_pending, rx_done;
tx_pending = octep_iq_process_completions(ioq_vector->iq, budget);
rx_done = octep_oq_process_rx(ioq_vector->oq, budget);
/* need more polling if tx completion processing is still pending or
* processed at least 'budget' number of rx packets.
*/
if (tx_pending || rx_done >= budget)
return budget;
napi_complete(napi);
octep_enable_ioq_irq(ioq_vector->iq, ioq_vector->oq);
return rx_done;
}
/**
* octep_napi_add() - Add NAPI poll for all Tx/Rx queues.
*
* @oct: Octeon device private data structure.
*/
static void octep_napi_add(struct octep_device *oct)
{
int i;
for (i = 0; i < oct->num_oqs; i++) {
netdev_dbg(oct->netdev, "Adding NAPI on Q-%d\n", i);
netif_napi_add(oct->netdev, &oct->ioq_vector[i]->napi,
octep_napi_poll);
oct->oq[i]->napi = &oct->ioq_vector[i]->napi;
}
}
/**
* octep_napi_delete() - delete NAPI poll callback for all Tx/Rx queues.
*
* @oct: Octeon device private data structure.
*/
static void octep_napi_delete(struct octep_device *oct)
{
int i;
for (i = 0; i < oct->num_oqs; i++) {
netdev_dbg(oct->netdev, "Deleting NAPI on Q-%d\n", i);
netif_napi_del(&oct->ioq_vector[i]->napi);
oct->oq[i]->napi = NULL;
}
}
/**
* octep_napi_enable() - enable NAPI for all Tx/Rx queues.
*
* @oct: Octeon device private data structure.
*/
static void octep_napi_enable(struct octep_device *oct)
{
int i;
for (i = 0; i < oct->num_oqs; i++) {
netdev_dbg(oct->netdev, "Enabling NAPI on Q-%d\n", i);
napi_enable(&oct->ioq_vector[i]->napi);
}
}
/**
* octep_napi_disable() - disable NAPI for all Tx/Rx queues.
*
* @oct: Octeon device private data structure.
*/
static void octep_napi_disable(struct octep_device *oct)
{
int i;
for (i = 0; i < oct->num_oqs; i++) {
netdev_dbg(oct->netdev, "Disabling NAPI on Q-%d\n", i);
napi_disable(&oct->ioq_vector[i]->napi);
}
}
static void octep_link_up(struct net_device *netdev)
{
netif_carrier_on(netdev);
netif_tx_start_all_queues(netdev);
}
/**
* octep_open() - start the octeon network device.
*
* @netdev: pointer to kernel network device.
*
* setup Tx/Rx queues, interrupts and enable hardware operation of Tx/Rx queues
* and interrupts..
*
* Return: 0, on successfully setting up device and bring it up.
* -1, on any error.
*/
static int octep_open(struct net_device *netdev)
{
struct octep_device *oct = netdev_priv(netdev);
int err, ret;
netdev_info(netdev, "Starting netdev ...\n");
netif_carrier_off(netdev);
oct->hw_ops.reset_io_queues(oct);
if (octep_setup_iqs(oct))
goto setup_iq_err;
if (octep_setup_oqs(oct))
goto setup_oq_err;
if (octep_setup_irqs(oct))
goto setup_irq_err;
err = netif_set_real_num_tx_queues(netdev, oct->num_oqs);
if (err)
goto set_queues_err;
err = netif_set_real_num_rx_queues(netdev, oct->num_iqs);
if (err)
goto set_queues_err;
octep_napi_add(oct);
octep_napi_enable(oct);
oct->link_info.admin_up = 1;
octep_set_rx_state(oct, true);
ret = octep_get_link_status(oct);
if (!ret)
octep_set_link_status(oct, true);
/* Enable the input and output queues for this Octeon device */
oct->hw_ops.enable_io_queues(oct);
/* Enable Octeon device interrupts */
oct->hw_ops.enable_interrupts(oct);
octep_oq_dbell_init(oct);
ret = octep_get_link_status(oct);
if (ret > 0)
octep_link_up(netdev);
return 0;
set_queues_err:
octep_clean_irqs(oct);
setup_irq_err:
octep_free_oqs(oct);
setup_oq_err:
octep_free_iqs(oct);
setup_iq_err:
return -1;
}
/**
* octep_stop() - stop the octeon network device.
