linux-zen-server/drivers/net/ethernet/marvell/octeontx2/nic/otx2_flows.c

1490 lines
38 KiB
C
Raw Permalink Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0
/* Marvell RVU Ethernet driver
*
* Copyright (C) 2020 Marvell.
*
*/
#include <net/ipv6.h>
#include <linux/sort.h>
#include "otx2_common.h"
#define OTX2_DEFAULT_ACTION 0x1
static int otx2_mcam_entry_init(struct otx2_nic *pfvf);
struct otx2_flow {
struct ethtool_rx_flow_spec flow_spec;
struct list_head list;
u32 location;
u32 entry;
bool is_vf;
u8 rss_ctx_id;
#define DMAC_FILTER_RULE BIT(0)
#define PFC_FLOWCTRL_RULE BIT(1)
u16 rule_type;
int vf;
};
enum dmac_req {
DMAC_ADDR_UPDATE,
DMAC_ADDR_DEL
};
static void otx2_clear_ntuple_flow_info(struct otx2_nic *pfvf, struct otx2_flow_config *flow_cfg)
{
devm_kfree(pfvf->dev, flow_cfg->flow_ent);
flow_cfg->flow_ent = NULL;
flow_cfg->max_flows = 0;
}
static int otx2_free_ntuple_mcam_entries(struct otx2_nic *pfvf)
{
struct otx2_flow_config *flow_cfg = pfvf->flow_cfg;
struct npc_mcam_free_entry_req *req;
int ent, err;
if (!flow_cfg->max_flows)
return 0;
mutex_lock(&pfvf->mbox.lock);
for (ent = 0; ent < flow_cfg->max_flows; ent++) {
req = otx2_mbox_alloc_msg_npc_mcam_free_entry(&pfvf->mbox);
if (!req)
break;
req->entry = flow_cfg->flow_ent[ent];
/* Send message to AF to free MCAM entries */
err = otx2_sync_mbox_msg(&pfvf->mbox);
if (err)
break;
}
mutex_unlock(&pfvf->mbox.lock);
otx2_clear_ntuple_flow_info(pfvf, flow_cfg);
return 0;
}
static int mcam_entry_cmp(const void *a, const void *b)
{
return *(u16 *)a - *(u16 *)b;
}
int otx2_alloc_mcam_entries(struct otx2_nic *pfvf, u16 count)
{
struct otx2_flow_config *flow_cfg = pfvf->flow_cfg;
struct npc_mcam_alloc_entry_req *req;
struct npc_mcam_alloc_entry_rsp *rsp;
int ent, allocated = 0;
/* Free current ones and allocate new ones with requested count */
otx2_free_ntuple_mcam_entries(pfvf);
if (!count)
return 0;
flow_cfg->flow_ent = devm_kmalloc_array(pfvf->dev, count,
sizeof(u16), GFP_KERNEL);
if (!flow_cfg->flow_ent) {
netdev_err(pfvf->netdev,
"%s: Unable to allocate memory for flow entries\n",
__func__);
return -ENOMEM;
}
mutex_lock(&pfvf->mbox.lock);
/* In a single request a max of NPC_MAX_NONCONTIG_ENTRIES MCAM entries
* can only be allocated.
*/
while (allocated < count) {
req = otx2_mbox_alloc_msg_npc_mcam_alloc_entry(&pfvf->mbox);
if (!req)
goto exit;
req->contig = false;
req->count = (count - allocated) > NPC_MAX_NONCONTIG_ENTRIES ?
NPC_MAX_NONCONTIG_ENTRIES : count - allocated;
/* Allocate higher priority entries for PFs, so that VF's entries
* will be on top of PF.
*/
if (!is_otx2_vf(pfvf->pcifunc)) {
req->priority = NPC_MCAM_HIGHER_PRIO;
req->ref_entry = flow_cfg->def_ent[0];
}
/* Send message to AF */
if (otx2_sync_mbox_msg(&pfvf->mbox))
goto exit;
rsp = (struct npc_mcam_alloc_entry_rsp *)otx2_mbox_get_rsp
(&pfvf->mbox.mbox, 0, &req->hdr);
for (ent = 0; ent < rsp->count; ent++)
flow_cfg->flow_ent[ent + allocated] = rsp->entry_list[ent];
allocated += rsp->count;
/* If this request is not fulfilled, no need to send
* further requests.
*/
if (rsp->count != req->count)
break;
}
/* Multiple MCAM entry alloc requests could result in non-sequential
* MCAM entries in the flow_ent[] array. Sort them in an ascending order,
* otherwise user installed ntuple filter index and MCAM entry index will
* not be in sync.
*/
if (allocated)
sort(&flow_cfg->flow_ent[0], allocated,
sizeof(flow_cfg->flow_ent[0]), mcam_entry_cmp, NULL);
exit:
mutex_unlock(&pfvf->mbox.lock);
flow_cfg->max_flows = allocated;
if (allocated) {
pfvf->flags |= OTX2_FLAG_MCAM_ENTRIES_ALLOC;
pfvf->flags |= OTX2_FLAG_NTUPLE_SUPPORT;
}
if (allocated != count)
netdev_info(pfvf->netdev,
"Unable to allocate %d MCAM entries, got only %d\n",
count, allocated);
return allocated;
}
EXPORT_SYMBOL(otx2_alloc_mcam_entries);
static int otx2_mcam_entry_init(struct otx2_nic *pfvf)
{
struct otx2_flow_config *flow_cfg = pfvf->flow_cfg;
struct npc_get_field_status_req *freq;
struct npc_get_field_status_rsp *frsp;
struct npc_mcam_alloc_entry_req *req;
struct npc_mcam_alloc_entry_rsp *rsp;
int vf_vlan_max_flows;
int ent, count;
vf_vlan_max_flows = pfvf->total_vfs * OTX2_PER_VF_VLAN_FLOWS;
count = OTX2_MAX_UNICAST_FLOWS +
OTX2_MAX_VLAN_FLOWS + vf_vlan_max_flows;
flow_cfg->def_ent = devm_kmalloc_array(pfvf->dev, count,
sizeof(u16), GFP_KERNEL);
if (!flow_cfg->def_ent)
return -ENOMEM;
mutex_lock(&pfvf->mbox.lock);
req = otx2_mbox_alloc_msg_npc_mcam_alloc_entry(&pfvf->mbox);
if (!req) {
mutex_unlock(&pfvf->mbox.lock);
return -ENOMEM;
}
req->contig = false;
req->count = count;
/* Send message to AF */
if (otx2_sync_mbox_msg(&pfvf->mbox)) {
mutex_unlock(&pfvf->mbox.lock);
return -EINVAL;
}
rsp = (struct npc_mcam_alloc_entry_rsp *)otx2_mbox_get_rsp
(&pfvf->mbox.mbox, 0, &req->hdr);
if (rsp->count != req->count) {
netdev_info(pfvf->netdev,
"Unable to allocate MCAM entries for ucast, vlan and vf_vlan\n");
mutex_unlock(&pfvf->mbox.lock);
devm_kfree(pfvf->dev, flow_cfg->def_ent);
return 0;
}
for (ent = 0; ent < rsp->count; ent++)
flow_cfg->def_ent[ent] = rsp->entry_list[ent];
flow_cfg->vf_vlan_offset = 0;
flow_cfg->unicast_offset = vf_vlan_max_flows;
flow_cfg->rx_vlan_offset = flow_cfg->unicast_offset +
OTX2_MAX_UNICAST_FLOWS;
pfvf->flags |= OTX2_FLAG_UCAST_FLTR_SUPPORT;
/* Check if NPC_DMAC field is supported
* by the mkex profile before setting VLAN support flag.
