linux-zen-server/drivers/net/wireless/broadcom/brcm80211/brcmfmac/chip.c

1456 lines
38 KiB
C
Raw Permalink Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: ISC
/*
* Copyright (c) 2014 Broadcom Corporation
*/
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/list.h>
#include <linux/ssb/ssb_regs.h>
#include <linux/bcma/bcma.h>
#include <linux/bcma/bcma_regs.h>
#include <defs.h>
#include <soc.h>
#include <brcm_hw_ids.h>
#include <brcmu_utils.h>
#include <chipcommon.h>
#include "debug.h"
#include "chip.h"
/* SOC Interconnect types (aka chip types) */
#define SOCI_SB 0
#define SOCI_AI 1
/* PL-368 DMP definitions */
#define DMP_DESC_TYPE_MSK 0x0000000F
#define DMP_DESC_EMPTY 0x00000000
#define DMP_DESC_VALID 0x00000001
#define DMP_DESC_COMPONENT 0x00000001
#define DMP_DESC_MASTER_PORT 0x00000003
#define DMP_DESC_ADDRESS 0x00000005
#define DMP_DESC_ADDRSIZE_GT32 0x00000008
#define DMP_DESC_EOT 0x0000000F
#define DMP_COMP_DESIGNER 0xFFF00000
#define DMP_COMP_DESIGNER_S 20
#define DMP_COMP_PARTNUM 0x000FFF00
#define DMP_COMP_PARTNUM_S 8
#define DMP_COMP_CLASS 0x000000F0
#define DMP_COMP_CLASS_S 4
#define DMP_COMP_REVISION 0xFF000000
#define DMP_COMP_REVISION_S 24
#define DMP_COMP_NUM_SWRAP 0x00F80000
#define DMP_COMP_NUM_SWRAP_S 19
#define DMP_COMP_NUM_MWRAP 0x0007C000
#define DMP_COMP_NUM_MWRAP_S 14
#define DMP_COMP_NUM_SPORT 0x00003E00
#define DMP_COMP_NUM_SPORT_S 9
#define DMP_COMP_NUM_MPORT 0x000001F0
#define DMP_COMP_NUM_MPORT_S 4
#define DMP_MASTER_PORT_UID 0x0000FF00
#define DMP_MASTER_PORT_UID_S 8
#define DMP_MASTER_PORT_NUM 0x000000F0
#define DMP_MASTER_PORT_NUM_S 4
#define DMP_SLAVE_ADDR_BASE 0xFFFFF000
#define DMP_SLAVE_ADDR_BASE_S 12
#define DMP_SLAVE_PORT_NUM 0x00000F00
#define DMP_SLAVE_PORT_NUM_S 8
#define DMP_SLAVE_TYPE 0x000000C0
#define DMP_SLAVE_TYPE_S 6
#define DMP_SLAVE_TYPE_SLAVE 0
#define DMP_SLAVE_TYPE_BRIDGE 1
#define DMP_SLAVE_TYPE_SWRAP 2
#define DMP_SLAVE_TYPE_MWRAP 3
#define DMP_SLAVE_SIZE_TYPE 0x00000030
#define DMP_SLAVE_SIZE_TYPE_S 4
#define DMP_SLAVE_SIZE_4K 0
#define DMP_SLAVE_SIZE_8K 1
#define DMP_SLAVE_SIZE_16K 2
#define DMP_SLAVE_SIZE_DESC 3
/* EROM CompIdentB */
#define CIB_REV_MASK 0xff000000
#define CIB_REV_SHIFT 24
/* ARM CR4 core specific control flag bits */
#define ARMCR4_BCMA_IOCTL_CPUHALT 0x0020
/* D11 core specific control flag bits */
#define D11_BCMA_IOCTL_PHYCLOCKEN 0x0004
#define D11_BCMA_IOCTL_PHYRESET 0x0008
/* chip core base & ramsize */
/* bcm4329 */
/* SDIO device core, ID 0x829 */
#define BCM4329_CORE_BUS_BASE 0x18011000
/* internal memory core, ID 0x80e */
#define BCM4329_CORE_SOCRAM_BASE 0x18003000
/* ARM Cortex M3 core, ID 0x82a */
#define BCM4329_CORE_ARM_BASE 0x18002000
/* Max possibly supported memory size (limited by IO mapped memory) */
#define BRCMF_CHIP_MAX_MEMSIZE (4 * 1024 * 1024)
#define CORE_SB(base, field) \
(base + SBCONFIGOFF + offsetof(struct sbconfig, field))
#define SBCOREREV(sbidh) \
((((sbidh) & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT) | \
((sbidh) & SSB_IDHIGH_RCLO))
struct sbconfig {
u32 PAD[2];
u32 sbipsflag; /* initiator port ocp slave flag */
u32 PAD[3];
u32 sbtpsflag; /* target port ocp slave flag */
u32 PAD[11];
u32 sbtmerrloga; /* (sonics >= 2.3) */
u32 PAD;
u32 sbtmerrlog; /* (sonics >= 2.3) */
u32 PAD[3];
u32 sbadmatch3; /* address match3 */
u32 PAD;
u32 sbadmatch2; /* address match2 */
u32 PAD;
u32 sbadmatch1; /* address match1 */
u32 PAD[7];
u32 sbimstate; /* initiator agent state */
u32 sbintvec; /* interrupt mask */
u32 sbtmstatelow; /* target state */
u32 sbtmstatehigh; /* target state */
u32 sbbwa0; /* bandwidth allocation table0 */
u32 PAD;
u32 sbimconfiglow; /* initiator configuration */
u32 sbimconfighigh; /* initiator configuration */
u32 sbadmatch0; /* address match0 */
u32 PAD;
u32 sbtmconfiglow; /* target configuration */
u32 sbtmconfighigh; /* target configuration */
u32 sbbconfig; /* broadcast configuration */
u32 PAD;
u32 sbbstate; /* broadcast state */
u32 PAD[3];
u32 sbactcnfg; /* activate configuration */
u32 PAD[3];
u32 sbflagst; /* current sbflags */
u32 PAD[3];
u32 sbidlow; /* identification */
u32 sbidhigh; /* identification */
};
#define INVALID_RAMBASE ((u32)(~0))
