linux-zen-server/drivers/net/ethernet/smsc/smc91x.c

2493 lines
64 KiB
C
Raw Permalink Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* smc91x.c
* This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
*
* Copyright (C) 1996 by Erik Stahlman
* Copyright (C) 2001 Standard Microsystems Corporation
* Developed by Simple Network Magic Corporation
* Copyright (C) 2003 Monta Vista Software, Inc.
* Unified SMC91x driver by Nicolas Pitre
*
* Arguments:
* io = for the base address
* irq = for the IRQ
* nowait = 0 for normal wait states, 1 eliminates additional wait states
*
* original author:
* Erik Stahlman <erik@vt.edu>
*
* hardware multicast code:
* Peter Cammaert <pc@denkart.be>
*
* contributors:
* Daris A Nevil <dnevil@snmc.com>
* Nicolas Pitre <nico@fluxnic.net>
* Russell King <rmk@arm.linux.org.uk>
*
* History:
* 08/20/00 Arnaldo Melo fix kfree(skb) in smc_hardware_send_packet
* 12/15/00 Christian Jullien fix "Warning: kfree_skb on hard IRQ"
* 03/16/01 Daris A Nevil modified smc9194.c for use with LAN91C111
* 08/22/01 Scott Anderson merge changes from smc9194 to smc91111
* 08/21/01 Pramod B Bhardwaj added support for RevB of LAN91C111
* 12/20/01 Jeff Sutherland initial port to Xscale PXA with DMA support
* 04/07/03 Nicolas Pitre unified SMC91x driver, killed irq races,
* more bus abstraction, big cleanup, etc.
* 29/09/03 Russell King - add driver model support
* - ethtool support
* - convert to use generic MII interface
* - add link up/down notification
* - don't try to handle full negotiation in
* smc_phy_configure
* - clean up (and fix stack overrun) in PHY
* MII read/write functions
* 22/09/04 Nicolas Pitre big update (see commit log for details)
*/
static const char version[] =
"smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>";
/* Debugging level */
#ifndef SMC_DEBUG
#define SMC_DEBUG 0
#endif
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/crc32.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/workqueue.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <asm/io.h>
#include "smc91x.h"
#if defined(CONFIG_ASSABET_NEPONSET)
#include <mach/assabet.h>
#include <mach/neponset.h>
#endif
#ifndef SMC_NOWAIT
# define SMC_NOWAIT 0
#endif
static int nowait = SMC_NOWAIT;
module_param(nowait, int, 0400);
MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
/*
* Transmit timeout, default 5 seconds.
*/
static int watchdog = 1000;
module_param(watchdog, int, 0400);
MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:smc91x");
/*
* The internal workings of the driver. If you are changing anything
* here with the SMC stuff, you should have the datasheet and know
* what you are doing.
*/
#define CARDNAME "smc91x"
/*
* Use power-down feature of the chip
*/
#define POWER_DOWN 1
/*
* Wait time for memory to be free. This probably shouldn't be
* tuned that much, as waiting for this means nothing else happens
* in the system
*/
#define MEMORY_WAIT_TIME 16
/*
* The maximum number of processing loops allowed for each call to the
* IRQ handler.
*/
#define MAX_IRQ_LOOPS 8
/*
* This selects whether TX packets are sent one by one to the SMC91x internal
* memory and throttled until transmission completes. This may prevent
* RX overruns a litle by keeping much of the memory free for RX packets
* but to the expense of reduced TX throughput and increased IRQ overhead.
* Note this is not a cure for a too slow data bus or too high IRQ latency.
*/
#define THROTTLE_TX_PKTS 0
/*
* The MII clock high/low times. 2x this number gives the MII clock period
* in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
*/
#define MII_DELAY 1
#define DBG(n, dev, fmt, ...) \
do { \
if (SMC_DEBUG >= (n)) \
netdev_dbg(dev, fmt, ##__VA_ARGS__); \
} while (0)
#define PRINTK(dev, fmt, ...) \
do { \
if (SMC_DEBUG > 0) \
netdev_info(dev, fmt, ##__VA_ARGS__); \
else \
netdev_dbg(dev, fmt, ##__VA_ARGS__); \
} while (0)
#if SMC_DEBUG > 3
static void PRINT_PKT(u_char *buf, int length)
{
int i;
int remainder;
int lines;
lines = length / 16;
remainder = length % 16;
for (i = 0; i < lines ; i ++) {
int cur;
printk(KERN_DEBUG);
for (cur = 0; cur < 8; cur++) {
u_char a, b;
a = *buf++;
b = *buf++;
pr_cont("%02x%02x ", a, b);
}
pr_cont("\n");
}
printk(KERN_DEBUG);
for (i = 0; i < remainder/2 ; i++) {
u_char a, b;
a = *buf++;
b = *buf++;
pr_cont("%02x%02x ", a, b);
}
pr_cont("\n");
}
#else
static inline void PRINT_PKT(u_char *buf, int length) { }
#endif
/* this enables an interrupt in the interrupt mask register */
#define SMC_ENABLE_INT(lp, x) do { \
unsigned char mask; \
unsigned long smc_enable_flags; \
spin_lock_irqsave(&lp->lock, smc_enable_flags); \
mask = SMC_GET_INT_MASK(lp); \
mask |= (x); \
SMC_SET_INT_MASK(lp, mask); \
spin_unlock_irqrestore(&lp->lock, smc_enable_flags); \
} while (0)
/* this disables an interrupt from the interrupt mask register */
#define SMC_DISABLE_INT(lp, x) do { \
unsigned char mask; \
unsigned long smc_disable_flags; \
spin_lock_irqsave(&lp->lock, smc_disable_flags); \
mask = SMC_GET_INT_MASK(lp); \
mask &= ~(x); \
SMC_SET_INT_MASK(lp, mask); \
spin_unlock_irqrestore(&lp->lock, smc_disable_flags); \
} while (0)
/*
* Wait while MMU is busy. This is usually in the order of a few nanosecs
* if at all, but let's avoid deadlocking the system if the hardware
* decides to go south.
*/
#define SMC_WAIT_MMU_BUSY(lp) do { \
if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) { \
unsigned long timeout = jiffies + 2; \
while (SMC_GET_MMU_CMD(lp) & MC_BUSY) { \
if (time_after(jiffies, timeout)) { \
netdev_dbg(dev, "timeout %s line %d\n", \
__FILE__, __LINE__); \
break; \
} \
cpu_relax(); \
} \
} \
} while (0)
/*
* this does a soft reset on the device
*/
static void smc_reset(struct net_device *dev)
{
struct smc_local *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
unsigned int ctl, cfg;
struct sk_buff *pending_skb;
DBG(2, dev, "%s\n", __func__);
/* Disable all interrupts, block TX tasklet */
spin_lock_irq(&lp->lock);
SMC_SELECT_BANK(lp, 2);
SMC_SET_INT_MASK(lp, 0);
pending_skb = lp->pending_tx_skb;
lp->pending_tx_skb = NULL;
spin_unlock_irq(&lp->lock);
/* free any pending tx skb */
if (pending_skb) {
dev_kfree_skb(pending_skb);
dev->stats.tx_errors++;
dev->stats.tx_aborted_errors++;
}
/*
* This resets the registers mostly to defaults, but doesn't
* affect EEPROM. That seems unnecessary
*/
SMC_SELECT_BANK(lp, 0);
SMC_SET_RCR(lp, RCR_SOFTRST);
/*
* Setup the Configuration Register
* This is necessary because the CONFIG_REG is not affected
* by a soft reset
*/
SMC_SELECT_BANK(lp, 1);
cfg = CONFIG_DEFAULT;
/*
* Setup for fast accesses if requested. If the card/system
* can't handle it then there will be no recovery except for
* a hard reset or power cycle
*/
if (lp->cfg.flags & SMC91X_NOWAIT)
cfg |= CONFIG_NO_WAIT;
/*
* Release from possible power-down state
* Configuration register is not affected by Soft Reset
*/
cfg |= CONFIG_EPH_POWER_EN;
SMC_SET_CONFIG(lp, cfg);
/* this should pause enough for the chip to be happy */
/*
* elaborate? What does the chip _need_? --jgarzik
*
* This seems to be undocumented, but something the original
* driver(s) have always done. Suspect undocumented timing
* info/determined empirically. --rmk
*/
udelay(1);
/* Disable transmit and receive functionality */
SMC_SELECT_BANK(lp, 0);
SMC_SET_RCR(lp, RCR_CLEAR);
SMC_SET_TCR(lp, TCR_CLEAR);
SMC_SELECT_BANK(lp, 1);
ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
/*
* Set the control register to automatically release successfully
* transmitted packets, to make the best use out of our limited
* memory
*/
if(!THROTTLE_TX_PKTS)
ctl |= CTL_AUTO_RELEASE;
else
ctl &= ~CTL_AUTO_RELEASE;
SMC_SET_CTL(lp, ctl);
/* Reset the MMU */
SMC_SELECT_BANK(lp, 2);
SMC_SET_MMU_CMD(lp, MC_RESET);
SMC_WAIT_MMU_BUSY(lp);
}
/*
* Enable Interrupts, Receive, and Transmit
*/
static void smc_enable(struct net_device *dev)
{
struct smc_local *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
int mask;
DBG(2, dev, "%s\n", __func__);
/* see the header file for options in TCR/RCR DEFAULT */
SMC_SELECT_BANK(lp, 0);
SMC_SET_TCR(lp, lp->tcr_cur_mode);
SMC_SET_RCR(lp, lp->rcr_cur_mode);
SMC_SELECT_BANK(lp, 1);
SMC_SET_MAC_ADDR(lp, dev->dev_addr);
/* now, enable interrupts */
mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
if (lp->version >= (CHIP_91100 << 4))
mask |= IM_MDINT;
SMC_SELECT_BANK(lp, 2);
SMC_SET_INT_MASK(lp, mask);
/*
* From this point the register bank must _NOT_ be switched away
* to something else than bank 2 without proper locking against
* races with any tasklet or interrupt handlers until smc_shutdown()
* or smc_reset() is called.