*
* @netdev: pointer to kernel network device.
*
* stop the device Tx/Rx operations, bring down the link and
* free up all resources allocated for Tx/Rx queues and interrupts.
*/
static int octep_stop(struct net_device *netdev)
{
struct octep_device *oct = netdev_priv(netdev);
netdev_info(netdev, "Stopping the device ...\n");
/* Stop Tx from stack */
netif_tx_stop_all_queues(netdev);
netif_carrier_off(netdev);
netif_tx_disable(netdev);
octep_set_link_status(oct, false);
octep_set_rx_state(oct, false);
oct->link_info.admin_up = 0;
oct->link_info.oper_up = 0;
oct->hw_ops.disable_interrupts(oct);
octep_napi_disable(oct);
octep_napi_delete(oct);
octep_clean_irqs(oct);
octep_clean_iqs(oct);
oct->hw_ops.disable_io_queues(oct);
oct->hw_ops.reset_io_queues(oct);
octep_free_oqs(oct);
octep_free_iqs(oct);
netdev_info(netdev, "Device stopped !!\n");
return 0;
}
/**
* octep_iq_full_check() - check if a Tx queue is full.
*
* @iq: Octeon Tx queue data structure.
*
* Return: 0, if the Tx queue is not full.
* 1, if the Tx queue is full.
*/
static inline int octep_iq_full_check(struct octep_iq *iq)
{
if (likely((iq->max_count - atomic_read(&iq->instr_pending)) >=
OCTEP_WAKE_QUEUE_THRESHOLD))
return 0;
/* Stop the queue if unable to send */
netif_stop_subqueue(iq->netdev, iq->q_no);
/* check again and restart the queue, in case NAPI has just freed
* enough Tx ring entries.
*/
if (unlikely((iq->max_count - atomic_read(&iq->instr_pending)) >=
OCTEP_WAKE_QUEUE_THRESHOLD)) {
netif_start_subqueue(iq->netdev, iq->q_no);
iq->stats.restart_cnt++;
return 0;
}
return 1;
}
/**
* octep_start_xmit() - Enqueue packet to Octoen hardware Tx Queue.
*
* @skb: packet skbuff pointer.
* @netdev: kernel network device.
*
* Return: NETDEV_TX_BUSY, if Tx Queue is full.
* NETDEV_TX_OK, if successfully enqueued to hardware Tx queue.
*/
static netdev_tx_t octep_start_xmit(struct sk_buff *skb,
struct net_device *netdev)
{
struct octep_device *oct = netdev_priv(netdev);
struct octep_tx_sglist_desc *sglist;
struct octep_tx_buffer *tx_buffer;
struct octep_tx_desc_hw *hw_desc;
struct skb_shared_info *shinfo;
struct octep_instr_hdr *ih;
struct octep_iq *iq;
skb_frag_t *frag;
u16 nr_frags, si;
u16 q_no, wi;
q_no = skb_get_queue_mapping(skb);
if (q_no >= oct->num_iqs) {
netdev_err(netdev, "Invalid Tx skb->queue_mapping=%d\n", q_no);
q_no = q_no % oct->num_iqs;
}
iq = oct->iq[q_no];
if (octep_iq_full_check(iq)) {
iq->stats.tx_busy++;
return NETDEV_TX_BUSY;
}
shinfo = skb_shinfo(skb);
nr_frags = shinfo->nr_frags;
wi = iq->host_write_index;
hw_desc = &iq->desc_ring[wi];
hw_desc->ih64 = 0;
tx_buffer = iq->buff_info + wi;
tx_buffer->skb = skb;
ih = &hw_desc->ih;
ih->tlen = skb->len;
ih->pkind = oct->pkind;
if (!nr_frags) {
tx_buffer->gather = 0;
tx_buffer->dma = dma_map_single(iq->dev, skb->data,
skb->len, DMA_TO_DEVICE);
if (dma_mapping_error(iq->dev, tx_buffer->dma))
goto dma_map_err;
hw_desc->dptr = tx_buffer->dma;
} else {
/* Scatter/Gather */
dma_addr_t dma;