/* bankidx and bankinfo reg defines corerev >= 8 */
#define SOCRAM_BANKINFO_RETNTRAM_MASK 0x00010000
#define SOCRAM_BANKINFO_SZMASK 0x0000007f
#define SOCRAM_BANKIDX_ROM_MASK 0x00000100
#define SOCRAM_BANKIDX_MEMTYPE_SHIFT 8
/* socram bankinfo memtype */
#define SOCRAM_MEMTYPE_RAM 0
#define SOCRAM_MEMTYPE_R0M 1
#define SOCRAM_MEMTYPE_DEVRAM 2
#define SOCRAM_BANKINFO_SZBASE 8192
#define SRCI_LSS_MASK 0x00f00000
#define SRCI_LSS_SHIFT 20
#define SRCI_SRNB_MASK 0xf0
#define SRCI_SRNB_MASK_EXT 0x100
#define SRCI_SRNB_SHIFT 4
#define SRCI_SRBSZ_MASK 0xf
#define SRCI_SRBSZ_SHIFT 0
#define SR_BSZ_BASE 14
struct sbsocramregs {
u32 coreinfo;
u32 bwalloc;
u32 extracoreinfo;
u32 biststat;
u32 bankidx;
u32 standbyctrl;
u32 errlogstatus; /* rev 6 */
u32 errlogaddr; /* rev 6 */
/* used for patching rev 3 & 5 */
u32 cambankidx;
u32 cambankstandbyctrl;
u32 cambankpatchctrl;
u32 cambankpatchtblbaseaddr;
u32 cambankcmdreg;
u32 cambankdatareg;
u32 cambankmaskreg;
u32 PAD[1];
u32 bankinfo; /* corev 8 */
u32 bankpda;
u32 PAD[14];
u32 extmemconfig;
u32 extmemparitycsr;
u32 extmemparityerrdata;
u32 extmemparityerrcnt;
u32 extmemwrctrlandsize;
u32 PAD[84];
u32 workaround;
u32 pwrctl; /* corerev >= 2 */
u32 PAD[133];
u32 sr_control; /* corerev >= 15 */
u32 sr_status; /* corerev >= 15 */
u32 sr_address; /* corerev >= 15 */
u32 sr_data; /* corerev >= 15 */
};
#define SOCRAMREGOFFS(_f) offsetof(struct sbsocramregs, _f)
#define SYSMEMREGOFFS(_f) offsetof(struct sbsocramregs, _f)
#define ARMCR4_CAP (0x04)
#define ARMCR4_BANKIDX (0x40)
#define ARMCR4_BANKINFO (0x44)
#define ARMCR4_BANKPDA (0x4C)
#define ARMCR4_TCBBNB_MASK 0xf0
#define ARMCR4_TCBBNB_SHIFT 4
#define ARMCR4_TCBANB_MASK 0xf
#define ARMCR4_TCBANB_SHIFT 0
#define ARMCR4_BSZ_MASK 0x3f
#define ARMCR4_BSZ_MULT 8192
struct brcmf_core_priv {
struct brcmf_core pub;
u32 wrapbase;
struct list_head list;
struct brcmf_chip_priv *chip;
};
struct brcmf_chip_priv {
struct brcmf_chip pub;
const struct brcmf_buscore_ops *ops;
void *ctx;
/* assured first core is chipcommon, second core is buscore */
struct list_head cores;
u16 num_cores;
bool (*iscoreup)(struct brcmf_core_priv *core);
void (*coredisable)(struct brcmf_core_priv *core, u32 prereset,
u32 reset);
void (*resetcore)(struct brcmf_core_priv *core, u32 prereset, u32 reset,
u32 postreset);
};
static void brcmf_chip_sb_corerev(struct brcmf_chip_priv *ci,
struct brcmf_core *core)
{
u32 regdata;
regdata = ci->ops->read32(ci->ctx, CORE_SB(core->base, sbidhigh));
core->rev = SBCOREREV(regdata);
}
static bool brcmf_chip_sb_iscoreup(struct brcmf_core_priv *core)
{
struct brcmf_chip_priv *ci;
u32 regdata;
u32 address;
ci = core->chip;
address = CORE_SB(core->pub.base, sbtmstatelow);
regdata = ci->ops->read32(ci->ctx, address);
regdata &= (SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT |
SSB_IMSTATE_REJECT | SSB_TMSLOW_CLOCK);
return SSB_TMSLOW_CLOCK == regdata;
}
static bool brcmf_chip_ai_iscoreup(struct brcmf_core_priv *core)
{
struct brcmf_chip_priv *ci;
u32 regdata;
bool ret;
ci = core->chip;
regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
ret = (regdata & (BCMA_IOCTL_FGC | BCMA_IOCTL_CLK)) == BCMA_IOCTL_CLK;
regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
ret = ret && ((regdata & BCMA_RESET_CTL_RESET) == 0);
return ret;
}
static void brcmf_chip_sb_coredisable(struct brcmf_core_priv *core,
u32 prereset, u32 reset)
{
struct brcmf_chip_priv *ci;
u32 val, base;
ci = core->chip;
base = core->pub.base;
val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
if (val & SSB_TMSLOW_RESET)
return;
val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
if ((val & SSB_TMSLOW_CLOCK) != 0) {
/*
* set target reject and spin until busy is clear
* (preserve core-specific bits)
*/
val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
val | SSB_TMSLOW_REJECT);
val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
udelay(1);
SPINWAIT((ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh))
& SSB_TMSHIGH_BUSY), 100000);
val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
if (val & SSB_TMSHIGH_BUSY)
brcmf_err("core state still busy\n");
val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
if (val & SSB_IDLOW_INITIATOR) {