*/
freq = otx2_mbox_alloc_msg_npc_get_field_status(&pfvf->mbox);
if (!freq) {
mutex_unlock(&pfvf->mbox.lock);
return -ENOMEM;
}
freq->field = NPC_DMAC;
if (otx2_sync_mbox_msg(&pfvf->mbox)) {
mutex_unlock(&pfvf->mbox.lock);
return -EINVAL;
}
frsp = (struct npc_get_field_status_rsp *)otx2_mbox_get_rsp
(&pfvf->mbox.mbox, 0, &freq->hdr);
if (frsp->enable) {
pfvf->flags |= OTX2_FLAG_RX_VLAN_SUPPORT;
pfvf->flags |= OTX2_FLAG_VF_VLAN_SUPPORT;
}
pfvf->flags |= OTX2_FLAG_MCAM_ENTRIES_ALLOC;
mutex_unlock(&pfvf->mbox.lock);
/* Allocate entries for Ntuple filters */
count = otx2_alloc_mcam_entries(pfvf, OTX2_DEFAULT_FLOWCOUNT);
if (count <= 0) {
otx2_clear_ntuple_flow_info(pfvf, flow_cfg);
return 0;
}
pfvf->flags |= OTX2_FLAG_TC_FLOWER_SUPPORT;
return 0;
}
/* TODO : revisit on size */
#define OTX2_DMAC_FLTR_BITMAP_SZ (4 * 2048 + 32)
int otx2vf_mcam_flow_init(struct otx2_nic *pfvf)
{
struct otx2_flow_config *flow_cfg;
pfvf->flow_cfg = devm_kzalloc(pfvf->dev,
sizeof(struct otx2_flow_config),
GFP_KERNEL);
if (!pfvf->flow_cfg)
return -ENOMEM;
pfvf->flow_cfg->dmacflt_bmap = devm_kcalloc(pfvf->dev,
BITS_TO_LONGS(OTX2_DMAC_FLTR_BITMAP_SZ),
sizeof(long), GFP_KERNEL);
if (!pfvf->flow_cfg->dmacflt_bmap)
return -ENOMEM;
flow_cfg = pfvf->flow_cfg;
INIT_LIST_HEAD(&flow_cfg->flow_list);
flow_cfg->max_flows = 0;
return 0;
}
EXPORT_SYMBOL(otx2vf_mcam_flow_init);
int otx2_mcam_flow_init(struct otx2_nic *pf)
{
int err;
pf->flow_cfg = devm_kzalloc(pf->dev, sizeof(struct otx2_flow_config),
GFP_KERNEL);
if (!pf->flow_cfg)
return -ENOMEM;
pf->flow_cfg->dmacflt_bmap = devm_kcalloc(pf->dev,
BITS_TO_LONGS(OTX2_DMAC_FLTR_BITMAP_SZ),
sizeof(long), GFP_KERNEL);
if (!pf->flow_cfg->dmacflt_bmap)
return -ENOMEM;
INIT_LIST_HEAD(&pf->flow_cfg->flow_list);
/* Allocate bare minimum number of MCAM entries needed for
* unicast and ntuple filters.
*/
err = otx2_mcam_entry_init(pf);
if (err)
return err;
/* Check if MCAM entries are allocate or not */
if (!(pf->flags & OTX2_FLAG_UCAST_FLTR_SUPPORT))
return 0;
pf->mac_table = devm_kzalloc(pf->dev, sizeof(struct otx2_mac_table)
* OTX2_MAX_UNICAST_FLOWS, GFP_KERNEL);
if (!pf->mac_table)
return -ENOMEM;
otx2_dmacflt_get_max_cnt(pf);
/* DMAC filters are not allocated */
if (!pf->flow_cfg->dmacflt_max_flows)
return 0;
pf->flow_cfg->bmap_to_dmacindex =
devm_kzalloc(pf->dev, sizeof(u32) *
pf->flow_cfg->dmacflt_max_flows,
GFP_KERNEL);
if (!pf->flow_cfg->bmap_to_dmacindex)
return -ENOMEM;
pf->flags |= OTX2_FLAG_DMACFLTR_SUPPORT;
return 0;
}
void otx2_mcam_flow_del(struct otx2_nic *pf)
{
otx2_destroy_mcam_flows(pf);
}
EXPORT_SYMBOL(otx2_mcam_flow_del);
/* On success adds mcam entry
* On failure enable promisous mode
*/
static int otx2_do_add_macfilter(struct otx2_nic *pf, const u8 *mac)
{
struct otx2_flow_config *flow_cfg = pf->flow_cfg;
struct npc_install_flow_req *req;
int err, i;
if (!(pf->flags & OTX2_FLAG_UCAST_FLTR_SUPPORT))
return -ENOMEM;
/* dont have free mcam entries or uc list is greater than alloted */
if (netdev_uc_count(pf->netdev) > OTX2_MAX_UNICAST_FLOWS)
return -ENOMEM;
mutex_lock(&pf->mbox.lock);
req = otx2_mbox_alloc_msg_npc_install_flow(&pf->mbox);
if (!req) {
mutex_unlock(&pf->mbox.lock);
return -ENOMEM;
}
/* unicast offset starts with 32 0..31 for ntuple */
for (i = 0; i < OTX2_MAX_UNICAST_FLOWS; i++) {
if (pf->mac_table[i].inuse)
continue;
ether_addr_copy(pf->mac_table[i].addr, mac);
pf->mac_table[i].inuse = true;
pf->mac_table[i].mcam_entry =
flow_cfg->def_ent[i + flow_cfg->unicast_offset];
req->entry = pf->mac_table[i].mcam_entry;
break;
}
ether_addr_copy(req->packet.dmac, mac);
eth_broadcast_addr((u8 *)&req->mask.dmac);
req->features = BIT_ULL(NPC_DMAC);
req->channel = pf->hw.rx_chan_base;
req->intf = NIX_INTF_RX;
req->op = NIX_RX_ACTION_DEFAULT;
req->set_cntr = 1;
err = otx2_sync_mbox_msg(&pf->mbox);
mutex_unlock(&pf->mbox.lock);
return err;
}
int otx2_add_macfilter(struct net_device *netdev, const u8 *mac)
{
struct otx2_nic *pf = netdev_priv(netdev);
if (!bitmap_empty(pf->flow_cfg->dmacflt_bmap,
pf->flow_cfg->dmacflt_max_flows))
netdev_warn(netdev,
"Add %pM to CGX/RPM DMAC filters list as well\n",
mac);
return otx2_do_add_macfilter(pf, mac);
}
static bool otx2_get_mcamentry_for_mac(struct otx2_nic *pf, const u8 *mac,
int *mcam_entry)
{
int i;
for (i = 0; i < OTX2_MAX_UNICAST_FLOWS; i++) {
if (!pf->mac_table[i].inuse)
continue;
if (ether_addr_equal(pf->mac_table[i].addr, mac)) {
*mcam_entry = pf->mac_table[i].mcam_entry;