*/
}
/*
* this puts the device in an inactive state
*/
static void smc_shutdown(struct net_device *dev)
{
struct smc_local *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
struct sk_buff *pending_skb;
DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
/* no more interrupts for me */
spin_lock_irq(&lp->lock);
SMC_SELECT_BANK(lp, 2);
SMC_SET_INT_MASK(lp, 0);
pending_skb = lp->pending_tx_skb;
lp->pending_tx_skb = NULL;
spin_unlock_irq(&lp->lock);
dev_kfree_skb(pending_skb);
/* and tell the card to stay away from that nasty outside world */
SMC_SELECT_BANK(lp, 0);
SMC_SET_RCR(lp, RCR_CLEAR);
SMC_SET_TCR(lp, TCR_CLEAR);
#ifdef POWER_DOWN
/* finally, shut the chip down */
SMC_SELECT_BANK(lp, 1);
SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
#endif
}
/*
* This is the procedure to handle the receipt of a packet.
*/
static inline void smc_rcv(struct net_device *dev)
{
struct smc_local *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
unsigned int packet_number, status, packet_len;
DBG(3, dev, "%s\n", __func__);
packet_number = SMC_GET_RXFIFO(lp);
if (unlikely(packet_number & RXFIFO_REMPTY)) {
PRINTK(dev, "smc_rcv with nothing on FIFO.\n");
return;
}
/* read from start of packet */
SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
/* First two words are status and packet length */
SMC_GET_PKT_HDR(lp, status, packet_len);
packet_len &= 0x07ff; /* mask off top bits */
DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
packet_number, status, packet_len, packet_len);
back:
if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
/* accept VLAN packets */
status &= ~RS_TOOLONG;
goto back;
}
if (packet_len < 6) {
/* bloody hardware */
netdev_err(dev, "fubar (rxlen %u status %x\n",
packet_len, status);
status |= RS_TOOSHORT;
}
SMC_WAIT_MMU_BUSY(lp);
SMC_SET_MMU_CMD(lp, MC_RELEASE);
dev->stats.rx_errors++;
if (status & RS_ALGNERR)
dev->stats.rx_frame_errors++;
if (status & (RS_TOOSHORT | RS_TOOLONG))
dev->stats.rx_length_errors++;
if (status & RS_BADCRC)
dev->stats.rx_crc_errors++;
} else {
struct sk_buff *skb;
unsigned char *data;
unsigned int data_len;
/* set multicast stats */
if (status & RS_MULTICAST)
dev->stats.multicast++;
/*
* Actual payload is packet_len - 6 (or 5 if odd byte).
* We want skb_reserve(2) and the final ctrl word
* (2 bytes, possibly containing the payload odd byte).
* Furthermore, we add 2 bytes to allow rounding up to
* multiple of 4 bytes on 32 bit buses.
* Hence packet_len - 6 + 2 + 2 + 2.
*/
skb = netdev_alloc_skb(dev, packet_len);
if (unlikely(skb == NULL)) {
SMC_WAIT_MMU_BUSY(lp);
SMC_SET_MMU_CMD(lp, MC_RELEASE);
dev->stats.rx_dropped++;
return;
}
/* Align IP header to 32 bits */
skb_reserve(skb, 2);
/* BUG: the LAN91C111 rev A never sets this bit. Force it. */
if (lp->version == 0x90)
status |= RS_ODDFRAME;
/*
* If odd length: packet_len - 5,
* otherwise packet_len - 6.
* With the trailing ctrl byte it's packet_len - 4.
*/
data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
data = skb_put(skb, data_len);
SMC_PULL_DATA(lp, data, packet_len - 4);
SMC_WAIT_MMU_BUSY(lp);
SMC_SET_MMU_CMD(lp, MC_RELEASE);
PRINT_PKT(data, packet_len - 4);
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb);
dev->stats.rx_packets++;
dev->stats.rx_bytes += data_len;
}
}
#ifdef CONFIG_SMP
/*
* On SMP we have the following problem:
*
* A = smc_hardware_send_pkt()
* B = smc_hard_start_xmit()
* C = smc_interrupt()
*
* A and B can never be executed simultaneously. However, at least on UP,
* it is possible (and even desirable) for C to interrupt execution of
* A or B in order to have better RX reliability and avoid overruns.
* C, just like A and B, must have exclusive access to the chip and
* each of them must lock against any other concurrent access.
* Unfortunately this is not possible to have C suspend execution of A or
* B taking place on another CPU. On UP this is no an issue since A and B
* are run from softirq context and C from hard IRQ context, and there is
* no other CPU where concurrent access can happen.
* If ever there is a way to force at least B and C to always be executed
* on the same CPU then we could use read/write locks to protect against
* any other concurrent access and C would always interrupt B. But life
* isn't that easy in a SMP world...
*/
#define smc_special_trylock(lock, flags) \
({ \
int __ret; \
local_irq_save(flags); \
__ret = spin_trylock(lock); \
if (!__ret) \
local_irq_restore(flags); \
__ret; \
})
#define smc_special_lock(lock, flags) spin_lock_irqsave(lock, flags)
#define smc_special_unlock(lock, flags) spin_unlock_irqrestore(lock, flags)
#else
#define smc_special_trylock(lock, flags) ((void)flags, true)
#define smc_special_lock(lock, flags) do { flags = 0; } while (0)
#define smc_special_unlock(lock, flags) do { flags = 0; } while (0)
#endif
/*
* This is called to actually send a packet to the chip.
*/
static void smc_hardware_send_pkt(struct tasklet_struct *t)
{
struct smc_local *lp = from_tasklet(lp, t, tx_task);
struct net_device *dev = lp->dev;
void __iomem *ioaddr = lp->base;
struct sk_buff *skb;
unsigned int packet_no, len;
unsigned char *buf;
unsigned long flags;
DBG(3, dev, "%s\n", __func__);
if (!smc_special_trylock(&lp->lock, flags)) {
netif_stop_queue(dev);
tasklet_schedule(&lp->tx_task);
return;
}
skb = lp->pending_tx_skb;
if (unlikely(!skb)) {
smc_special_unlock(&lp->lock, flags);
return;
}
lp->pending_tx_skb = NULL;
packet_no = SMC_GET_AR(lp);
if (unlikely(packet_no & AR_FAILED)) {
netdev_err(dev, "Memory allocation failed.\n");
dev->stats.tx_errors++;
dev->stats.tx_fifo_errors++;
smc_special_unlock(&lp->lock, flags);
goto done;
}
/* point to the beginning of the packet */
SMC_SET_PN(lp, packet_no);
SMC_SET_PTR(lp, PTR_AUTOINC);
buf = skb->data;
len = skb->len;
DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
packet_no, len, len, buf);
PRINT_PKT(buf, len);
/*
* Send the packet length (+6 for status words, length, and ctl.