val = ci->ops->read32(ci->ctx,
CORE_SB(base, sbimstate));
val |= SSB_IMSTATE_REJECT;
ci->ops->write32(ci->ctx,
CORE_SB(base, sbimstate), val);
val = ci->ops->read32(ci->ctx,
CORE_SB(base, sbimstate));
udelay(1);
SPINWAIT((ci->ops->read32(ci->ctx,
CORE_SB(base, sbimstate)) &
SSB_IMSTATE_BUSY), 100000);
}
/* set reset and reject while enabling the clocks */
val = SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET;
ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), val);
val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
udelay(10);
/* clear the initiator reject bit */
val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
if (val & SSB_IDLOW_INITIATOR) {
val = ci->ops->read32(ci->ctx,
CORE_SB(base, sbimstate));
val &= ~SSB_IMSTATE_REJECT;
ci->ops->write32(ci->ctx,
CORE_SB(base, sbimstate), val);
}
}
/* leave reset and reject asserted */
ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
(SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET));
udelay(1);
}
static void brcmf_chip_ai_coredisable(struct brcmf_core_priv *core,
u32 prereset, u32 reset)
{
struct brcmf_chip_priv *ci;
u32 regdata;
ci = core->chip;
/* if core is already in reset, skip reset */
regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
if ((regdata & BCMA_RESET_CTL_RESET) != 0)
goto in_reset_configure;
/* configure reset */
ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
prereset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
/* put in reset */
ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL,
BCMA_RESET_CTL_RESET);
usleep_range(10, 20);
/* wait till reset is 1 */
SPINWAIT(ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) !=
BCMA_RESET_CTL_RESET, 300);
in_reset_configure:
/* in-reset configure */
ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
reset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
}
static void brcmf_chip_sb_resetcore(struct brcmf_core_priv *core, u32 prereset,
u32 reset, u32 postreset)
{
struct brcmf_chip_priv *ci;
u32 regdata;
u32 base;
ci = core->chip;
base = core->pub.base;
/*
* Must do the disable sequence first to work for
* arbitrary current core state.
*/
brcmf_chip_sb_coredisable(core, 0, 0);
/*
* Now do the initialization sequence.
* set reset while enabling the clock and
* forcing them on throughout the core
*/
ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
SSB_TMSLOW_RESET);
regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
udelay(1);
/* clear any serror */
regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
if (regdata & SSB_TMSHIGH_SERR)
ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatehigh), 0);
regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbimstate));
if (regdata & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) {
regdata &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO);
ci->ops->write32(ci->ctx, CORE_SB(base, sbimstate), regdata);
}
/* clear reset and allow it to propagate throughout the core */
ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK);
regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
udelay(1);
/* leave clock enabled */
ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
SSB_TMSLOW_CLOCK);
regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
udelay(1);
}
static void brcmf_chip_ai_resetcore(struct brcmf_core_priv *core, u32 prereset,
u32 reset, u32 postreset)
{
struct brcmf_chip_priv *ci;
int count;
struct brcmf_core *d11core2 = NULL;
struct brcmf_core_priv *d11priv2 = NULL;
ci = core->chip;
/* special handle two D11 cores reset */
if (core->pub.id == BCMA_CORE_80211) {
d11core2 = brcmf_chip_get_d11core(&ci->pub, 1);
if (d11core2) {
brcmf_dbg(INFO, "found two d11 cores, reset both\n");
d11priv2 = container_of(d11core2,
struct brcmf_core_priv, pub);
}
}
/* must disable first to work for arbitrary current core state */
brcmf_chip_ai_coredisable(core, prereset, reset);
if (d11priv2)
brcmf_chip_ai_coredisable(d11priv2, prereset, reset);
count = 0;
while (ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) &
BCMA_RESET_CTL_RESET) {
ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL, 0);
count++;
if (count > 50)
break;
usleep_range(40, 60);
}
if (d11priv2) {