pf->mac_table[i].inuse = false;
return true;
}
}
return false;
}
int otx2_del_macfilter(struct net_device *netdev, const u8 *mac)
{
struct otx2_nic *pf = netdev_priv(netdev);
struct npc_delete_flow_req *req;
int err, mcam_entry;
/* check does mcam entry exists for given mac */
if (!otx2_get_mcamentry_for_mac(pf, mac, &mcam_entry))
return 0;
mutex_lock(&pf->mbox.lock);
req = otx2_mbox_alloc_msg_npc_delete_flow(&pf->mbox);
if (!req) {
mutex_unlock(&pf->mbox.lock);
return -ENOMEM;
}
req->entry = mcam_entry;
/* Send message to AF */
err = otx2_sync_mbox_msg(&pf->mbox);
mutex_unlock(&pf->mbox.lock);
return err;
}
static struct otx2_flow *otx2_find_flow(struct otx2_nic *pfvf, u32 location)
{
struct otx2_flow *iter;
list_for_each_entry(iter, &pfvf->flow_cfg->flow_list, list) {
if (iter->location == location)
return iter;
}
return NULL;
}
static void otx2_add_flow_to_list(struct otx2_nic *pfvf, struct otx2_flow *flow)
{
struct list_head *head = &pfvf->flow_cfg->flow_list;
struct otx2_flow *iter;
list_for_each_entry(iter, &pfvf->flow_cfg->flow_list, list) {
if (iter->location > flow->location)
break;
head = &iter->list;
}
list_add(&flow->list, head);
}
int otx2_get_maxflows(struct otx2_flow_config *flow_cfg)
{
if (!flow_cfg)
return 0;
if (flow_cfg->nr_flows == flow_cfg->max_flows ||
!bitmap_empty(flow_cfg->dmacflt_bmap,
flow_cfg->dmacflt_max_flows))
return flow_cfg->max_flows + flow_cfg->dmacflt_max_flows;
else
return flow_cfg->max_flows;
}
EXPORT_SYMBOL(otx2_get_maxflows);
int otx2_get_flow(struct otx2_nic *pfvf, struct ethtool_rxnfc *nfc,
u32 location)
{
struct otx2_flow *iter;
if (location >= otx2_get_maxflows(pfvf->flow_cfg))
return -EINVAL;
list_for_each_entry(iter, &pfvf->flow_cfg->flow_list, list) {
if (iter->location == location) {
nfc->fs = iter->flow_spec;
nfc->rss_context = iter->rss_ctx_id;
return 0;
}
}
return -ENOENT;
}
int otx2_get_all_flows(struct otx2_nic *pfvf, struct ethtool_rxnfc *nfc,
u32 *rule_locs)
{
u32 rule_cnt = nfc->rule_cnt;
u32 location = 0;
int idx = 0;
int err = 0;
nfc->data = otx2_get_maxflows(pfvf->flow_cfg);
while ((!err || err == -ENOENT) && idx < rule_cnt) {
err = otx2_get_flow(pfvf, nfc, location);
if (!err)
rule_locs[idx++] = location;
location++;
}
nfc->rule_cnt = rule_cnt;
return err;
}
static int otx2_prepare_ipv4_flow(struct ethtool_rx_flow_spec *fsp,
struct npc_install_flow_req *req,
u32 flow_type)
{
struct ethtool_usrip4_spec *ipv4_usr_mask = &fsp->m_u.usr_ip4_spec;
struct ethtool_usrip4_spec *ipv4_usr_hdr = &fsp->h_u.usr_ip4_spec;
struct ethtool_tcpip4_spec *ipv4_l4_mask = &fsp->m_u.tcp_ip4_spec;
struct ethtool_tcpip4_spec *ipv4_l4_hdr = &fsp->h_u.tcp_ip4_spec;
struct ethtool_ah_espip4_spec *ah_esp_hdr = &fsp->h_u.ah_ip4_spec;
struct ethtool_ah_espip4_spec *ah_esp_mask = &fsp->m_u.ah_ip4_spec;
struct flow_msg *pmask = &req->mask;
struct flow_msg *pkt = &req->packet;
switch (flow_type) {
case IP_USER_FLOW:
if (ipv4_usr_mask->ip4src) {
memcpy(&pkt->ip4src, &ipv4_usr_hdr->ip4src,
sizeof(pkt->ip4src));
memcpy(&pmask->ip4src, &ipv4_usr_mask->ip4src,
sizeof(pmask->ip4src));
req->features |= BIT_ULL(NPC_SIP_IPV4);
}
if (ipv4_usr_mask->ip4dst) {
memcpy(&pkt->ip4dst, &ipv4_usr_hdr->ip4dst,
sizeof(pkt->ip4dst));
memcpy(&pmask->ip4dst, &ipv4_usr_mask->ip4dst,
sizeof(pmask->ip4dst));
req->features |= BIT_ULL(NPC_DIP_IPV4);
}
if (ipv4_usr_mask->tos) {
pkt->tos = ipv4_usr_hdr->tos;
pmask->tos = ipv4_usr_mask->tos;
req->features |= BIT_ULL(NPC_TOS);
}
if (ipv4_usr_mask->proto) {
switch (ipv4_usr_hdr->proto) {
case IPPROTO_ICMP:
req->features |= BIT_ULL(NPC_IPPROTO_ICMP);
break;
case IPPROTO_TCP:
req->features |= BIT_ULL(NPC_IPPROTO_TCP);
break;
case IPPROTO_UDP:
req->features |= BIT_ULL(NPC_IPPROTO_UDP);
break;
case IPPROTO_SCTP:
req->features |= BIT_ULL(NPC_IPPROTO_SCTP);
break;
case IPPROTO_AH:
req->features |= BIT_ULL(NPC_IPPROTO_AH);
break;
case IPPROTO_ESP:
req->features |= BIT_ULL(NPC_IPPROTO_ESP);
break;
default:
return -EOPNOTSUPP;
}
}
pkt->etype = cpu_to_be16(ETH_P_IP);
pmask->etype = cpu_to_be16(0xFFFF);
req->features |= BIT_ULL(NPC_ETYPE);
break;
case TCP_V4_FLOW:
case UDP_V4_FLOW:
case SCTP_V4_FLOW:
pkt->etype = cpu_to_be16(ETH_P_IP);
pmask->etype = cpu_to_be16(0xFFFF);
req->features |= BIT_ULL(NPC_ETYPE);
if (ipv4_l4_mask->ip4src) {
memcpy(&pkt->ip4src, &ipv4_l4_hdr->ip4src,
sizeof(pkt->ip4src));
memcpy(&pmask->ip4src, &ipv4_l4_mask->ip4src,
sizeof(pmask->ip4src));