* The card will pad to 64 bytes with zeroes if packet is too small.
*/
SMC_PUT_PKT_HDR(lp, 0, len + 6);
/* send the actual data */
SMC_PUSH_DATA(lp, buf, len & ~1);
/* Send final ctl word with the last byte if there is one */
SMC_outw(lp, ((len & 1) ? (0x2000 | buf[len - 1]) : 0), ioaddr,
DATA_REG(lp));
/*
* If THROTTLE_TX_PKTS is set, we stop the queue here. This will
* have the effect of having at most one packet queued for TX
* in the chip's memory at all time.
*
* If THROTTLE_TX_PKTS is not set then the queue is stopped only
* when memory allocation (MC_ALLOC) does not succeed right away.
*/
if (THROTTLE_TX_PKTS)
netif_stop_queue(dev);
/* queue the packet for TX */
SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
smc_special_unlock(&lp->lock, flags);
netif_trans_update(dev);
dev->stats.tx_packets++;
dev->stats.tx_bytes += len;
SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
done: if (!THROTTLE_TX_PKTS)
netif_wake_queue(dev);
dev_consume_skb_any(skb);
}
/*
* Since I am not sure if I will have enough room in the chip's ram
* to store the packet, I call this routine which either sends it
* now, or set the card to generates an interrupt when ready
* for the packet.
*/
static netdev_tx_t
smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct smc_local *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
unsigned int numPages, poll_count, status;
unsigned long flags;
DBG(3, dev, "%s\n", __func__);
BUG_ON(lp->pending_tx_skb != NULL);
/*
* The MMU wants the number of pages to be the number of 256 bytes
* 'pages', minus 1 (since a packet can't ever have 0 pages :))
*
* The 91C111 ignores the size bits, but earlier models don't.
*
* Pkt size for allocating is data length +6 (for additional status
* words, length and ctl)
*
* If odd size then last byte is included in ctl word.
*/
numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
if (unlikely(numPages > 7)) {
netdev_warn(dev, "Far too big packet error.\n");
dev->stats.tx_errors++;
dev->stats.tx_dropped++;
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
smc_special_lock(&lp->lock, flags);
/* now, try to allocate the memory */
SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
/*
* Poll the chip for a short amount of time in case the
* allocation succeeds quickly.
*/
poll_count = MEMORY_WAIT_TIME;
do {
status = SMC_GET_INT(lp);
if (status & IM_ALLOC_INT) {
SMC_ACK_INT(lp, IM_ALLOC_INT);
break;
}
} while (--poll_count);
smc_special_unlock(&lp->lock, flags);
lp->pending_tx_skb = skb;
if (!poll_count) {
/* oh well, wait until the chip finds memory later */
netif_stop_queue(dev);
DBG(2, dev, "TX memory allocation deferred.\n");
SMC_ENABLE_INT(lp, IM_ALLOC_INT);
} else {
/*
* Allocation succeeded: push packet to the chip's own memory
* immediately.
*/
smc_hardware_send_pkt(&lp->tx_task);
}
return NETDEV_TX_OK;
}
/*
* This handles a TX interrupt, which is only called when:
* - a TX error occurred, or
* - CTL_AUTO_RELEASE is not set and TX of a packet completed.
*/
static void smc_tx(struct net_device *dev)
{
struct smc_local *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
unsigned int saved_packet, packet_no, tx_status;
unsigned int pkt_len __always_unused;
DBG(3, dev, "%s\n", __func__);
/* If the TX FIFO is empty then nothing to do */
packet_no = SMC_GET_TXFIFO(lp);
if (unlikely(packet_no & TXFIFO_TEMPTY)) {
PRINTK(dev, "smc_tx with nothing on FIFO.\n");
return;
}
/* select packet to read from */
saved_packet = SMC_GET_PN(lp);
SMC_SET_PN(lp, packet_no);
/* read the first word (status word) from this packet */
SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n",
tx_status, packet_no);
if (!(tx_status & ES_TX_SUC))
dev->stats.tx_errors++;
if (tx_status & ES_LOSTCARR)
dev->stats.tx_carrier_errors++;
if (tx_status & (ES_LATCOL | ES_16COL)) {
PRINTK(dev, "%s occurred on last xmit\n",
(tx_status & ES_LATCOL) ?
"late collision" : "too many collisions");
dev->stats.tx_window_errors++;
if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n");
}
}
/* kill the packet */
SMC_WAIT_MMU_BUSY(lp);
SMC_SET_MMU_CMD(lp, MC_FREEPKT);
/* Don't restore Packet Number Reg until busy bit is cleared */
SMC_WAIT_MMU_BUSY(lp);
SMC_SET_PN(lp, saved_packet);
/* re-enable transmit */
SMC_SELECT_BANK(lp, 0);
SMC_SET_TCR(lp, lp->tcr_cur_mode);
SMC_SELECT_BANK(lp, 2);
}
/*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
{
struct smc_local *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
unsigned int mii_reg, mask;
mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
mii_reg |= MII_MDOE;
for (mask = 1 << (bits - 1); mask; mask >>= 1) {
if (val & mask)
mii_reg |= MII_MDO;
else
mii_reg &= ~MII_MDO;
SMC_SET_MII(lp, mii_reg);
udelay(MII_DELAY);
SMC_SET_MII(lp, mii_reg | MII_MCLK);
udelay(MII_DELAY);
}
}
static unsigned int smc_mii_in(struct net_device *dev, int bits)
{
struct smc_local *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
unsigned int mii_reg, mask, val;
mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
SMC_SET_MII(lp, mii_reg);
for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
if (SMC_GET_MII(lp) & MII_MDI)
val |= mask;
SMC_SET_MII(lp, mii_reg);
udelay(MII_DELAY);
SMC_SET_MII(lp, mii_reg | MII_MCLK);
udelay(MII_DELAY);
}
return val;
}
/*
* Reads a register from the MII Management serial interface
*/
static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
{
struct smc_local *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
unsigned int phydata;
SMC_SELECT_BANK(lp, 3);
/* Idle - 32 ones */
smc_mii_out(dev, 0xffffffff, 32);
/* Start code (01) + read (10) + phyaddr + phyreg */
smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
/* Turnaround (2bits) + phydata */
phydata = smc_mii_in(dev, 18);
/* Return to idle state */
SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
__func__, phyaddr, phyreg, phydata);
SMC_SELECT_BANK(lp, 2);
return phydata;
}
/*
* Writes a register to the MII Management serial interface
*/
static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
int phydata)
{
struct smc_local *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
SMC_SELECT_BANK(lp, 3);
/* Idle - 32 ones */
smc_mii_out(dev, 0xffffffff, 32);
/* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
/* Return to idle state */
SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
__func__, phyaddr, phyreg, phydata);
SMC_SELECT_BANK(lp, 2);
}
/*
* Finds and reports the PHY address
*/
static void smc_phy_detect(struct net_device *dev)
{
struct smc_local *lp = netdev_priv(dev);
int phyaddr;
DBG(2, dev, "%s\n", __func__);
lp->phy_type = 0;
/*
* Scan all 32 PHY addresses if necessary, starting at
* PHY#1 to PHY#31, and then PHY#0 last.
*/
for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
unsigned int id1, id2;
/* Read the PHY identifiers */
id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n",
id1, id2);
/* Make sure it is a valid identifier */
if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
/* Save the PHY's address */
lp->mii.phy_id = phyaddr & 31;
lp->phy_type = id1 << 16 | id2;
break;
}
}
}
/*
* Sets the PHY to a configuration as determined by the user
*/
static int smc_phy_fixed(struct net_device *dev)
{
struct smc_local *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
int phyaddr = lp->mii.phy_id;
int bmcr, cfg1;
DBG(3, dev, "%s\n", __func__);
/* Enter Link Disable state */
cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
cfg1 |= PHY_CFG1_LNKDIS;
smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
/*
* Set our fixed capabilities
* Disable auto-negotiation
*/
bmcr = 0;
if (lp->ctl_rfduplx)
bmcr |= BMCR_FULLDPLX;
if (lp->ctl_rspeed == 100)
bmcr |= BMCR_SPEED100;
/* Write our capabilities to the phy control register */
smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
/* Re-Configure the Receive/Phy Control register */
SMC_SELECT_BANK(lp, 0);
SMC_SET_RPC(lp, lp->rpc_cur_mode);
SMC_SELECT_BANK(lp, 2);
return 1;
}
/**
* smc_phy_reset - reset the phy
* @dev: net device
* @phy: phy address
*
* Issue a software reset for the specified PHY and
* wait up to 100ms for the reset to complete. We should
* not access the PHY for 50ms after issuing the reset.