count = 0;
while (ci->ops->read32(ci->ctx,
d11priv2->wrapbase + BCMA_RESET_CTL) &
BCMA_RESET_CTL_RESET) {
ci->ops->write32(ci->ctx,
d11priv2->wrapbase + BCMA_RESET_CTL,
0);
count++;
if (count > 50)
break;
usleep_range(40, 60);
}
}
ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
postreset | BCMA_IOCTL_CLK);
ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
if (d11priv2) {
ci->ops->write32(ci->ctx, d11priv2->wrapbase + BCMA_IOCTL,
postreset | BCMA_IOCTL_CLK);
ci->ops->read32(ci->ctx, d11priv2->wrapbase + BCMA_IOCTL);
}
}
char *brcmf_chip_name(u32 id, u32 rev, char *buf, uint len)
{
const char *fmt;
fmt = ((id > 0xa000) || (id < 0x4000)) ? "BCM%d/%u" : "BCM%x/%u";
snprintf(buf, len, fmt, id, rev);
return buf;
}
static struct brcmf_core *brcmf_chip_add_core(struct brcmf_chip_priv *ci,
u16 coreid, u32 base,
u32 wrapbase)
{
struct brcmf_core_priv *core;
core = kzalloc(sizeof(*core), GFP_KERNEL);
if (!core)
return ERR_PTR(-ENOMEM);
core->pub.id = coreid;
core->pub.base = base;
core->chip = ci;
core->wrapbase = wrapbase;
list_add_tail(&core->list, &ci->cores);
return &core->pub;
}
/* safety check for chipinfo */
static int brcmf_chip_cores_check(struct brcmf_chip_priv *ci)
{
struct brcmf_core_priv *core;
bool need_socram = false;
bool has_socram = false;
bool cpu_found = false;
int idx = 1;
list_for_each_entry(core, &ci->cores, list) {
brcmf_dbg(INFO, " [%-2d] core 0x%x:%-3d base 0x%08x wrap 0x%08x\n",
idx++, core->pub.id, core->pub.rev, core->pub.base,
core->wrapbase);
switch (core->pub.id) {
case BCMA_CORE_ARM_CM3:
cpu_found = true;
need_socram = true;
break;
case BCMA_CORE_INTERNAL_MEM:
has_socram = true;
break;
case BCMA_CORE_ARM_CR4:
cpu_found = true;
break;
case BCMA_CORE_ARM_CA7:
cpu_found = true;
break;
default:
break;
}
}
if (!cpu_found) {
brcmf_err("CPU core not detected\n");
return -ENXIO;
}
/* check RAM core presence for ARM CM3 core */
if (need_socram && !has_socram) {
brcmf_err("RAM core not provided with ARM CM3 core\n");
return -ENODEV;
}
return 0;
}
static u32 brcmf_chip_core_read32(struct brcmf_core_priv *core, u16 reg)
{
return core->chip->ops->read32(core->chip->ctx, core->pub.base + reg);
}
static void brcmf_chip_core_write32(struct brcmf_core_priv *core,
u16 reg, u32 val)
{
core->chip->ops->write32(core->chip->ctx, core->pub.base + reg, val);
}
static bool brcmf_chip_socram_banksize(struct brcmf_core_priv *core, u8 idx,
u32 *banksize)
{
u32 bankinfo;
u32 bankidx = (SOCRAM_MEMTYPE_RAM << SOCRAM_BANKIDX_MEMTYPE_SHIFT);
bankidx |= idx;
brcmf_chip_core_write32(core, SOCRAMREGOFFS(bankidx), bankidx);
bankinfo = brcmf_chip_core_read32(core, SOCRAMREGOFFS(bankinfo));
*banksize = (bankinfo & SOCRAM_BANKINFO_SZMASK) + 1;
*banksize *= SOCRAM_BANKINFO_SZBASE;
return !!(bankinfo & SOCRAM_BANKINFO_RETNTRAM_MASK);
}
static void brcmf_chip_socram_ramsize(struct brcmf_core_priv *sr, u32 *ramsize,
u32 *srsize)
{
u32 coreinfo;
uint nb, banksize, lss;
bool retent;
int i;
*ramsize = 0;
*srsize = 0;
if (WARN_ON(sr->pub.rev < 4))
return;
if (!brcmf_chip_iscoreup(&sr->pub))
brcmf_chip_resetcore(&sr->pub, 0, 0, 0);
/* Get info for determining size */
coreinfo = brcmf_chip_core_read32(sr, SOCRAMREGOFFS(coreinfo));
nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
if ((sr->pub.rev <= 7) || (sr->pub.rev == 12)) {
banksize = (coreinfo & SRCI_SRBSZ_MASK);
lss = (coreinfo & SRCI_LSS_MASK) >> SRCI_LSS_SHIFT;
if (lss != 0)
nb--;
*ramsize = nb * (1 << (banksize + SR_BSZ_BASE));
if (lss != 0)
*ramsize += (1 << ((lss - 1) + SR_BSZ_BASE));
} else {
/* length of SRAM Banks increased for corerev greater than 23 */
if (sr->pub.rev >= 23) {
nb = (coreinfo & (SRCI_SRNB_MASK | SRCI_SRNB_MASK_EXT))
>> SRCI_SRNB_SHIFT;
} else {
nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
}
for (i = 0; i < nb; i++) {
retent = brcmf_chip_socram_banksize(sr, i, &banksize);
*ramsize += banksize;
if (retent)
*srsize += banksize;
}
}
/* hardcoded save&restore memory sizes */
switch (sr->chip->pub.chip) {
case BRCM_CC_4334_CHIP_ID:
if (sr->chip->pub.chiprev < 2)
*srsize = (32 * 1024);
break;
case BRCM_CC_43430_CHIP_ID:
case CY_CC_43439_CHIP_ID:
/* assume sr for now as we can not check
* firmware sr capability at this point.