req->features |= BIT_ULL(NPC_SIP_IPV4);
}
if (ipv4_l4_mask->ip4dst) {
memcpy(&pkt->ip4dst, &ipv4_l4_hdr->ip4dst,
sizeof(pkt->ip4dst));
memcpy(&pmask->ip4dst, &ipv4_l4_mask->ip4dst,
sizeof(pmask->ip4dst));
req->features |= BIT_ULL(NPC_DIP_IPV4);
}
if (ipv4_l4_mask->tos) {
pkt->tos = ipv4_l4_hdr->tos;
pmask->tos = ipv4_l4_mask->tos;
req->features |= BIT_ULL(NPC_TOS);
}
if (ipv4_l4_mask->psrc) {
memcpy(&pkt->sport, &ipv4_l4_hdr->psrc,
sizeof(pkt->sport));
memcpy(&pmask->sport, &ipv4_l4_mask->psrc,
sizeof(pmask->sport));
if (flow_type == UDP_V4_FLOW)
req->features |= BIT_ULL(NPC_SPORT_UDP);
else if (flow_type == TCP_V4_FLOW)
req->features |= BIT_ULL(NPC_SPORT_TCP);
else
req->features |= BIT_ULL(NPC_SPORT_SCTP);
}
if (ipv4_l4_mask->pdst) {
memcpy(&pkt->dport, &ipv4_l4_hdr->pdst,
sizeof(pkt->dport));
memcpy(&pmask->dport, &ipv4_l4_mask->pdst,
sizeof(pmask->dport));
if (flow_type == UDP_V4_FLOW)
req->features |= BIT_ULL(NPC_DPORT_UDP);
else if (flow_type == TCP_V4_FLOW)
req->features |= BIT_ULL(NPC_DPORT_TCP);
else
req->features |= BIT_ULL(NPC_DPORT_SCTP);
}
if (flow_type == UDP_V4_FLOW)
req->features |= BIT_ULL(NPC_IPPROTO_UDP);
else if (flow_type == TCP_V4_FLOW)
req->features |= BIT_ULL(NPC_IPPROTO_TCP);
else
req->features |= BIT_ULL(NPC_IPPROTO_SCTP);
break;
case AH_V4_FLOW:
case ESP_V4_FLOW:
pkt->etype = cpu_to_be16(ETH_P_IP);
pmask->etype = cpu_to_be16(0xFFFF);
req->features |= BIT_ULL(NPC_ETYPE);
if (ah_esp_mask->ip4src) {
memcpy(&pkt->ip4src, &ah_esp_hdr->ip4src,
sizeof(pkt->ip4src));
memcpy(&pmask->ip4src, &ah_esp_mask->ip4src,
sizeof(pmask->ip4src));
req->features |= BIT_ULL(NPC_SIP_IPV4);
}
if (ah_esp_mask->ip4dst) {
memcpy(&pkt->ip4dst, &ah_esp_hdr->ip4dst,
sizeof(pkt->ip4dst));
memcpy(&pmask->ip4dst, &ah_esp_mask->ip4dst,
sizeof(pmask->ip4dst));
req->features |= BIT_ULL(NPC_DIP_IPV4);
}
if (ah_esp_mask->tos) {
pkt->tos = ah_esp_hdr->tos;
pmask->tos = ah_esp_mask->tos;
req->features |= BIT_ULL(NPC_TOS);
}
/* NPC profile doesn't extract AH/ESP header fields */
if (ah_esp_mask->spi & ah_esp_hdr->spi)
return -EOPNOTSUPP;
if (flow_type == AH_V4_FLOW)
req->features |= BIT_ULL(NPC_IPPROTO_AH);
else
req->features |= BIT_ULL(NPC_IPPROTO_ESP);
break;
default:
break;
}
return 0;
}
static int otx2_prepare_ipv6_flow(struct ethtool_rx_flow_spec *fsp,
struct npc_install_flow_req *req,
u32 flow_type)
{
struct ethtool_usrip6_spec *ipv6_usr_mask = &fsp->m_u.usr_ip6_spec;
struct ethtool_usrip6_spec *ipv6_usr_hdr = &fsp->h_u.usr_ip6_spec;
struct ethtool_tcpip6_spec *ipv6_l4_mask = &fsp->m_u.tcp_ip6_spec;
struct ethtool_tcpip6_spec *ipv6_l4_hdr = &fsp->h_u.tcp_ip6_spec;
struct ethtool_ah_espip6_spec *ah_esp_hdr = &fsp->h_u.ah_ip6_spec;
struct ethtool_ah_espip6_spec *ah_esp_mask = &fsp->m_u.ah_ip6_spec;
struct flow_msg *pmask = &req->mask;
struct flow_msg *pkt = &req->packet;
switch (flow_type) {
case IPV6_USER_FLOW:
if (!ipv6_addr_any((struct in6_addr *)ipv6_usr_mask->ip6src)) {
memcpy(&pkt->ip6src, &ipv6_usr_hdr->ip6src,
sizeof(pkt->ip6src));
memcpy(&pmask->ip6src, &ipv6_usr_mask->ip6src,
sizeof(pmask->ip6src));
req->features |= BIT_ULL(NPC_SIP_IPV6);
}
if (!ipv6_addr_any((struct in6_addr *)ipv6_usr_mask->ip6dst)) {
memcpy(&pkt->ip6dst, &ipv6_usr_hdr->ip6dst,
sizeof(pkt->ip6dst));
memcpy(&pmask->ip6dst, &ipv6_usr_mask->ip6dst,
sizeof(pmask->ip6dst));
req->features |= BIT_ULL(NPC_DIP_IPV6);
}
if (ipv6_usr_hdr->l4_proto == IPPROTO_FRAGMENT) {
pkt->next_header = ipv6_usr_hdr->l4_proto;
pmask->next_header = ipv6_usr_mask->l4_proto;
req->features |= BIT_ULL(NPC_IPFRAG_IPV6);
}
pkt->etype = cpu_to_be16(ETH_P_IPV6);
pmask->etype = cpu_to_be16(0xFFFF);
req->features |= BIT_ULL(NPC_ETYPE);
break;
case TCP_V6_FLOW:
case UDP_V6_FLOW:
case SCTP_V6_FLOW:
pkt->etype = cpu_to_be16(ETH_P_IPV6);
pmask->etype = cpu_to_be16(0xFFFF);
req->features |= BIT_ULL(NPC_ETYPE);
if (!ipv6_addr_any((struct in6_addr *)ipv6_l4_mask->ip6src)) {
memcpy(&pkt->ip6src, &ipv6_l4_hdr->ip6src,
sizeof(pkt->ip6src));
memcpy(&pmask->ip6src, &ipv6_l4_mask->ip6src,
sizeof(pmask->ip6src));
req->features |= BIT_ULL(NPC_SIP_IPV6);
}
if (!ipv6_addr_any((struct in6_addr *)ipv6_l4_mask->ip6dst)) {
memcpy(&pkt->ip6dst, &ipv6_l4_hdr->ip6dst,
sizeof(pkt->ip6dst));
memcpy(&pmask->ip6dst, &ipv6_l4_mask->ip6dst,
sizeof(pmask->ip6dst));
req->features |= BIT_ULL(NPC_DIP_IPV6);
}
if (ipv6_l4_mask->psrc) {
memcpy(&pkt->sport, &ipv6_l4_hdr->psrc,
sizeof(pkt->sport));
memcpy(&pmask->sport, &ipv6_l4_mask->psrc,