*
* The time to wait appears to be dependent on the PHY.
*
* Must be called with lp->lock locked.
*/
static int smc_phy_reset(struct net_device *dev, int phy)
{
struct smc_local *lp = netdev_priv(dev);
unsigned int bmcr;
int timeout;
smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
for (timeout = 2; timeout; timeout--) {
spin_unlock_irq(&lp->lock);
msleep(50);
spin_lock_irq(&lp->lock);
bmcr = smc_phy_read(dev, phy, MII_BMCR);
if (!(bmcr & BMCR_RESET))
break;
}
return bmcr & BMCR_RESET;
}
/**
* smc_phy_powerdown - powerdown phy
* @dev: net device
*
* Power down the specified PHY
*/
static void smc_phy_powerdown(struct net_device *dev)
{
struct smc_local *lp = netdev_priv(dev);
unsigned int bmcr;
int phy = lp->mii.phy_id;
if (lp->phy_type == 0)
return;
/* We need to ensure that no calls to smc_phy_configure are
pending.
*/
cancel_work_sync(&lp->phy_configure);
bmcr = smc_phy_read(dev, phy, MII_BMCR);
smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
}
/**
* smc_phy_check_media - check the media status and adjust TCR
* @dev: net device
* @init: set true for initialisation
*
* Select duplex mode depending on negotiation state. This
* also updates our carrier state.
*/
static void smc_phy_check_media(struct net_device *dev, int init)
{
struct smc_local *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
/* duplex state has changed */
if (lp->mii.full_duplex) {
lp->tcr_cur_mode |= TCR_SWFDUP;
} else {
lp->tcr_cur_mode &= ~TCR_SWFDUP;
}
SMC_SELECT_BANK(lp, 0);
SMC_SET_TCR(lp, lp->tcr_cur_mode);
}
}
/*
* Configures the specified PHY through the MII management interface
* using Autonegotiation.
* Calls smc_phy_fixed() if the user has requested a certain config.
* If RPC ANEG bit is set, the media selection is dependent purely on
* the selection by the MII (either in the MII BMCR reg or the result
* of autonegotiation.) If the RPC ANEG bit is cleared, the selection
* is controlled by the RPC SPEED and RPC DPLX bits.
*/
static void smc_phy_configure(struct work_struct *work)
{
struct smc_local *lp =
container_of(work, struct smc_local, phy_configure);
struct net_device *dev = lp->dev;
void __iomem *ioaddr = lp->base;
int phyaddr = lp->mii.phy_id;
int my_phy_caps; /* My PHY capabilities */
int my_ad_caps; /* My Advertised capabilities */
DBG(3, dev, "smc_program_phy()\n");
spin_lock_irq(&lp->lock);
/*
* We should not be called if phy_type is zero.
*/
if (lp->phy_type == 0)
goto smc_phy_configure_exit;
if (smc_phy_reset(dev, phyaddr)) {
netdev_info(dev, "PHY reset timed out\n");
goto smc_phy_configure_exit;
}
/*
* Enable PHY Interrupts (for register 18)
* Interrupts listed here are disabled
*/
smc_phy_write(dev, phyaddr, PHY_MASK_REG,
PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
PHY_INT_SPDDET | PHY_INT_DPLXDET);
/* Configure the Receive/Phy Control register */
SMC_SELECT_BANK(lp, 0);
SMC_SET_RPC(lp, lp->rpc_cur_mode);
/* If the user requested no auto neg, then go set his request */
if (lp->mii.force_media) {
smc_phy_fixed(dev);
goto smc_phy_configure_exit;
}
/* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
netdev_info(dev, "Auto negotiation NOT supported\n");
smc_phy_fixed(dev);
goto smc_phy_configure_exit;
}
my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
if (my_phy_caps & BMSR_100BASE4)
my_ad_caps |= ADVERTISE_100BASE4;
if (my_phy_caps & BMSR_100FULL)
my_ad_caps |= ADVERTISE_100FULL;
if (my_phy_caps & BMSR_100HALF)
my_ad_caps |= ADVERTISE_100HALF;
if (my_phy_caps & BMSR_10FULL)
my_ad_caps |= ADVERTISE_10FULL;
if (my_phy_caps & BMSR_10HALF)
my_ad_caps |= ADVERTISE_10HALF;
/* Disable capabilities not selected by our user */
if (lp->ctl_rspeed != 100)
my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
if (!lp->ctl_rfduplx)
my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
/* Update our Auto-Neg Advertisement Register */
smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
lp->mii.advertising = my_ad_caps;
/*
* Read the register back. Without this, it appears that when
* auto-negotiation is restarted, sometimes it isn't ready and
* the link does not come up.
*/
smc_phy_read(dev, phyaddr, MII_ADVERTISE);
DBG(2, dev, "phy caps=%x\n", my_phy_caps);
DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps);
/* Restart auto-negotiation process in order to advertise my caps */
smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
smc_phy_check_media(dev, 1);
smc_phy_configure_exit:
SMC_SELECT_BANK(lp, 2);
spin_unlock_irq(&lp->lock);
}
/*
* smc_phy_interrupt
*
* Purpose: Handle interrupts relating to PHY register 18. This is
* called from the "hard" interrupt handler under our private spinlock.
*/
static void smc_phy_interrupt(struct net_device *dev)
{
struct smc_local *lp = netdev_priv(dev);
int phyaddr = lp->mii.phy_id;
int phy18;
DBG(2, dev, "%s\n", __func__);
if (lp->phy_type == 0)
return;
for(;;) {
smc_phy_check_media(dev, 0);
/* Read PHY Register 18, Status Output */
phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
if ((phy18 & PHY_INT_INT) == 0)
break;
}
}
/*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
static void smc_10bt_check_media(struct net_device *dev, int init)
{
struct smc_local *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
unsigned int old_carrier, new_carrier;
old_carrier = netif_carrier_ok(dev) ? 1 : 0;
SMC_SELECT_BANK(lp, 0);
new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
SMC_SELECT_BANK(lp, 2);
if (init || (old_carrier != new_carrier)) {
if (!new_carrier) {
netif_carrier_off(dev);
} else {
netif_carrier_on(dev);
}
if (netif_msg_link(lp))
netdev_info(dev, "link %s\n",
new_carrier ? "up" : "down");
}
}
static void smc_eph_interrupt(struct net_device *dev)
{
struct smc_local *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
unsigned int ctl;
smc_10bt_check_media(dev, 0);
SMC_SELECT_BANK(lp, 1);
ctl = SMC_GET_CTL(lp);
SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
SMC_SET_CTL(lp, ctl);
SMC_SELECT_BANK(lp, 2);
}
/*
* This is the main routine of the driver, to handle the device when
* it needs some attention.