*/
*srsize = (64 * 1024);
break;
default:
break;
}
}
/** Return the SYS MEM size */
static u32 brcmf_chip_sysmem_ramsize(struct brcmf_core_priv *sysmem)
{
u32 memsize = 0;
u32 coreinfo;
u32 idx;
u32 nb;
u32 banksize;
if (!brcmf_chip_iscoreup(&sysmem->pub))
brcmf_chip_resetcore(&sysmem->pub, 0, 0, 0);
coreinfo = brcmf_chip_core_read32(sysmem, SYSMEMREGOFFS(coreinfo));
nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
for (idx = 0; idx < nb; idx++) {
brcmf_chip_socram_banksize(sysmem, idx, &banksize);
memsize += banksize;
}
return memsize;
}
/** Return the TCM-RAM size of the ARMCR4 core. */
static u32 brcmf_chip_tcm_ramsize(struct brcmf_core_priv *cr4)
{
u32 corecap;
u32 memsize = 0;
u32 nab;
u32 nbb;
u32 totb;
u32 bxinfo;
u32 idx;
corecap = brcmf_chip_core_read32(cr4, ARMCR4_CAP);
nab = (corecap & ARMCR4_TCBANB_MASK) >> ARMCR4_TCBANB_SHIFT;
nbb = (corecap & ARMCR4_TCBBNB_MASK) >> ARMCR4_TCBBNB_SHIFT;
totb = nab + nbb;
for (idx = 0; idx < totb; idx++) {
brcmf_chip_core_write32(cr4, ARMCR4_BANKIDX, idx);
bxinfo = brcmf_chip_core_read32(cr4, ARMCR4_BANKINFO);
memsize += ((bxinfo & ARMCR4_BSZ_MASK) + 1) * ARMCR4_BSZ_MULT;
}
return memsize;
}
static u32 brcmf_chip_tcm_rambase(struct brcmf_chip_priv *ci)
{
switch (ci->pub.chip) {
case BRCM_CC_4345_CHIP_ID:
case BRCM_CC_43454_CHIP_ID:
return 0x198000;
case BRCM_CC_4335_CHIP_ID:
case BRCM_CC_4339_CHIP_ID:
case BRCM_CC_4350_CHIP_ID:
case BRCM_CC_4354_CHIP_ID:
case BRCM_CC_4356_CHIP_ID:
case BRCM_CC_43567_CHIP_ID:
case BRCM_CC_43569_CHIP_ID:
case BRCM_CC_43570_CHIP_ID:
case BRCM_CC_4358_CHIP_ID:
case BRCM_CC_43602_CHIP_ID:
case BRCM_CC_4371_CHIP_ID:
return 0x180000;
case BRCM_CC_43465_CHIP_ID:
case BRCM_CC_43525_CHIP_ID:
case BRCM_CC_4365_CHIP_ID:
case BRCM_CC_4366_CHIP_ID:
case BRCM_CC_43664_CHIP_ID:
case BRCM_CC_43666_CHIP_ID:
return 0x200000;
case BRCM_CC_4355_CHIP_ID:
case BRCM_CC_4359_CHIP_ID:
return (ci->pub.chiprev < 9) ? 0x180000 : 0x160000;
case BRCM_CC_4364_CHIP_ID:
case CY_CC_4373_CHIP_ID:
return 0x160000;
case CY_CC_43752_CHIP_ID:
case BRCM_CC_4377_CHIP_ID:
return 0x170000;
case BRCM_CC_4378_CHIP_ID:
return 0x352000;
case BRCM_CC_4387_CHIP_ID:
return 0x740000;
default:
brcmf_err("unknown chip: %s\n", ci->pub.name);
break;
}
return INVALID_RAMBASE;
}
int brcmf_chip_get_raminfo(struct brcmf_chip *pub)
{
struct brcmf_chip_priv *ci = container_of(pub, struct brcmf_chip_priv,
pub);
struct brcmf_core_priv *mem_core;
struct brcmf_core *mem;
mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_ARM_CR4);
if (mem) {
mem_core = container_of(mem, struct brcmf_core_priv, pub);
ci->pub.ramsize = brcmf_chip_tcm_ramsize(mem_core);
ci->pub.rambase = brcmf_chip_tcm_rambase(ci);
if (ci->pub.rambase == INVALID_RAMBASE) {
brcmf_err("RAM base not provided with ARM CR4 core\n");
return -EINVAL;
}
} else {
mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_SYS_MEM);
if (mem) {
mem_core = container_of(mem, struct brcmf_core_priv,
pub);
ci->pub.ramsize = brcmf_chip_sysmem_ramsize(mem_core);
ci->pub.rambase = brcmf_chip_tcm_rambase(ci);
if (ci->pub.rambase == INVALID_RAMBASE) {
brcmf_err("RAM base not provided with ARM CA7 core\n");
return -EINVAL;
}
} else {
mem = brcmf_chip_get_core(&ci->pub,
BCMA_CORE_INTERNAL_MEM);
if (!mem) {
brcmf_err("No memory cores found\n");
return -ENOMEM;
}
mem_core = container_of(mem, struct brcmf_core_priv,
pub);
brcmf_chip_socram_ramsize(mem_core, &ci->pub.ramsize,
&ci->pub.srsize);
}
}
brcmf_dbg(INFO, "RAM: base=0x%x size=%d (0x%x) sr=%d (0x%x)\n",
ci->pub.rambase, ci->pub.ramsize, ci->pub.ramsize,
ci->pub.srsize, ci->pub.srsize);
if (!ci->pub.ramsize) {
brcmf_err("RAM size is undetermined\n");
return -ENOMEM;
}
if (ci->pub.ramsize > BRCMF_CHIP_MAX_MEMSIZE) {
brcmf_err("RAM size is incorrect\n");
return -ENOMEM;
}
return 0;
}
static u32 brcmf_chip_dmp_get_desc(struct brcmf_chip_priv *ci, u32 *eromaddr,