sizeof(pmask->sport));
if (flow_type == UDP_V6_FLOW)
req->features |= BIT_ULL(NPC_SPORT_UDP);
else if (flow_type == TCP_V6_FLOW)
req->features |= BIT_ULL(NPC_SPORT_TCP);
else
req->features |= BIT_ULL(NPC_SPORT_SCTP);
}
if (ipv6_l4_mask->pdst) {
memcpy(&pkt->dport, &ipv6_l4_hdr->pdst,
sizeof(pkt->dport));
memcpy(&pmask->dport, &ipv6_l4_mask->pdst,
sizeof(pmask->dport));
if (flow_type == UDP_V6_FLOW)
req->features |= BIT_ULL(NPC_DPORT_UDP);
else if (flow_type == TCP_V6_FLOW)
req->features |= BIT_ULL(NPC_DPORT_TCP);
else
req->features |= BIT_ULL(NPC_DPORT_SCTP);
}
if (flow_type == UDP_V6_FLOW)
req->features |= BIT_ULL(NPC_IPPROTO_UDP);
else if (flow_type == TCP_V6_FLOW)
req->features |= BIT_ULL(NPC_IPPROTO_TCP);
else
req->features |= BIT_ULL(NPC_IPPROTO_SCTP);
break;
case AH_V6_FLOW:
case ESP_V6_FLOW:
pkt->etype = cpu_to_be16(ETH_P_IPV6);
pmask->etype = cpu_to_be16(0xFFFF);
req->features |= BIT_ULL(NPC_ETYPE);
if (!ipv6_addr_any((struct in6_addr *)ah_esp_hdr->ip6src)) {
memcpy(&pkt->ip6src, &ah_esp_hdr->ip6src,
sizeof(pkt->ip6src));
memcpy(&pmask->ip6src, &ah_esp_mask->ip6src,
sizeof(pmask->ip6src));
req->features |= BIT_ULL(NPC_SIP_IPV6);
}
if (!ipv6_addr_any((struct in6_addr *)ah_esp_hdr->ip6dst)) {
memcpy(&pkt->ip6dst, &ah_esp_hdr->ip6dst,
sizeof(pkt->ip6dst));
memcpy(&pmask->ip6dst, &ah_esp_mask->ip6dst,
sizeof(pmask->ip6dst));
req->features |= BIT_ULL(NPC_DIP_IPV6);
}
/* NPC profile doesn't extract AH/ESP header fields */
if ((ah_esp_mask->spi & ah_esp_hdr->spi) ||
(ah_esp_mask->tclass & ah_esp_hdr->tclass))
return -EOPNOTSUPP;
if (flow_type == AH_V6_FLOW)
req->features |= BIT_ULL(NPC_IPPROTO_AH);
else
req->features |= BIT_ULL(NPC_IPPROTO_ESP);
break;
default:
break;
}
return 0;
}
static int otx2_prepare_flow_request(struct ethtool_rx_flow_spec *fsp,
struct npc_install_flow_req *req)
{
struct ethhdr *eth_mask = &fsp->m_u.ether_spec;
struct ethhdr *eth_hdr = &fsp->h_u.ether_spec;
struct flow_msg *pmask = &req->mask;
struct flow_msg *pkt = &req->packet;
u32 flow_type;
int ret;
flow_type = fsp->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS);
switch (flow_type) {
/* bits not set in mask are don't care */
case ETHER_FLOW:
if (!is_zero_ether_addr(eth_mask->h_source)) {
ether_addr_copy(pkt->smac, eth_hdr->h_source);
ether_addr_copy(pmask->smac, eth_mask->h_source);
req->features |= BIT_ULL(NPC_SMAC);
}
if (!is_zero_ether_addr(eth_mask->h_dest)) {
ether_addr_copy(pkt->dmac, eth_hdr->h_dest);
ether_addr_copy(pmask->dmac, eth_mask->h_dest);
req->features |= BIT_ULL(NPC_DMAC);
}
if (eth_hdr->h_proto) {
memcpy(&pkt->etype, &eth_hdr->h_proto,
sizeof(pkt->etype));
memcpy(&pmask->etype, &eth_mask->h_proto,
sizeof(pmask->etype));
req->features |= BIT_ULL(NPC_ETYPE);
}
break;
case IP_USER_FLOW:
case TCP_V4_FLOW:
case UDP_V4_FLOW:
case SCTP_V4_FLOW:
case AH_V4_FLOW:
case ESP_V4_FLOW:
ret = otx2_prepare_ipv4_flow(fsp, req, flow_type);
if (ret)
return ret;
break;
case IPV6_USER_FLOW:
case TCP_V6_FLOW:
case UDP_V6_FLOW:
case SCTP_V6_FLOW:
case AH_V6_FLOW:
case ESP_V6_FLOW:
ret = otx2_prepare_ipv6_flow(fsp, req, flow_type);
if (ret)
return ret;
break;
default:
return -EOPNOTSUPP;
}
if (fsp->flow_type & FLOW_EXT) {
u16 vlan_etype;
if (fsp->m_ext.vlan_etype) {
/* Partial masks not supported */
if (be16_to_cpu(fsp->m_ext.vlan_etype) != 0xFFFF)
return -EINVAL;
vlan_etype = be16_to_cpu(fsp->h_ext.vlan_etype);
/* Only ETH_P_8021Q and ETH_P_802AD types supported */
if (vlan_etype != ETH_P_8021Q &&
vlan_etype != ETH_P_8021AD)
return -EINVAL;
memcpy(&pkt->vlan_etype, &fsp->h_ext.vlan_etype,
sizeof(pkt->vlan_etype));
memcpy(&pmask->vlan_etype, &fsp->m_ext.vlan_etype,
sizeof(pmask->vlan_etype));
if (vlan_etype == ETH_P_8021Q)
req->features |= BIT_ULL(NPC_VLAN_ETYPE_CTAG);
else
req->features |= BIT_ULL(NPC_VLAN_ETYPE_STAG);
}
if (fsp->m_ext.vlan_tci) {
memcpy(&pkt->vlan_tci, &fsp->h_ext.vlan_tci,
sizeof(pkt->vlan_tci));
memcpy(&pmask->vlan_tci, &fsp->m_ext.vlan_tci,
sizeof(pmask->vlan_tci));
req->features |= BIT_ULL(NPC_OUTER_VID);
}
if (fsp->m_ext.data[1]) {
if (flow_type == IP_USER_FLOW) {
if (be32_to_cpu(fsp->h_ext.data[1]) != IPV4_FLAG_MORE)
return -EINVAL;
pkt->ip_flag = be32_to_cpu(fsp->h_ext.data[1]);
pmask->ip_flag = be32_to_cpu(fsp->m_ext.data[1]);
req->features |= BIT_ULL(NPC_IPFRAG_IPV4);
} else if (fsp->h_ext.data[1] ==
cpu_to_be32(OTX2_DEFAULT_ACTION)) {
/* Not Drop/Direct to queue but use action
* in default entry