*/
static irqreturn_t smc_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct smc_local *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
int status, mask, timeout, card_stats;
int saved_pointer;
DBG(3, dev, "%s\n", __func__);
spin_lock(&lp->lock);
/* A preamble may be used when there is a potential race
* between the interruptible transmit functions and this
* ISR. */
SMC_INTERRUPT_PREAMBLE;
saved_pointer = SMC_GET_PTR(lp);
mask = SMC_GET_INT_MASK(lp);
SMC_SET_INT_MASK(lp, 0);
/* set a timeout value, so I don't stay here forever */
timeout = MAX_IRQ_LOOPS;
do {
status = SMC_GET_INT(lp);
DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
status, mask,
({ int meminfo; SMC_SELECT_BANK(lp, 0);
meminfo = SMC_GET_MIR(lp);
SMC_SELECT_BANK(lp, 2); meminfo; }),
SMC_GET_FIFO(lp));
status &= mask;
if (!status)
break;
if (status & IM_TX_INT) {
/* do this before RX as it will free memory quickly */
DBG(3, dev, "TX int\n");
smc_tx(dev);
SMC_ACK_INT(lp, IM_TX_INT);
if (THROTTLE_TX_PKTS)
netif_wake_queue(dev);
} else if (status & IM_RCV_INT) {
DBG(3, dev, "RX irq\n");
smc_rcv(dev);
} else if (status & IM_ALLOC_INT) {
DBG(3, dev, "Allocation irq\n");
tasklet_hi_schedule(&lp->tx_task);
mask &= ~IM_ALLOC_INT;
} else if (status & IM_TX_EMPTY_INT) {
DBG(3, dev, "TX empty\n");
mask &= ~IM_TX_EMPTY_INT;
/* update stats */
SMC_SELECT_BANK(lp, 0);
card_stats = SMC_GET_COUNTER(lp);
SMC_SELECT_BANK(lp, 2);
/* single collisions */
dev->stats.collisions += card_stats & 0xF;
card_stats >>= 4;
/* multiple collisions */
dev->stats.collisions += card_stats & 0xF;
} else if (status & IM_RX_OVRN_INT) {
DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n",
({ int eph_st; SMC_SELECT_BANK(lp, 0);
eph_st = SMC_GET_EPH_STATUS(lp);
SMC_SELECT_BANK(lp, 2); eph_st; }));
SMC_ACK_INT(lp, IM_RX_OVRN_INT);
dev->stats.rx_errors++;
dev->stats.rx_fifo_errors++;
} else if (status & IM_EPH_INT) {
smc_eph_interrupt(dev);
} else if (status & IM_MDINT) {
SMC_ACK_INT(lp, IM_MDINT);
smc_phy_interrupt(dev);
} else if (status & IM_ERCV_INT) {
SMC_ACK_INT(lp, IM_ERCV_INT);
PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n");
}
} while (--timeout);
/* restore register states */
SMC_SET_PTR(lp, saved_pointer);
SMC_SET_INT_MASK(lp, mask);
spin_unlock(&lp->lock);
#ifndef CONFIG_NET_POLL_CONTROLLER
if (timeout == MAX_IRQ_LOOPS)
PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n",
mask);
#endif
DBG(3, dev, "Interrupt done (%d loops)\n",
MAX_IRQ_LOOPS - timeout);
/*
* We return IRQ_HANDLED unconditionally here even if there was
* nothing to do. There is a possibility that a packet might
* get enqueued into the chip right after TX_EMPTY_INT is raised
* but just before the CPU acknowledges the IRQ.
* Better take an unneeded IRQ in some occasions than complexifying
* the code for all cases.
*/
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/*
* Polling receive - used by netconsole and other diagnostic tools
* to allow network i/o with interrupts disabled.
*/
static void smc_poll_controller(struct net_device *dev)
{
disable_irq(dev->irq);
smc_interrupt(dev->irq, dev);
enable_irq(dev->irq);
}
#endif
/* Our watchdog timed out. Called by the networking layer */
static void smc_timeout(struct net_device *dev, unsigned int txqueue)
{
struct smc_local *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
int status, mask, eph_st, meminfo, fifo;
DBG(2, dev, "%s\n", __func__);
spin_lock_irq(&lp->lock);
status = SMC_GET_INT(lp);
mask = SMC_GET_INT_MASK(lp);
fifo = SMC_GET_FIFO(lp);
SMC_SELECT_BANK(lp, 0);
eph_st = SMC_GET_EPH_STATUS(lp);
meminfo = SMC_GET_MIR(lp);
SMC_SELECT_BANK(lp, 2);
spin_unlock_irq(&lp->lock);
PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
status, mask, meminfo, fifo, eph_st);
smc_reset(dev);
smc_enable(dev);
/*
* Reconfiguring the PHY doesn't seem like a bad idea here, but
* smc_phy_configure() calls msleep() which calls schedule_timeout()
* which calls schedule(). Hence we use a work queue.
*/
if (lp->phy_type != 0)
schedule_work(&lp->phy_configure);
/* We can accept TX packets again */
netif_trans_update(dev); /* prevent tx timeout */
netif_wake_queue(dev);
}
/*
* This routine will, depending on the values passed to it,
* either make it accept multicast packets, go into
* promiscuous mode (for TCPDUMP and cousins) or accept
* a select set of multicast packets
*/
static void smc_set_multicast_list(struct net_device *dev)
{
struct smc_local *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
unsigned char multicast_table[8];
int update_multicast = 0;
DBG(2, dev, "%s\n", __func__);
if (dev->flags & IFF_PROMISC) {
DBG(2, dev, "RCR_PRMS\n");
lp->rcr_cur_mode |= RCR_PRMS;
}
/* BUG? I never disable promiscuous mode if multicasting was turned on.
Now, I turn off promiscuous mode, but I don't do anything to multicasting
when promiscuous mode is turned on.
*/
/*
* Here, I am setting this to accept all multicast packets.
* I don't need to zero the multicast table, because the flag is
* checked before the table is
*/
else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
DBG(2, dev, "RCR_ALMUL\n");
lp->rcr_cur_mode |= RCR_ALMUL;
}
/*
* This sets the internal hardware table to filter out unwanted
* multicast packets before they take up memory.
*
* The SMC chip uses a hash table where the high 6 bits of the CRC of
* address are the offset into the table. If that bit is 1, then the
* multicast packet is accepted. Otherwise, it's dropped silently.
*
* To use the 6 bits as an offset into the table, the high 3 bits are
* the number of the 8 bit register, while the low 3 bits are the bit
* within that register.
*/
else if (!netdev_mc_empty(dev)) {
struct netdev_hw_addr *ha;
/* table for flipping the order of 3 bits */
static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
/* start with a table of all zeros: reject all */
memset(multicast_table, 0, sizeof(multicast_table));
netdev_for_each_mc_addr(ha, dev) {
int position;
/* only use the low order bits */
position = crc32_le(~0, ha->addr, 6) & 0x3f;
/* do some messy swapping to put the bit in the right spot */
multicast_table[invert3[position&7]] |=
(1<<invert3[(position>>3)&7]);
}
/* be sure I get rid of flags I might have set */
lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
/* now, the table can be loaded into the chipset */
update_multicast = 1;
} else {
DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n");
lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
/*
* since I'm disabling all multicast entirely, I need to
* clear the multicast list
*/
memset(multicast_table, 0, sizeof(multicast_table));
update_multicast = 1;
}
spin_lock_irq(&lp->lock);
SMC_SELECT_BANK(lp, 0);
SMC_SET_RCR(lp, lp->rcr_cur_mode);
if (update_multicast) {
SMC_SELECT_BANK(lp, 3);
SMC_SET_MCAST(lp, multicast_table);
}
SMC_SELECT_BANK(lp, 2);
spin_unlock_irq(&lp->lock);
}
/*
* Open and Initialize the board
*
* Set up everything, reset the card, etc..
*/
static int
smc_open(struct net_device *dev)
{
struct smc_local *lp = netdev_priv(dev);
DBG(2, dev, "%s\n", __func__);
/* Setup the default Register Modes */
lp->tcr_cur_mode = TCR_DEFAULT;
lp->rcr_cur_mode = RCR_DEFAULT;
lp->rpc_cur_mode = RPC_DEFAULT |
lp->cfg.leda << RPC_LSXA_SHFT |
lp->cfg.ledb << RPC_LSXB_SHFT;
/*
* If we are not using a MII interface, we need to
* monitor our own carrier signal to detect faults.
*/
if (lp->phy_type == 0)
lp->tcr_cur_mode |= TCR_MON_CSN;
/* reset the hardware */
smc_reset(dev);
smc_enable(dev);
/* Configure the PHY, initialize the link state */
if (lp->phy_type != 0)
smc_phy_configure(&lp->phy_configure);
else {
spin_lock_irq(&lp->lock);
smc_10bt_check_media(dev, 1);
spin_unlock_irq(&lp->lock);
}
netif_start_queue(dev);
return 0;
}
/*
* smc_close
*
* this makes the board clean up everything that it can
* and not talk to the outside world. Caused by
* an 'ifconfig ethX down'
*/
static int smc_close(struct net_device *dev)
{
struct smc_local *lp = netdev_priv(dev);
DBG(2, dev, "%s\n", __func__);
netif_stop_queue(dev);
netif_carrier_off(dev);
/* clear everything */
smc_shutdown(dev);
tasklet_kill(&lp->tx_task);
smc_phy_powerdown(dev);
return 0;
}
/*
* Ethtool support
*/
static int
smc_ethtool_get_link_ksettings(struct net_device *dev,
struct ethtool_link_ksettings *cmd)
{
struct smc_local *lp = netdev_priv(dev);
if (lp->phy_type != 0) {
spin_lock_irq(&lp->lock);
mii_ethtool_get_link_ksettings(&lp->mii, cmd);
spin_unlock_irq(&lp->lock);
} else {
u32 supported = SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_TP | SUPPORTED_AUI;
if (lp->ctl_rspeed == 10)
cmd->base.speed = SPEED_10;
else if (lp->ctl_rspeed == 100)
cmd->base.speed = SPEED_100;
cmd->base.autoneg = AUTONEG_DISABLE;
cmd->base.port = 0;
cmd->base.duplex = lp->tcr_cur_mode & TCR_SWFDUP ?