u8 *type)
{
u32 val;
/* read next descriptor */
val = ci->ops->read32(ci->ctx, *eromaddr);
*eromaddr += 4;
if (!type)
return val;
/* determine descriptor type */
*type = (val & DMP_DESC_TYPE_MSK);
if ((*type & ~DMP_DESC_ADDRSIZE_GT32) == DMP_DESC_ADDRESS)
*type = DMP_DESC_ADDRESS;
return val;
}
static int brcmf_chip_dmp_get_regaddr(struct brcmf_chip_priv *ci, u32 *eromaddr,
u32 *regbase, u32 *wrapbase)
{
u8 desc;
u32 val, szdesc;
u8 stype, sztype, wraptype;
*regbase = 0;
*wrapbase = 0;
val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
if (desc == DMP_DESC_MASTER_PORT) {
wraptype = DMP_SLAVE_TYPE_MWRAP;
} else if (desc == DMP_DESC_ADDRESS) {
/* revert erom address */
*eromaddr -= 4;
wraptype = DMP_SLAVE_TYPE_SWRAP;
} else {
*eromaddr -= 4;
return -EILSEQ;
}
do {
/* locate address descriptor */
do {
val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
/* unexpected table end */
if (desc == DMP_DESC_EOT) {
*eromaddr -= 4;
return -EFAULT;
}
} while (desc != DMP_DESC_ADDRESS &&
desc != DMP_DESC_COMPONENT);
/* stop if we crossed current component border */
if (desc == DMP_DESC_COMPONENT) {
*eromaddr -= 4;
return 0;
}
/* skip upper 32-bit address descriptor */
if (val & DMP_DESC_ADDRSIZE_GT32)
brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
sztype = (val & DMP_SLAVE_SIZE_TYPE) >> DMP_SLAVE_SIZE_TYPE_S;
/* next size descriptor can be skipped */
if (sztype == DMP_SLAVE_SIZE_DESC) {
szdesc = brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
/* skip upper size descriptor if present */
if (szdesc & DMP_DESC_ADDRSIZE_GT32)
brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
}
/* look for 4K or 8K register regions */
if (sztype != DMP_SLAVE_SIZE_4K &&
sztype != DMP_SLAVE_SIZE_8K)
continue;
stype = (val & DMP_SLAVE_TYPE) >> DMP_SLAVE_TYPE_S;
/* only regular slave and wrapper */
if (*regbase == 0 && stype == DMP_SLAVE_TYPE_SLAVE)
*regbase = val & DMP_SLAVE_ADDR_BASE;
if (*wrapbase == 0 && stype == wraptype)
*wrapbase = val & DMP_SLAVE_ADDR_BASE;
} while (*regbase == 0 || *wrapbase == 0);
return 0;
}
static
int brcmf_chip_dmp_erom_scan(struct brcmf_chip_priv *ci)
{
struct brcmf_core *core;
u32 eromaddr;
u8 desc_type = 0;
u32 val;
u16 id;
u8 nmw, nsw, rev;
u32 base, wrap;
int err;
eromaddr = ci->ops->read32(ci->ctx,
CORE_CC_REG(ci->pub.enum_base, eromptr));
while (desc_type != DMP_DESC_EOT) {
val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
if (!(val & DMP_DESC_VALID))
continue;
if (desc_type == DMP_DESC_EMPTY)
continue;
/* need a component descriptor */
if (desc_type != DMP_DESC_COMPONENT)
continue;
id = (val & DMP_COMP_PARTNUM) >> DMP_COMP_PARTNUM_S;
/* next descriptor must be component as well */
val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
if (WARN_ON((val & DMP_DESC_TYPE_MSK) != DMP_DESC_COMPONENT))
return -EFAULT;
/* only look at cores with master port(s) */
nmw = (val & DMP_COMP_NUM_MWRAP) >> DMP_COMP_NUM_MWRAP_S;
nsw = (val & DMP_COMP_NUM_SWRAP) >> DMP_COMP_NUM_SWRAP_S;
rev = (val & DMP_COMP_REVISION) >> DMP_COMP_REVISION_S;
/* need core with ports */
if (nmw + nsw == 0 &&
id != BCMA_CORE_PMU &&
id != BCMA_CORE_GCI)
continue;
/* try to obtain register address info */
err = brcmf_chip_dmp_get_regaddr(ci, &eromaddr, &base, &wrap);
if (err)
continue;
/* finally a core to be added */
core = brcmf_chip_add_core(ci, id, base, wrap);
if (IS_ERR(core))
return PTR_ERR(core);
core->rev = rev;
}
return 0;
}
u32 brcmf_chip_enum_base(u16 devid)
{
return SI_ENUM_BASE_DEFAULT;
}
static int brcmf_chip_recognition(struct brcmf_chip_priv *ci)
{
struct brcmf_core *core;
u32 regdata;
u32 socitype;
int ret;
/* Get CC core rev
* Chipid is assume to be at offset 0 from SI_ENUM_BASE
* For different chiptypes or old sdio hosts w/o chipcommon,
* other ways of recognition should be added here.