*/
req->op = NIX_RX_ACTION_DEFAULT;
}
}
}
if (fsp->flow_type & FLOW_MAC_EXT &&
!is_zero_ether_addr(fsp->m_ext.h_dest)) {
ether_addr_copy(pkt->dmac, fsp->h_ext.h_dest);
ether_addr_copy(pmask->dmac, fsp->m_ext.h_dest);
req->features |= BIT_ULL(NPC_DMAC);
}
if (!req->features)
return -EOPNOTSUPP;
return 0;
}
static int otx2_is_flow_rule_dmacfilter(struct otx2_nic *pfvf,
struct ethtool_rx_flow_spec *fsp)
{
struct ethhdr *eth_mask = &fsp->m_u.ether_spec;
struct ethhdr *eth_hdr = &fsp->h_u.ether_spec;
u64 ring_cookie = fsp->ring_cookie;
u32 flow_type;
if (!(pfvf->flags & OTX2_FLAG_DMACFLTR_SUPPORT))
return false;
flow_type = fsp->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS);
/* CGX/RPM block dmac filtering configured for white listing
* check for action other than DROP
*/
if (flow_type == ETHER_FLOW && ring_cookie != RX_CLS_FLOW_DISC &&
!ethtool_get_flow_spec_ring_vf(ring_cookie)) {
if (is_zero_ether_addr(eth_mask->h_dest) &&
is_valid_ether_addr(eth_hdr->h_dest))
return true;
}
return false;
}
static int otx2_add_flow_msg(struct otx2_nic *pfvf, struct otx2_flow *flow)
{
u64 ring_cookie = flow->flow_spec.ring_cookie;
#ifdef CONFIG_DCB
int vlan_prio, qidx, pfc_rule = 0;
#endif
struct npc_install_flow_req *req;
int err, vf = 0;
mutex_lock(&pfvf->mbox.lock);
req = otx2_mbox_alloc_msg_npc_install_flow(&pfvf->mbox);
if (!req) {
mutex_unlock(&pfvf->mbox.lock);
return -ENOMEM;
}
err = otx2_prepare_flow_request(&flow->flow_spec, req);
if (err) {
/* free the allocated msg above */
otx2_mbox_reset(&pfvf->mbox.mbox, 0);
mutex_unlock(&pfvf->mbox.lock);
return err;
}
req->entry = flow->entry;
req->intf = NIX_INTF_RX;
req->set_cntr = 1;
req->channel = pfvf->hw.rx_chan_base;
if (ring_cookie == RX_CLS_FLOW_DISC) {
req->op = NIX_RX_ACTIONOP_DROP;
} else {
/* change to unicast only if action of default entry is not
* requested by user
*/
if (flow->flow_spec.flow_type & FLOW_RSS) {
req->op = NIX_RX_ACTIONOP_RSS;
req->index = flow->rss_ctx_id;
req->flow_key_alg = pfvf->hw.flowkey_alg_idx;
} else {
req->op = NIX_RX_ACTIONOP_UCAST;
req->index = ethtool_get_flow_spec_ring(ring_cookie);
}
vf = ethtool_get_flow_spec_ring_vf(ring_cookie);
if (vf > pci_num_vf(pfvf->pdev)) {
mutex_unlock(&pfvf->mbox.lock);
return -EINVAL;
}
#ifdef CONFIG_DCB
/* Identify PFC rule if PFC enabled and ntuple rule is vlan */
if (!vf && (req->features & BIT_ULL(NPC_OUTER_VID)) &&
pfvf->pfc_en && req->op != NIX_RX_ACTIONOP_RSS) {
vlan_prio = ntohs(req->packet.vlan_tci) &
ntohs(req->mask.vlan_tci);
/* Get the priority */
vlan_prio >>= 13;
flow->rule_type |= PFC_FLOWCTRL_RULE;
/* Check if PFC enabled for this priority */
if (pfvf->pfc_en & BIT(vlan_prio)) {
pfc_rule = true;
qidx = req->index;
}
}
#endif
}
/* ethtool ring_cookie has (VF + 1) for VF */
if (vf) {
req->vf = vf;
flow->is_vf = true;
flow->vf = vf;
}
/* Send message to AF */
err = otx2_sync_mbox_msg(&pfvf->mbox);
#ifdef CONFIG_DCB
if (!err && pfc_rule)
otx2_update_bpid_in_rqctx(pfvf, vlan_prio, qidx, true);
#endif
mutex_unlock(&pfvf->mbox.lock);
return err;
}
static int otx2_add_flow_with_pfmac(struct otx2_nic *pfvf,
struct otx2_flow *flow)
{
struct otx2_flow *pf_mac;
struct ethhdr *eth_hdr;
pf_mac = kzalloc(sizeof(*pf_mac), GFP_KERNEL);
if (!pf_mac)
return -ENOMEM;
pf_mac->entry = 0;
pf_mac->rule_type |= DMAC_FILTER_RULE;
pf_mac->location = pfvf->flow_cfg->max_flows;
memcpy(&pf_mac->flow_spec, &flow->flow_spec,
sizeof(struct ethtool_rx_flow_spec));
pf_mac->flow_spec.location = pf_mac->location;
/* Copy PF mac address */
eth_hdr = &pf_mac->flow_spec.h_u.ether_spec;
ether_addr_copy(eth_hdr->h_dest, pfvf->netdev->dev_addr);
/* Install DMAC filter with PF mac address */
otx2_dmacflt_add(pfvf, eth_hdr->h_dest, 0);
otx2_add_flow_to_list(pfvf, pf_mac);
pfvf->flow_cfg->nr_flows++;
set_bit(0, pfvf->flow_cfg->dmacflt_bmap);
return 0;
}
int otx2_add_flow(struct otx2_nic *pfvf, struct ethtool_rxnfc *nfc)
{
struct otx2_flow_config *flow_cfg = pfvf->flow_cfg;
struct ethtool_rx_flow_spec *fsp = &nfc->fs;
struct otx2_flow *flow;
struct ethhdr *eth_hdr;
bool new = false;
int err = 0;
u32 ring;
if (!flow_cfg->max_flows) {
netdev_err(pfvf->netdev,
"Ntuple rule count is 0, allocate and retry\n");
return -EINVAL;
}
ring = ethtool_get_flow_spec_ring(fsp->ring_cookie);
if (!(pfvf->flags & OTX2_FLAG_NTUPLE_SUPPORT))
return -ENOMEM;
if (ring >= pfvf->hw.rx_queues && fsp->ring_cookie != RX_CLS_FLOW_DISC)
return -EINVAL;