u16 len;
sglist = tx_buffer->sglist;
ih->gsz = nr_frags + 1;
ih->gather = 1;
tx_buffer->gather = 1;
len = skb_headlen(skb);
dma = dma_map_single(iq->dev, skb->data, len, DMA_TO_DEVICE);
if (dma_mapping_error(iq->dev, dma))
goto dma_map_err;
dma_sync_single_for_cpu(iq->dev, tx_buffer->sglist_dma,
OCTEP_SGLIST_SIZE_PER_PKT,
DMA_TO_DEVICE);
memset(sglist, 0, OCTEP_SGLIST_SIZE_PER_PKT);
sglist[0].len[3] = len;
sglist[0].dma_ptr[0] = dma;
si = 1; /* entry 0 is main skb, mapped above */
frag = &shinfo->frags[0];
while (nr_frags--) {
len = skb_frag_size(frag);
dma = skb_frag_dma_map(iq->dev, frag, 0,
len, DMA_TO_DEVICE);
if (dma_mapping_error(iq->dev, dma))
goto dma_map_sg_err;
sglist[si >> 2].len[3 - (si & 3)] = len;
sglist[si >> 2].dma_ptr[si & 3] = dma;
frag++;
si++;
}
dma_sync_single_for_device(iq->dev, tx_buffer->sglist_dma,
OCTEP_SGLIST_SIZE_PER_PKT,
DMA_TO_DEVICE);
hw_desc->dptr = tx_buffer->sglist_dma;
}
/* Flush the hw descriptor before writing to doorbell */
wmb();
/* Ring Doorbell to notify the NIC there is a new packet */
writel(1, iq->doorbell_reg);
atomic_inc(&iq->instr_pending);
wi++;
if (wi == iq->max_count)
wi = 0;
iq->host_write_index = wi;
netdev_tx_sent_queue(iq->netdev_q, skb->len);
iq->stats.instr_posted++;
skb_tx_timestamp(skb);
return NETDEV_TX_OK;
dma_map_sg_err:
if (si > 0) {
dma_unmap_single(iq->dev, sglist[0].dma_ptr[0],
sglist[0].len[0], DMA_TO_DEVICE);
sglist[0].len[0] = 0;
}
while (si > 1) {
dma_unmap_page(iq->dev, sglist[si >> 2].dma_ptr[si & 3],
sglist[si >> 2].len[si & 3], DMA_TO_DEVICE);
sglist[si >> 2].len[si & 3] = 0;
si--;
}
tx_buffer->gather = 0;
dma_map_err:
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
/**
* octep_get_stats64() - Get Octeon network device statistics.
*
* @netdev: kernel network device.
* @stats: pointer to stats structure to be filled in.
*/
static void octep_get_stats64(struct net_device *netdev,
struct rtnl_link_stats64 *stats)
{
u64 tx_packets, tx_bytes, rx_packets, rx_bytes;
struct octep_device *oct = netdev_priv(netdev);
int q;
octep_get_if_stats(oct);
tx_packets = 0;
tx_bytes = 0;
rx_packets = 0;
rx_bytes = 0;
for (q = 0; q < oct->num_oqs; q++) {
struct octep_iq *iq = oct->iq[q];
struct octep_oq *oq = oct->oq[q];
tx_packets += iq->stats.instr_completed;
tx_bytes += iq->stats.bytes_sent;
rx_packets += oq->stats.packets;
rx_bytes += oq->stats.bytes;
}
stats->tx_packets = tx_packets;
stats->tx_bytes = tx_bytes;
stats->rx_packets = rx_packets;
stats->rx_bytes = rx_bytes;
stats->multicast = oct->iface_rx_stats.mcast_pkts;
stats->rx_errors = oct->iface_rx_stats.err_pkts;
stats->collisions = oct->iface_tx_stats.xscol;
stats->tx_fifo_errors = oct->iface_tx_stats.undflw;
}
/**
* octep_tx_timeout_task - work queue task to Handle Tx queue timeout.
*
* @work: pointer to Tx queue timeout work_struct
*
* Stop and start the device so that it frees up all queue resources
* and restarts the queues, that potentially clears a Tx queue timeout
* condition.