*/
regdata = ci->ops->read32(ci->ctx,
CORE_CC_REG(ci->pub.enum_base, chipid));
ci->pub.chip = regdata & CID_ID_MASK;
ci->pub.chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT;
socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
brcmf_chip_name(ci->pub.chip, ci->pub.chiprev,
ci->pub.name, sizeof(ci->pub.name));
brcmf_dbg(INFO, "found %s chip: %s\n",
socitype == SOCI_SB ? "SB" : "AXI", ci->pub.name);
if (socitype == SOCI_SB) {
if (ci->pub.chip != BRCM_CC_4329_CHIP_ID) {
brcmf_err("SB chip is not supported\n");
return -ENODEV;
}
ci->iscoreup = brcmf_chip_sb_iscoreup;
ci->coredisable = brcmf_chip_sb_coredisable;
ci->resetcore = brcmf_chip_sb_resetcore;
core = brcmf_chip_add_core(ci, BCMA_CORE_CHIPCOMMON,
SI_ENUM_BASE_DEFAULT, 0);
brcmf_chip_sb_corerev(ci, core);
core = brcmf_chip_add_core(ci, BCMA_CORE_SDIO_DEV,
BCM4329_CORE_BUS_BASE, 0);
brcmf_chip_sb_corerev(ci, core);
core = brcmf_chip_add_core(ci, BCMA_CORE_INTERNAL_MEM,
BCM4329_CORE_SOCRAM_BASE, 0);
brcmf_chip_sb_corerev(ci, core);
core = brcmf_chip_add_core(ci, BCMA_CORE_ARM_CM3,
BCM4329_CORE_ARM_BASE, 0);
brcmf_chip_sb_corerev(ci, core);
core = brcmf_chip_add_core(ci, BCMA_CORE_80211, 0x18001000, 0);
brcmf_chip_sb_corerev(ci, core);
} else if (socitype == SOCI_AI) {
ci->iscoreup = brcmf_chip_ai_iscoreup;
ci->coredisable = brcmf_chip_ai_coredisable;
ci->resetcore = brcmf_chip_ai_resetcore;
brcmf_chip_dmp_erom_scan(ci);
} else {
brcmf_err("chip backplane type %u is not supported\n",
socitype);
return -ENODEV;
}
ret = brcmf_chip_cores_check(ci);
if (ret)
return ret;
/* assure chip is passive for core access */
brcmf_chip_set_passive(&ci->pub);
/* Call bus specific reset function now. Cores have been determined
* but further access may require a chip specific reset at this point.