if (fsp->location >= otx2_get_maxflows(flow_cfg))
return -EINVAL;
flow = otx2_find_flow(pfvf, fsp->location);
if (!flow) {
flow = kzalloc(sizeof(*flow), GFP_KERNEL);
if (!flow)
return -ENOMEM;
flow->location = fsp->location;
flow->entry = flow_cfg->flow_ent[flow->location];
new = true;
}
/* struct copy */
flow->flow_spec = *fsp;
if (fsp->flow_type & FLOW_RSS)
flow->rss_ctx_id = nfc->rss_context;
if (otx2_is_flow_rule_dmacfilter(pfvf, &flow->flow_spec)) {
eth_hdr = &flow->flow_spec.h_u.ether_spec;
/* Sync dmac filter table with updated fields */
if (flow->rule_type & DMAC_FILTER_RULE)
return otx2_dmacflt_update(pfvf, eth_hdr->h_dest,
flow->entry);
if (bitmap_full(flow_cfg->dmacflt_bmap,
flow_cfg->dmacflt_max_flows)) {
netdev_warn(pfvf->netdev,
"Can't insert the rule %d as max allowed dmac filters are %d\n",
flow->location +
flow_cfg->dmacflt_max_flows,
flow_cfg->dmacflt_max_flows);
err = -EINVAL;
if (new)
kfree(flow);
return err;
}
/* Install PF mac address to DMAC filter list */
if (!test_bit(0, flow_cfg->dmacflt_bmap))
otx2_add_flow_with_pfmac(pfvf, flow);
flow->rule_type |= DMAC_FILTER_RULE;
flow->entry = find_first_zero_bit(flow_cfg->dmacflt_bmap,
flow_cfg->dmacflt_max_flows);
fsp->location = flow_cfg->max_flows + flow->entry;
flow->flow_spec.location = fsp->location;
flow->location = fsp->location;
set_bit(flow->entry, flow_cfg->dmacflt_bmap);
otx2_dmacflt_add(pfvf, eth_hdr->h_dest, flow->entry);
} else {
if (flow->location >= pfvf->flow_cfg->max_flows) {
netdev_warn(pfvf->netdev,
"Can't insert non dmac ntuple rule at %d, allowed range %d-0\n",
flow->location,
flow_cfg->max_flows - 1);
err = -EINVAL;
} else {
err = otx2_add_flow_msg(pfvf, flow);
}
}
if (err) {
if (err == MBOX_MSG_INVALID)
err = -EINVAL;
if (new)
kfree(flow);
return err;
}
/* add the new flow installed to list */
if (new) {
otx2_add_flow_to_list(pfvf, flow);
flow_cfg->nr_flows++;
}
return 0;
}
static int otx2_remove_flow_msg(struct otx2_nic *pfvf, u16 entry, bool all)
{
struct npc_delete_flow_req *req;
int err;
mutex_lock(&pfvf->mbox.lock);
req = otx2_mbox_alloc_msg_npc_delete_flow(&pfvf->mbox);
if (!req) {
mutex_unlock(&pfvf->mbox.lock);
return -ENOMEM;
}
req->entry = entry;
if (all)
req->all = 1;
/* Send message to AF */
err = otx2_sync_mbox_msg(&pfvf->mbox);
mutex_unlock(&pfvf->mbox.lock);
return err;
}
static void otx2_update_rem_pfmac(struct otx2_nic *pfvf, int req)
{
struct otx2_flow *iter;
struct ethhdr *eth_hdr;
bool found = false;
list_for_each_entry(iter, &pfvf->flow_cfg->flow_list, list) {
if ((iter->rule_type & DMAC_FILTER_RULE) && iter->entry == 0) {
eth_hdr = &iter->flow_spec.h_u.ether_spec;
if (req == DMAC_ADDR_DEL) {
otx2_dmacflt_remove(pfvf, eth_hdr->h_dest,
0);
clear_bit(0, pfvf->flow_cfg->dmacflt_bmap);
found = true;
} else {
ether_addr_copy(eth_hdr->h_dest,
pfvf->netdev->dev_addr);
otx2_dmacflt_update(pfvf, eth_hdr->h_dest, 0);
}
break;
}
}
if (found) {
list_del(&iter->list);
kfree(iter);
pfvf->flow_cfg->nr_flows--;
}
}
int otx2_remove_flow(struct otx2_nic *pfvf, u32 location)
{
struct otx2_flow_config *flow_cfg = pfvf->flow_cfg;
struct otx2_flow *flow;
int err;
if (location >= otx2_get_maxflows(flow_cfg))
return -EINVAL;
flow = otx2_find_flow(pfvf, location);
if (!flow)
return -ENOENT;
if (flow->rule_type & DMAC_FILTER_RULE) {
struct ethhdr *eth_hdr = &flow->flow_spec.h_u.ether_spec;
/* user not allowed to remove dmac filter with interface mac */
if (ether_addr_equal(pfvf->netdev->dev_addr, eth_hdr->h_dest))
return -EPERM;
err = otx2_dmacflt_remove(pfvf, eth_hdr->h_dest,
flow->entry);
clear_bit(flow->entry, flow_cfg->dmacflt_bmap);
/* If all dmac filters are removed delete macfilter with
* interface mac address and configure CGX/RPM block in
* promiscuous mode
*/
if (bitmap_weight(flow_cfg->dmacflt_bmap,
flow_cfg->dmacflt_max_flows) == 1)
otx2_update_rem_pfmac(pfvf, DMAC_ADDR_DEL);
} else {
#ifdef CONFIG_DCB
if (flow->rule_type & PFC_FLOWCTRL_RULE)
otx2_update_bpid_in_rqctx(pfvf, 0,
flow->flow_spec.ring_cookie,
false);
#endif
err = otx2_remove_flow_msg(pfvf, flow->entry, false);
}
if (err)
return err;
list_del(&flow->list);
kfree(flow);
flow_cfg->nr_flows--;
return 0;
}
void otx2_rss_ctx_flow_del(struct otx2_nic *pfvf, int ctx_id)
{
struct otx2_flow *flow, *tmp;
int err;
list_for_each_entry_safe(flow, tmp, &pfvf->flow_cfg->flow_list, list) {
if (flow->rss_ctx_id != ctx_id)
continue;
err = otx2_remove_flow(pfvf, flow->location);
if (err)