**/
static void octep_tx_timeout_task(struct work_struct *work)
{
struct octep_device *oct = container_of(work, struct octep_device,
tx_timeout_task);
struct net_device *netdev = oct->netdev;
rtnl_lock();
if (netif_running(netdev)) {
octep_stop(netdev);
octep_open(netdev);
}
rtnl_unlock();
}
/**
* octep_tx_timeout() - Handle Tx Queue timeout.
*
* @netdev: pointer to kernel network device.
* @txqueue: Timed out Tx queue number.
*
* Schedule a work to handle Tx queue timeout.
*/
static void octep_tx_timeout(struct net_device *netdev, unsigned int txqueue)
{
struct octep_device *oct = netdev_priv(netdev);
queue_work(octep_wq, &oct->tx_timeout_task);
}
static int octep_set_mac(struct net_device *netdev, void *p)
{
struct octep_device *oct = netdev_priv(netdev);
struct sockaddr *addr = (struct sockaddr *)p;
int err;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
err = octep_set_mac_addr(oct, addr->sa_data);
if (err)
return err;
memcpy(oct->mac_addr, addr->sa_data, ETH_ALEN);
eth_hw_addr_set(netdev, addr->sa_data);
return 0;
}
static int octep_change_mtu(struct net_device *netdev, int new_mtu)
{
struct octep_device *oct = netdev_priv(netdev);
struct octep_iface_link_info *link_info;
int err = 0;
link_info = &oct->link_info;
if (link_info->mtu == new_mtu)
return 0;
err = octep_set_mtu(oct, new_mtu);
if (!err) {
oct->link_info.mtu = new_mtu;
netdev->mtu = new_mtu;
}
return err;
}
static const struct net_device_ops octep_netdev_ops = {
.ndo_open = octep_open,
.ndo_stop = octep_stop,
.ndo_start_xmit = octep_start_xmit,
.ndo_get_stats64 = octep_get_stats64,
.ndo_tx_timeout = octep_tx_timeout,
.ndo_set_mac_address = octep_set_mac,
.ndo_change_mtu = octep_change_mtu,
};
/**
* octep_ctrl_mbox_task - work queue task to handle ctrl mbox messages.
*
* @work: pointer to ctrl mbox work_struct
*
* Poll ctrl mbox message queue and handle control messages from firmware.
**/
static void octep_ctrl_mbox_task(struct work_struct *work)
{
struct octep_device *oct = container_of(work, struct octep_device,
ctrl_mbox_task);
struct net_device *netdev = oct->netdev;
struct octep_ctrl_net_f2h_req req = {};
struct octep_ctrl_mbox_msg msg;
int ret = 0;
msg.msg = &req;
while (true) {
ret = octep_ctrl_mbox_recv(&oct->ctrl_mbox, &msg);
if (ret)
break;
switch (req.hdr.cmd) {
case OCTEP_CTRL_NET_F2H_CMD_LINK_STATUS:
if (netif_running(netdev)) {
if (req.link.state) {
dev_info(&oct->pdev->dev, "netif_carrier_on\n");
netif_carrier_on(netdev);
} else {
dev_info(&oct->pdev->dev, "netif_carrier_off\n");
netif_carrier_off(netdev);
}
}
break;
default:
pr_info("Unknown mbox req : %u\n", req.hdr.cmd);
break;
}
}
}
static const char *octep_devid_to_str(struct octep_device *oct)
{
switch (oct->chip_id) {
case OCTEP_PCI_DEVICE_ID_CN93_PF:
return "CN93XX";
case OCTEP_PCI_DEVICE_ID_CNF95N_PF:
return "CNF95N";
default:
return "Unsupported";
}
}
/**
* octep_device_setup() - Setup Octeon Device.
*
* @oct: Octeon device private data structure.
*
* Setup Octeon device hardware operations, configuration, etc ...