DUPLEX_FULL : DUPLEX_HALF;
ethtool_convert_legacy_u32_to_link_mode(
cmd->link_modes.supported, supported);
}
return 0;
}
static int
smc_ethtool_set_link_ksettings(struct net_device *dev,
const struct ethtool_link_ksettings *cmd)
{
struct smc_local *lp = netdev_priv(dev);
int ret;
if (lp->phy_type != 0) {
spin_lock_irq(&lp->lock);
ret = mii_ethtool_set_link_ksettings(&lp->mii, cmd);
spin_unlock_irq(&lp->lock);
} else {
if (cmd->base.autoneg != AUTONEG_DISABLE ||
cmd->base.speed != SPEED_10 ||
(cmd->base.duplex != DUPLEX_HALF &&
cmd->base.duplex != DUPLEX_FULL) ||
(cmd->base.port != PORT_TP && cmd->base.port != PORT_AUI))
return -EINVAL;
// lp->port = cmd->base.port;
lp->ctl_rfduplx = cmd->base.duplex == DUPLEX_FULL;
// if (netif_running(dev))
// smc_set_port(dev);
ret = 0;
}
return ret;
}
static void
smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
strscpy(info->driver, CARDNAME, sizeof(info->driver));
strscpy(info->version, version, sizeof(info->version));
strscpy(info->bus_info, dev_name(dev->dev.parent),
sizeof(info->bus_info));
}
static int smc_ethtool_nwayreset(struct net_device *dev)
{
struct smc_local *lp = netdev_priv(dev);
int ret = -EINVAL;
if (lp->phy_type != 0) {
spin_lock_irq(&lp->lock);
ret = mii_nway_restart(&lp->mii);
spin_unlock_irq(&lp->lock);
}
return ret;
}
static u32 smc_ethtool_getmsglevel(struct net_device *dev)
{
struct smc_local *lp = netdev_priv(dev);
return lp->msg_enable;
}
static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
{
struct smc_local *lp = netdev_priv(dev);
lp->msg_enable = level;
}
static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
{
u16 ctl;
struct smc_local *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
spin_lock_irq(&lp->lock);
/* load word into GP register */
SMC_SELECT_BANK(lp, 1);
SMC_SET_GP(lp, word);
/* set the address to put the data in EEPROM */
SMC_SELECT_BANK(lp, 2);
SMC_SET_PTR(lp, addr);
/* tell it to write */
SMC_SELECT_BANK(lp, 1);
ctl = SMC_GET_CTL(lp);
SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
/* wait for it to finish */
do {
udelay(1);
} while (SMC_GET_CTL(lp) & CTL_STORE);
/* clean up */
SMC_SET_CTL(lp, ctl);
SMC_SELECT_BANK(lp, 2);
spin_unlock_irq(&lp->lock);
return 0;
}
static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
{
u16 ctl;
struct smc_local *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
spin_lock_irq(&lp->lock);
/* set the EEPROM address to get the data from */
SMC_SELECT_BANK(lp, 2);
SMC_SET_PTR(lp, addr | PTR_READ);
/* tell it to load */
SMC_SELECT_BANK(lp, 1);
SMC_SET_GP(lp, 0xffff); /* init to known */
ctl = SMC_GET_CTL(lp);
SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
/* wait for it to finish */
do {
udelay(1);
} while (SMC_GET_CTL(lp) & CTL_RELOAD);
/* read word from GP register */
*word = SMC_GET_GP(lp);
/* clean up */
SMC_SET_CTL(lp, ctl);
SMC_SELECT_BANK(lp, 2);
spin_unlock_irq(&lp->lock);
return 0;
}
static int smc_ethtool_geteeprom_len(struct net_device *dev)
{
return 0x23 * 2;
}
static int smc_ethtool_geteeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 *data)
{
int i;
int imax;
DBG(1, dev, "Reading %d bytes at %d(0x%x)\n",
eeprom->len, eeprom->offset, eeprom->offset);
imax = smc_ethtool_geteeprom_len(dev);
for (i = 0; i < eeprom->len; i += 2) {
int ret;
u16 wbuf;
int offset = i + eeprom->offset;
if (offset > imax)
break;
ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
if (ret != 0)
return ret;
DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
data[i] = (wbuf >> 8) & 0xff;
data[i+1] = wbuf & 0xff;
}
return 0;
}
static int smc_ethtool_seteeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 *data)
{
int i;
int imax;
DBG(1, dev, "Writing %d bytes to %d(0x%x)\n",
eeprom->len, eeprom->offset, eeprom->offset);
imax = smc_ethtool_geteeprom_len(dev);
for (i = 0; i < eeprom->len; i += 2) {
int ret;
u16 wbuf;
int offset = i + eeprom->offset;
if (offset > imax)
break;
wbuf = (data[i] << 8) | data[i + 1];
DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
if (ret != 0)
return ret;
}
return 0;
}
static const struct ethtool_ops smc_ethtool_ops = {
.get_drvinfo = smc_ethtool_getdrvinfo,
.get_msglevel = smc_ethtool_getmsglevel,
.set_msglevel = smc_ethtool_setmsglevel,
.nway_reset = smc_ethtool_nwayreset,
.get_link = ethtool_op_get_link,
.get_eeprom_len = smc_ethtool_geteeprom_len,
.get_eeprom = smc_ethtool_geteeprom,
.set_eeprom = smc_ethtool_seteeprom,
.get_link_ksettings = smc_ethtool_get_link_ksettings,
.set_link_ksettings = smc_ethtool_set_link_ksettings,
};
static const struct net_device_ops smc_netdev_ops = {
.ndo_open = smc_open,
.ndo_stop = smc_close,
.ndo_start_xmit = smc_hard_start_xmit,
.ndo_tx_timeout = smc_timeout,
.ndo_set_rx_mode = smc_set_multicast_list,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = eth_mac_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = smc_poll_controller,
#endif
};
/*
* smc_findirq
*
* This routine has a simple purpose -- make the SMC chip generate an
* interrupt, so an auto-detect routine can detect it, and find the IRQ,
*/
/*
* does this still work?
*
* I just deleted auto_irq.c, since it was never built...
* --jgarzik
*/
static int smc_findirq(struct smc_local *lp)
{
void __iomem *ioaddr = lp->base;
int timeout = 20;
unsigned long cookie;
DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__);
cookie = probe_irq_on();
/*
* What I try to do here is trigger an ALLOC_INT. This is done
* by allocating a small chunk of memory, which will give an interrupt
* when done.
*/
/* enable ALLOCation interrupts ONLY */
SMC_SELECT_BANK(lp, 2);
SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
/*
* Allocate 512 bytes of memory. Note that the chip was just
* reset so all the memory is available
*/
SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
/*
* Wait until positive that the interrupt has been generated
*/
do {
int int_status;
udelay(10);
int_status = SMC_GET_INT(lp);
if (int_status & IM_ALLOC_INT)
break; /* got the interrupt */
} while (--timeout);
/*
* there is really nothing that I can do here if timeout fails,
* as autoirq_report will return a 0 anyway, which is what I
* want in this case. Plus, the clean up is needed in both
* cases.
*/
/* and disable all interrupts again */
SMC_SET_INT_MASK(lp, 0);
/* and return what I found */
return probe_irq_off(cookie);
}
/*
* Function: smc_probe(unsigned long ioaddr)
*
* Purpose:
* Tests to see if a given ioaddr points to an SMC91x chip.