netdev_warn(pfvf->netdev,
"Can't delete the rule %d associated with this rss group err:%d",
flow->location, err);
}
}
int otx2_destroy_ntuple_flows(struct otx2_nic *pfvf)
{
struct otx2_flow_config *flow_cfg = pfvf->flow_cfg;
struct npc_delete_flow_req *req;
struct otx2_flow *iter, *tmp;
int err;
if (!(pfvf->flags & OTX2_FLAG_NTUPLE_SUPPORT))
return 0;
if (!flow_cfg->max_flows)
return 0;
mutex_lock(&pfvf->mbox.lock);
req = otx2_mbox_alloc_msg_npc_delete_flow(&pfvf->mbox);
if (!req) {
mutex_unlock(&pfvf->mbox.lock);
return -ENOMEM;
}
req->start = flow_cfg->flow_ent[0];
req->end = flow_cfg->flow_ent[flow_cfg->max_flows - 1];
err = otx2_sync_mbox_msg(&pfvf->mbox);
mutex_unlock(&pfvf->mbox.lock);
list_for_each_entry_safe(iter, tmp, &flow_cfg->flow_list, list) {
list_del(&iter->list);
kfree(iter);
flow_cfg->nr_flows--;
}
return err;
}
int otx2_destroy_mcam_flows(struct otx2_nic *pfvf)
{
struct otx2_flow_config *flow_cfg = pfvf->flow_cfg;
struct npc_mcam_free_entry_req *req;
struct otx2_flow *iter, *tmp;
int err;
if (!(pfvf->flags & OTX2_FLAG_MCAM_ENTRIES_ALLOC))
return 0;
/* remove all flows */
err = otx2_remove_flow_msg(pfvf, 0, true);
if (err)
return err;
list_for_each_entry_safe(iter, tmp, &flow_cfg->flow_list, list) {
list_del(&iter->list);
kfree(iter);
flow_cfg->nr_flows--;
}
mutex_lock(&pfvf->mbox.lock);
req = otx2_mbox_alloc_msg_npc_mcam_free_entry(&pfvf->mbox);
if (!req) {
mutex_unlock(&pfvf->mbox.lock);
return -ENOMEM;
}
req->all = 1;
/* Send message to AF to free MCAM entries */
err = otx2_sync_mbox_msg(&pfvf->mbox);
if (err) {
mutex_unlock(&pfvf->mbox.lock);
return err;
}
pfvf->flags &= ~OTX2_FLAG_MCAM_ENTRIES_ALLOC;
mutex_unlock(&pfvf->mbox.lock);
return 0;
}
int otx2_install_rxvlan_offload_flow(struct otx2_nic *pfvf)
{
struct otx2_flow_config *flow_cfg = pfvf->flow_cfg;
struct npc_install_flow_req *req;
int err;
mutex_lock(&pfvf->mbox.lock);
req = otx2_mbox_alloc_msg_npc_install_flow(&pfvf->mbox);
if (!req) {
mutex_unlock(&pfvf->mbox.lock);
return -ENOMEM;
}
req->entry = flow_cfg->def_ent[flow_cfg->rx_vlan_offset];
req->intf = NIX_INTF_RX;
ether_addr_copy(req->packet.dmac, pfvf->netdev->dev_addr);
eth_broadcast_addr((u8 *)&req->mask.dmac);
req->channel = pfvf->hw.rx_chan_base;
req->op = NIX_RX_ACTION_DEFAULT;
req->features = BIT_ULL(NPC_OUTER_VID) | BIT_ULL(NPC_DMAC);
req->vtag0_valid = true;
req->vtag0_type = NIX_AF_LFX_RX_VTAG_TYPE0;
/* Send message to AF */
err = otx2_sync_mbox_msg(&pfvf->mbox);
mutex_unlock(&pfvf->mbox.lock);
return err;
}
static int otx2_delete_rxvlan_offload_flow(struct otx2_nic *pfvf)
{
struct otx2_flow_config *flow_cfg = pfvf->flow_cfg;
struct npc_delete_flow_req *req;
int err;
mutex_lock(&pfvf->mbox.lock);
req = otx2_mbox_alloc_msg_npc_delete_flow(&pfvf->mbox);
if (!req) {
mutex_unlock(&pfvf->mbox.lock);
return -ENOMEM;
}
req->entry = flow_cfg->def_ent[flow_cfg->rx_vlan_offset];
/* Send message to AF */
err = otx2_sync_mbox_msg(&pfvf->mbox);
mutex_unlock(&pfvf->mbox.lock);
return err;
}
int otx2_enable_rxvlan(struct otx2_nic *pf, bool enable)
{
struct nix_vtag_config *req;
struct mbox_msghdr *rsp_hdr;
int err;
/* Dont have enough mcam entries */
if (!(pf->flags & OTX2_FLAG_RX_VLAN_SUPPORT))
return -ENOMEM;
if (enable) {
err = otx2_install_rxvlan_offload_flow(pf);
if (err)
return err;
} else {
err = otx2_delete_rxvlan_offload_flow(pf);
if (err)
return err;
}
mutex_lock(&pf->mbox.lock);
req = otx2_mbox_alloc_msg_nix_vtag_cfg(&pf->mbox);
if (!req) {
mutex_unlock(&pf->mbox.lock);
return -ENOMEM;
}
/* config strip, capture and size */
req->vtag_size = VTAGSIZE_T4;
req->cfg_type = 1; /* rx vlan cfg */
req->rx.vtag_type = NIX_AF_LFX_RX_VTAG_TYPE0;
req->rx.strip_vtag = enable;
req->rx.capture_vtag = enable;
err = otx2_sync_mbox_msg(&pf->mbox);
if (err) {
mutex_unlock(&pf->mbox.lock);
return err;
}
rsp_hdr = otx2_mbox_get_rsp(&pf->mbox.mbox, 0, &req->hdr);
if (IS_ERR(rsp_hdr)) {
mutex_unlock(&pf->mbox.lock);
return PTR_ERR(rsp_hdr);
}
mutex_unlock(&pf->mbox.lock);
return rsp_hdr->rc;
}
void otx2_dmacflt_reinstall_flows(struct otx2_nic *pf)
{
struct otx2_flow *iter;
struct ethhdr *eth_hdr;
list_for_each_entry(iter, &pf->flow_cfg->flow_list, list) {
if (iter->rule_type & DMAC_FILTER_RULE) {
eth_hdr = &iter->flow_spec.h_u.ether_spec;
otx2_dmacflt_add(pf, eth_hdr->h_dest,
iter->entry);
}
}
}
void otx2_dmacflt_update_pfmac_flow(struct otx2_nic *pfvf)
{
otx2_update_rem_pfmac(pfvf, DMAC_ADDR_UPDATE);
}