*/
int octep_device_setup(struct octep_device *oct)
{
struct octep_ctrl_mbox *ctrl_mbox;
struct pci_dev *pdev = oct->pdev;
int i, ret;
/* allocate memory for oct->conf */
oct->conf = kzalloc(sizeof(*oct->conf), GFP_KERNEL);
if (!oct->conf)
return -ENOMEM;
/* Map BAR regions */
for (i = 0; i < OCTEP_MMIO_REGIONS; i++) {
oct->mmio[i].hw_addr =
ioremap(pci_resource_start(oct->pdev, i * 2),
pci_resource_len(oct->pdev, i * 2));
if (!oct->mmio[i].hw_addr)
goto unmap_prev;
oct->mmio[i].mapped = 1;
}
oct->chip_id = pdev->device;
oct->rev_id = pdev->revision;
dev_info(&pdev->dev, "chip_id = 0x%x\n", pdev->device);
switch (oct->chip_id) {
case OCTEP_PCI_DEVICE_ID_CN93_PF:
case OCTEP_PCI_DEVICE_ID_CNF95N_PF:
dev_info(&pdev->dev, "Setting up OCTEON %s PF PASS%d.%d\n",
octep_devid_to_str(oct), OCTEP_MAJOR_REV(oct),
OCTEP_MINOR_REV(oct));
octep_device_setup_cn93_pf(oct);
break;
default:
dev_err(&pdev->dev,
"%s: unsupported device\n", __func__);
goto unsupported_dev;
}
oct->pkind = CFG_GET_IQ_PKIND(oct->conf);
/* Initialize control mbox */
ctrl_mbox = &oct->ctrl_mbox;
ctrl_mbox->barmem = CFG_GET_CTRL_MBOX_MEM_ADDR(oct->conf);
ret = octep_ctrl_mbox_init(ctrl_mbox);
if (ret) {
dev_err(&pdev->dev, "Failed to initialize control mbox\n");
goto unsupported_dev;
}
oct->ctrl_mbox_ifstats_offset = OCTEP_CTRL_MBOX_SZ(ctrl_mbox->h2fq.elem_sz,
ctrl_mbox->h2fq.elem_cnt,
ctrl_mbox->f2hq.elem_sz,
ctrl_mbox->f2hq.elem_cnt);
return 0;
unsupported_dev:
i = OCTEP_MMIO_REGIONS;
unmap_prev:
while (i--)
iounmap(oct->mmio[i].hw_addr);
kfree(oct->conf);
return -1;
}
/**
* octep_device_cleanup() - Cleanup Octeon Device.
*
* @oct: Octeon device private data structure.
*
* Cleanup Octeon device allocated resources.
*/
static void octep_device_cleanup(struct octep_device *oct)
{
int i;
dev_info(&oct->pdev->dev, "Cleaning up Octeon Device ...\n");
for (i = 0; i < OCTEP_MAX_VF; i++) {
vfree(oct->mbox[i]);
oct->mbox[i] = NULL;
}
octep_ctrl_mbox_uninit(&oct->ctrl_mbox);
oct->hw_ops.soft_reset(oct);
for (i = 0; i < OCTEP_MMIO_REGIONS; i++) {
if (oct->mmio[i].mapped)
iounmap(oct->mmio[i].hw_addr);
}
kfree(oct->conf);
oct->conf = NULL;
}
/**
* octep_probe() - Octeon PCI device probe handler.
*
* @pdev: PCI device structure.
* @ent: entry in Octeon PCI device ID table.
*
* Initializes and enables the Octeon PCI device for network operations.
* Initializes Octeon private data structure and registers a network device.