* Returns a 0 on success
*
* Algorithm:
* (1) see if the high byte of BANK_SELECT is 0x33
* (2) compare the ioaddr with the base register's address
* (3) see if I recognize the chip ID in the appropriate register
*
* Here I do typical initialization tasks.
*
* o Initialize the structure if needed
* o print out my vanity message if not done so already
* o print out what type of hardware is detected
* o print out the ethernet address
* o find the IRQ
* o set up my private data
* o configure the dev structure with my subroutines
* o actually GRAB the irq.
* o GRAB the region
*/
static int smc_probe(struct net_device *dev, void __iomem *ioaddr,
unsigned long irq_flags)
{
struct smc_local *lp = netdev_priv(dev);
int retval;
unsigned int val, revision_register;
const char *version_string;
u8 addr[ETH_ALEN];
DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
/* First, see if the high byte is 0x33 */
val = SMC_CURRENT_BANK(lp);
DBG(2, dev, "%s: bank signature probe returned 0x%04x\n",
CARDNAME, val);
if ((val & 0xFF00) != 0x3300) {
if ((val & 0xFF) == 0x33) {
netdev_warn(dev,
"%s: Detected possible byte-swapped interface at IOADDR %p\n",
CARDNAME, ioaddr);
}
retval = -ENODEV;
goto err_out;
}
/*
* The above MIGHT indicate a device, but I need to write to
* further test this.
*/
SMC_SELECT_BANK(lp, 0);
val = SMC_CURRENT_BANK(lp);
if ((val & 0xFF00) != 0x3300) {
retval = -ENODEV;
goto err_out;
}
/*
* well, we've already written once, so hopefully another
* time won't hurt. This time, I need to switch the bank
* register to bank 1, so I can access the base address
* register
*/
SMC_SELECT_BANK(lp, 1);
val = SMC_GET_BASE(lp);
val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n",
CARDNAME, ioaddr, val);
}
/*
* check if the revision register is something that I
* recognize. These might need to be added to later,
* as future revisions could be added.
*/
SMC_SELECT_BANK(lp, 3);
revision_register = SMC_GET_REV(lp);
DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
version_string = chip_ids[ (revision_register >> 4) & 0xF];
if (!version_string || (revision_register & 0xff00) != 0x3300) {
/* I don't recognize this chip, so... */
netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n",
CARDNAME, ioaddr, revision_register);
retval = -ENODEV;
goto err_out;
}
/* At this point I'll assume that the chip is an SMC91x. */
pr_info_once("%s\n", version);
/* fill in some of the fields */
dev->base_addr = (unsigned long)ioaddr;
lp->base = ioaddr;
lp->version = revision_register & 0xff;
spin_lock_init(&lp->lock);
/* Get the MAC address */
SMC_SELECT_BANK(lp, 1);
SMC_GET_MAC_ADDR(lp, addr);
eth_hw_addr_set(dev, addr);
/* now, reset the chip, and put it into a known state */
smc_reset(dev);
/*
* If dev->irq is 0, then the device has to be banged on to see
* what the IRQ is.
*
* This banging doesn't always detect the IRQ, for unknown reasons.
* a workaround is to reset the chip and try again.
*
* Interestingly, the DOS packet driver *SETS* the IRQ on the card to
* be what is requested on the command line. I don't do that, mostly
* because the card that I have uses a non-standard method of accessing
* the IRQs, and because this _should_ work in most configurations.
*
* Specifying an IRQ is done with the assumption that the user knows
* what (s)he is doing. No checking is done!!!!
*/
if (dev->irq < 1) {
int trials;
trials = 3;
while (trials--) {
dev->irq = smc_findirq(lp);
if (dev->irq)
break;
/* kick the card and try again */
smc_reset(dev);
}
}
if (dev->irq == 0) {
netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n");
retval = -ENODEV;
goto err_out;
}
dev->irq = irq_canonicalize(dev->irq);
dev->watchdog_timeo = msecs_to_jiffies(watchdog);
dev->netdev_ops = &smc_netdev_ops;
dev->ethtool_ops = &smc_ethtool_ops;
tasklet_setup(&lp->tx_task, smc_hardware_send_pkt);
INIT_WORK(&lp->phy_configure, smc_phy_configure);
lp->dev = dev;
lp->mii.phy_id_mask = 0x1f;
lp->mii.reg_num_mask = 0x1f;
lp->mii.force_media = 0;
lp->mii.full_duplex = 0;
lp->mii.dev = dev;
lp->mii.mdio_read = smc_phy_read;
lp->mii.mdio_write = smc_phy_write;
/*
* Locate the phy, if any.
*/
if (lp->version >= (CHIP_91100 << 4))
smc_phy_detect(dev);
/* then shut everything down to save power */
smc_shutdown(dev);
smc_phy_powerdown(dev);
/* Set default parameters */
lp->msg_enable = NETIF_MSG_LINK;
lp->ctl_rfduplx = 0;
lp->ctl_rspeed = 10;
if (lp->version >= (CHIP_91100 << 4)) {
lp->ctl_rfduplx = 1;
lp->ctl_rspeed = 100;
}
/* Grab the IRQ */
retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
if (retval)
goto err_out;
#ifdef CONFIG_ARCH_PXA
# ifdef SMC_USE_PXA_DMA
lp->cfg.flags |= SMC91X_USE_DMA;
# endif
if (lp->cfg.flags & SMC91X_USE_DMA) {
dma_cap_mask_t mask;
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
lp->dma_chan = dma_request_channel(mask, NULL, NULL);
}
#endif
retval = register_netdev(dev);
if (retval == 0) {
/* now, print out the card info, in a short format.. */
netdev_info(dev, "%s (rev %d) at %p IRQ %d",
version_string, revision_register & 0x0f,
lp->base, dev->irq);
if (lp->dma_chan)
pr_cont(" DMA %p", lp->dma_chan);
pr_cont("%s%s\n",
lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
if (!is_valid_ether_addr(dev->dev_addr)) {
netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n");
} else {
/* Print the Ethernet address */
netdev_info(dev, "Ethernet addr: %pM\n",
dev->dev_addr);
}
if (lp->phy_type == 0) {
PRINTK(dev, "No PHY found\n");
} else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n");
} else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
PRINTK(dev, "PHY LAN83C180\n");
}
}
err_out:
#ifdef CONFIG_ARCH_PXA
if (retval && lp->dma_chan)
dma_release_channel(lp->dma_chan);
#endif
return retval;
}
static int smc_enable_device(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct smc_local *lp = netdev_priv(ndev);
unsigned long flags;
unsigned char ecor, ecsr;
void __iomem *addr;
struct resource * res;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
if (!res)
return 0;
/*
* Map the attribute space. This is overkill, but clean.
*/
addr = ioremap(res->start, ATTRIB_SIZE);
if (!addr)
return -ENOMEM;
/*
* Reset the device. We must disable IRQs around this
* since a reset causes the IRQ line become active.
*/
local_irq_save(flags);
ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
readb(addr + (ECOR << SMC_IO_SHIFT));
/*
* Wait 100us for the chip to reset.
*/
udelay(100);
/*
* The device will ignore all writes to the enable bit while
* reset is asserted, even if the reset bit is cleared in the
* same write. Must clear reset first, then enable the device.
*/
writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
/*
* Set the appropriate byte/word mode.
*/
ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
if (!SMC_16BIT(lp))
ecsr |= ECSR_IOIS8;
writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
local_irq_restore(flags);
iounmap(addr);
/*
* Wait for the chip to wake up. We could poll the control
* register in the main register space, but that isn't mapped
* yet. We know this is going to take 750us.