*/
static int octep_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct octep_device *octep_dev = NULL;
struct net_device *netdev;
int err;
err = pci_enable_device(pdev);
if (err) {
dev_err(&pdev->dev, "Failed to enable PCI device\n");
return err;
}
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (err) {
dev_err(&pdev->dev, "Failed to set DMA mask !!\n");
goto err_dma_mask;
}
err = pci_request_mem_regions(pdev, OCTEP_DRV_NAME);
if (err) {
dev_err(&pdev->dev, "Failed to map PCI memory regions\n");
goto err_pci_regions;
}
pci_enable_pcie_error_reporting(pdev);
pci_set_master(pdev);
netdev = alloc_etherdev_mq(sizeof(struct octep_device),
OCTEP_MAX_QUEUES);
if (!netdev) {
dev_err(&pdev->dev, "Failed to allocate netdev\n");
err = -ENOMEM;
goto err_alloc_netdev;
}
SET_NETDEV_DEV(netdev, &pdev->dev);
octep_dev = netdev_priv(netdev);
octep_dev->netdev = netdev;
octep_dev->pdev = pdev;
octep_dev->dev = &pdev->dev;
pci_set_drvdata(pdev, octep_dev);
err = octep_device_setup(octep_dev);
if (err) {
dev_err(&pdev->dev, "Device setup failed\n");
goto err_octep_config;
}
INIT_WORK(&octep_dev->tx_timeout_task, octep_tx_timeout_task);
INIT_WORK(&octep_dev->ctrl_mbox_task, octep_ctrl_mbox_task);
netdev->netdev_ops = &octep_netdev_ops;
octep_set_ethtool_ops(netdev);
netif_carrier_off(netdev);
netdev->hw_features = NETIF_F_SG;
netdev->features |= netdev->hw_features;
netdev->min_mtu = OCTEP_MIN_MTU;
netdev->max_mtu = OCTEP_MAX_MTU;
netdev->mtu = OCTEP_DEFAULT_MTU;
err = octep_get_mac_addr(octep_dev, octep_dev->mac_addr);
if (err) {
dev_err(&pdev->dev, "Failed to get mac address\n");
goto register_dev_err;
}
eth_hw_addr_set(netdev, octep_dev->mac_addr);
err = register_netdev(netdev);
if (err) {
dev_err(&pdev->dev, "Failed to register netdev\n");
goto register_dev_err;
}
dev_info(&pdev->dev, "Device probe successful\n");
return 0;
register_dev_err:
octep_device_cleanup(octep_dev);
err_octep_config:
free_netdev(netdev);
err_alloc_netdev:
pci_disable_pcie_error_reporting(pdev);
pci_release_mem_regions(pdev);
err_pci_regions:
err_dma_mask:
pci_disable_device(pdev);
return err;
}
/**
* octep_remove() - Remove Octeon PCI device from driver control.
*
* @pdev: PCI device structure of the Octeon device.
*
* Cleanup all resources allocated for the Octeon device.
* Unregister from network device and disable the PCI device.
*/
static void octep_remove(struct pci_dev *pdev)
{
struct octep_device *oct = pci_get_drvdata(pdev);
struct net_device *netdev;
if (!oct)
return;
cancel_work_sync(&oct->tx_timeout_task);
cancel_work_sync(&oct->ctrl_mbox_task);
netdev = oct->netdev;
if (netdev->reg_state == NETREG_REGISTERED)
unregister_netdev(netdev);
octep_device_cleanup(oct);
pci_release_mem_regions(pdev);
free_netdev(netdev);
pci_disable_pcie_error_reporting(pdev);
pci_disable_device(pdev);
}
static struct pci_driver octep_driver = {
.name = OCTEP_DRV_NAME,
.id_table = octep_pci_id_tbl,
.probe = octep_probe,
.remove = octep_remove,
};
/**
* octep_init_module() - Module initialiation.
*
* create common resource for the driver and register PCI driver.
*/
static int __init octep_init_module(void)
{
int ret;
pr_info("%s: Loading %s ...\n", OCTEP_DRV_NAME, OCTEP_DRV_STRING);
/* work queue for all deferred tasks */
octep_wq = create_singlethread_workqueue(OCTEP_DRV_NAME);
if (!octep_wq) {
pr_err("%s: Failed to create common workqueue\n",
OCTEP_DRV_NAME);
return -ENOMEM;
}
ret = pci_register_driver(&octep_driver);
if (ret < 0) {
pr_err("%s: Failed to register PCI driver; err=%d\n",
OCTEP_DRV_NAME, ret);
destroy_workqueue(octep_wq);
return ret;
}
pr_info("%s: Loaded successfully !\n", OCTEP_DRV_NAME);
return ret;
}
/**
* octep_exit_module() - Module exit routine.
*
* unregister the driver with PCI subsystem and cleanup common resources.
*/
static void __exit octep_exit_module(void)
{
pr_info("%s: Unloading ...\n", OCTEP_DRV_NAME);
pci_unregister_driver(&octep_driver);
destroy_workqueue(octep_wq);
pr_info("%s: Unloading complete\n", OCTEP_DRV_NAME);
}
module_init(octep_init_module);
module_exit(octep_exit_module);