*/
msleep(1);
return 0;
}
static int smc_request_attrib(struct platform_device *pdev,
struct net_device *ndev)
{
struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
struct smc_local *lp __maybe_unused = netdev_priv(ndev);
if (!res)
return 0;
if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
return -EBUSY;
return 0;
}
static void smc_release_attrib(struct platform_device *pdev,
struct net_device *ndev)
{
struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
struct smc_local *lp __maybe_unused = netdev_priv(ndev);
if (res)
release_mem_region(res->start, ATTRIB_SIZE);
}
static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
{
if (SMC_CAN_USE_DATACS) {
struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
struct smc_local *lp = netdev_priv(ndev);
if (!res)
return;
if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
netdev_info(ndev, "%s: failed to request datacs memory region.\n",
CARDNAME);
return;
}
lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
}
}
static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
{
if (SMC_CAN_USE_DATACS) {
struct smc_local *lp = netdev_priv(ndev);
struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
if (lp->datacs)
iounmap(lp->datacs);
lp->datacs = NULL;
if (res)
release_mem_region(res->start, SMC_DATA_EXTENT);
}
}
static const struct acpi_device_id smc91x_acpi_match[] = {
{ "LNRO0003", 0 },
{ }
};
MODULE_DEVICE_TABLE(acpi, smc91x_acpi_match);
#if IS_BUILTIN(CONFIG_OF)
static const struct of_device_id smc91x_match[] = {
{ .compatible = "smsc,lan91c94", },
{ .compatible = "smsc,lan91c111", },
{},
};
MODULE_DEVICE_TABLE(of, smc91x_match);
/**
* try_toggle_control_gpio - configure a gpio if it exists
* @dev: net device
* @desc: where to store the GPIO descriptor, if it exists
* @name: name of the GPIO in DT
* @index: index of the GPIO in DT
* @value: set the GPIO to this value
* @nsdelay: delay before setting the GPIO
*/
static int try_toggle_control_gpio(struct device *dev,
struct gpio_desc **desc,
const char *name, int index,
int value, unsigned int nsdelay)
{
struct gpio_desc *gpio;
enum gpiod_flags flags = value ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH;
gpio = devm_gpiod_get_index_optional(dev, name, index, flags);
if (IS_ERR(gpio))
return PTR_ERR(gpio);
if (gpio) {
if (nsdelay)
usleep_range(nsdelay, 2 * nsdelay);
gpiod_set_value_cansleep(gpio, value);
}
*desc = gpio;
return 0;
}
#endif
/*
* smc_init(void)
* Input parameters:
* dev->base_addr == 0, try to find all possible locations
* dev->base_addr > 0x1ff, this is the address to check
* dev->base_addr == <anything else>, return failure code
*
* Output:
* 0 --> there is a device
* anything else, error
*/
static int smc_drv_probe(struct platform_device *pdev)
{
struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
const struct of_device_id *match = NULL;
struct smc_local *lp;
struct net_device *ndev;
struct resource *res;
unsigned int __iomem *addr;
unsigned long irq_flags = SMC_IRQ_FLAGS;
unsigned long irq_resflags;
int ret;
ndev = alloc_etherdev(sizeof(struct smc_local));
if (!ndev) {
ret = -ENOMEM;
goto out;
}
SET_NETDEV_DEV(ndev, &pdev->dev);
/* get configuration from platform data, only allow use of
* bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
*/
lp = netdev_priv(ndev);
lp->cfg.flags = 0;
if (pd) {
memcpy(&lp->cfg, pd, sizeof(lp->cfg));
lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
if (!SMC_8BIT(lp) && !SMC_16BIT(lp)) {
dev_err(&pdev->dev,
"at least one of 8-bit or 16-bit access support is required.\n");
ret = -ENXIO;
goto out_free_netdev;
}
}
#if IS_BUILTIN(CONFIG_OF)
match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);
if (match) {
u32 val;
/* Optional pwrdwn GPIO configured? */
ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio,
"power", 0, 0, 100);
if (ret)
goto out_free_netdev;
/*
* Optional reset GPIO configured? Minimum 100 ns reset needed
* according to LAN91C96 datasheet page 14.
*/
ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio,
"reset", 0, 0, 100);
if (ret)
goto out_free_netdev;
/*
* Need to wait for optional EEPROM to load, max 750 us according
* to LAN91C96 datasheet page 55.
*/
if (lp->reset_gpio)
usleep_range(750, 1000);
/* Combination of IO widths supported, default to 16-bit */
if (!device_property_read_u32(&pdev->dev, "reg-io-width",
&val)) {
if (val & 1)
lp->cfg.flags |= SMC91X_USE_8BIT;
if ((val == 0) || (val & 2))
lp->cfg.flags |= SMC91X_USE_16BIT;
if (val & 4)
lp->cfg.flags |= SMC91X_USE_32BIT;
} else {
lp->cfg.flags |= SMC91X_USE_16BIT;
}
if (!device_property_read_u32(&pdev->dev, "reg-shift",
&val))
lp->io_shift = val;
lp->cfg.pxa_u16_align4 =
device_property_read_bool(&pdev->dev, "pxa-u16-align4");
}
#endif
if (!pd && !match) {
lp->cfg.flags |= (SMC_CAN_USE_8BIT) ? SMC91X_USE_8BIT : 0;
lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
}
if (!lp->cfg.leda && !lp->cfg.ledb) {
lp->cfg.leda = RPC_LSA_DEFAULT;
lp->cfg.ledb = RPC_LSB_DEFAULT;
}
ndev->dma = (unsigned char)-1;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
if (!res)
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
ret = -ENODEV;
goto out_free_netdev;
}
if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
ret = -EBUSY;
goto out_free_netdev;
}
ndev->irq = platform_get_irq(pdev, 0);
if (ndev->irq < 0) {
ret = ndev->irq;
goto out_release_io;
}
/*
* If this platform does not specify any special irqflags, or if
* the resource supplies a trigger, override the irqflags with
* the trigger flags from the resource.
*/
irq_resflags = irqd_get_trigger_type(irq_get_irq_data(ndev->irq));
if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK)
irq_flags = irq_resflags & IRQF_TRIGGER_MASK;
ret = smc_request_attrib(pdev, ndev);
if (ret)
goto out_release_io;
#if defined(CONFIG_ASSABET_NEPONSET)
if (machine_is_assabet() && machine_has_neponset())
neponset_ncr_set(NCR_ENET_OSC_EN);
#endif
platform_set_drvdata(pdev, ndev);
ret = smc_enable_device(pdev);
if (ret)
goto out_release_attrib;
addr = ioremap(res->start, SMC_IO_EXTENT);
if (!addr) {
ret = -ENOMEM;
goto out_release_attrib;
}
#ifdef CONFIG_ARCH_PXA
{
struct smc_local *lp = netdev_priv(ndev);
lp->device = &pdev->dev;
lp->physaddr = res->start;
}
#endif
ret = smc_probe(ndev, addr, irq_flags);
if (ret != 0)
goto out_iounmap;
smc_request_datacs(pdev, ndev);
return 0;
out_iounmap:
iounmap(addr);
out_release_attrib:
smc_release_attrib(pdev, ndev);
out_release_io:
release_mem_region(res->start, SMC_IO_EXTENT);
out_free_netdev:
free_netdev(ndev);
out:
pr_info("%s: not found (%d).\n", CARDNAME, ret);
return ret;
}
static int smc_drv_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct smc_local *lp = netdev_priv(ndev);
struct resource *res;
unregister_netdev(ndev);
free_irq(ndev->irq, ndev);
#ifdef CONFIG_ARCH_PXA
if (lp->dma_chan)
dma_release_channel(lp->dma_chan);
#endif
iounmap(lp->base);
smc_release_datacs(pdev,ndev);
smc_release_attrib(pdev,ndev);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
if (!res)
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
release_mem_region(res->start, SMC_IO_EXTENT);
free_netdev(ndev);
return 0;
}
static int smc_drv_suspend(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
if (ndev) {
if (netif_running(ndev)) {
netif_device_detach(ndev);
smc_shutdown(ndev);
smc_phy_powerdown(ndev);
}
}
return 0;
}
static int smc_drv_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct net_device *ndev = platform_get_drvdata(pdev);
if (ndev) {
struct smc_local *lp = netdev_priv(ndev);
smc_enable_device(pdev);
if (netif_running(ndev)) {
smc_reset(ndev);
smc_enable(ndev);
if (lp->phy_type != 0)
smc_phy_configure(&lp->phy_configure);
netif_device_attach(ndev);
}
}
return 0;
}
static const struct dev_pm_ops smc_drv_pm_ops = {
.suspend = smc_drv_suspend,
.resume = smc_drv_resume,
};
static struct platform_driver smc_driver = {
.probe = smc_drv_probe,
.remove = smc_drv_remove,
.driver = {
.name = CARDNAME,
.pm = &smc_drv_pm_ops,
.of_match_table = of_match_ptr(smc91x_match),
.acpi_match_table = smc91x_acpi_match,
},
};
module_platform_driver(smc_driver);