*/
if (ci->ops->reset) {
ci->ops->reset(ci->ctx, &ci->pub);
brcmf_chip_set_passive(&ci->pub);
}
return brcmf_chip_get_raminfo(&ci->pub);
}
static void brcmf_chip_disable_arm(struct brcmf_chip_priv *chip, u16 id)
{
struct brcmf_core *core;
struct brcmf_core_priv *cpu;
u32 val;
core = brcmf_chip_get_core(&chip->pub, id);
if (!core)
return;
switch (id) {
case BCMA_CORE_ARM_CM3:
brcmf_chip_coredisable(core, 0, 0);
break;
case BCMA_CORE_ARM_CR4:
case BCMA_CORE_ARM_CA7:
cpu = container_of(core, struct brcmf_core_priv, pub);
/* clear all IOCTL bits except HALT bit */
val = chip->ops->read32(chip->ctx, cpu->wrapbase + BCMA_IOCTL);
val &= ARMCR4_BCMA_IOCTL_CPUHALT;
brcmf_chip_resetcore(core, val, ARMCR4_BCMA_IOCTL_CPUHALT,
ARMCR4_BCMA_IOCTL_CPUHALT);
break;
default:
brcmf_err("unknown id: %u\n", id);
break;
}
}
static int brcmf_chip_setup(struct brcmf_chip_priv *chip)
{
struct brcmf_chip *pub;
struct brcmf_core_priv *cc;
struct brcmf_core *pmu;
u32 base;
u32 val;
int ret = 0;
pub = &chip->pub;
cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
base = cc->pub.base;
/* get chipcommon capabilites */
pub->cc_caps = chip->ops->read32(chip->ctx,
CORE_CC_REG(base, capabilities));
pub->cc_caps_ext = chip->ops->read32(chip->ctx,
CORE_CC_REG(base,
capabilities_ext));
/* get pmu caps & rev */
pmu = brcmf_chip_get_pmu(pub); /* after reading cc_caps_ext */
if (pub->cc_caps & CC_CAP_PMU) {
val = chip->ops->read32(chip->ctx,
CORE_CC_REG(pmu->base, pmucapabilities));
pub->pmurev = val & PCAP_REV_MASK;
pub->pmucaps = val;
}
brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, pmucaps=0x%x\n",
cc->pub.rev, pub->pmurev, pub->pmucaps);
/* execute bus core specific setup */
if (chip->ops->setup)
ret = chip->ops->setup(chip->ctx, pub);
return ret;
}
struct brcmf_chip *brcmf_chip_attach(void *ctx, u16 devid,
const struct brcmf_buscore_ops *ops)
{
struct brcmf_chip_priv *chip;
int err = 0;
if (WARN_ON(!ops->read32))
err = -EINVAL;
if (WARN_ON(!ops->write32))
err = -EINVAL;
if (WARN_ON(!ops->prepare))
err = -EINVAL;
if (WARN_ON(!ops->activate))
err = -EINVAL;
if (err < 0)
return ERR_PTR(-EINVAL);
chip = kzalloc(sizeof(*chip), GFP_KERNEL);
if (!chip)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&chip->cores);
chip->num_cores = 0;
chip->ops = ops;
chip->ctx = ctx;
chip->pub.enum_base = brcmf_chip_enum_base(devid);
err = ops->prepare(ctx);
if (err < 0)
goto fail;
err = brcmf_chip_recognition(chip);
if (err < 0)
goto fail;
err = brcmf_chip_setup(chip);
if (err < 0)
goto fail;
return &chip->pub;
fail:
brcmf_chip_detach(&chip->pub);
return ERR_PTR(err);
}
void brcmf_chip_detach(struct brcmf_chip *pub)
{
struct brcmf_chip_priv *chip;
struct brcmf_core_priv *core;
struct brcmf_core_priv *tmp;
chip = container_of(pub, struct brcmf_chip_priv, pub);
list_for_each_entry_safe(core, tmp, &chip->cores, list) {
list_del(&core->list);
kfree(core);
}
kfree(chip);
}
struct brcmf_core *brcmf_chip_get_d11core(struct brcmf_chip *pub, u8 unit)
{
struct brcmf_chip_priv *chip;
struct brcmf_core_priv *core;
chip = container_of(pub, struct brcmf_chip_priv, pub);
list_for_each_entry(core, &chip->cores, list) {
if (core->pub.id == BCMA_CORE_80211) {
if (unit-- == 0)
return &core->pub;
}
}
return NULL;
}
struct brcmf_core *brcmf_chip_get_core(struct brcmf_chip *pub, u16 coreid)
{
struct brcmf_chip_priv *chip;
struct brcmf_core_priv *core;
chip = container_of(pub, struct brcmf_chip_priv, pub);
list_for_each_entry(core, &chip->cores, list)
if (core->pub.id == coreid)
return &core->pub;
return NULL;
}
struct brcmf_core *brcmf_chip_get_chipcommon(struct brcmf_chip *pub)
{
struct brcmf_chip_priv *chip;
struct brcmf_core_priv *cc;
chip = container_of(pub, struct brcmf_chip_priv, pub);
cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
if (WARN_ON(!cc || cc->pub.id != BCMA_CORE_CHIPCOMMON))
return brcmf_chip_get_core(pub, BCMA_CORE_CHIPCOMMON);
return &cc->pub;
}
struct brcmf_core *brcmf_chip_get_pmu(struct brcmf_chip *pub)
{
struct brcmf_core *cc = brcmf_chip_get_chipcommon(pub);
struct brcmf_core *pmu;
/* See if there is separated PMU core available */
if (cc->rev >= 35 &&
pub->cc_caps_ext & BCMA_CC_CAP_EXT_AOB_PRESENT) {
pmu = brcmf_chip_get_core(pub, BCMA_CORE_PMU);
if (pmu)
return pmu;
}
/* Fallback to ChipCommon core for older hardware */
return cc;
}
bool brcmf_chip_iscoreup(struct brcmf_core *pub)
{
struct brcmf_core_priv *core;
core = container_of(pub, struct brcmf_core_priv, pub);
return core->chip->iscoreup(core);
}
void brcmf_chip_coredisable(struct brcmf_core *pub, u32 prereset, u32 reset)
{
struct brcmf_core_priv *core;
core = container_of(pub, struct brcmf_core_priv, pub);
core->chip->coredisable(core, prereset, reset);
}
void brcmf_chip_resetcore(struct brcmf_core *pub, u32 prereset, u32 reset,
u32 postreset)
{
struct brcmf_core_priv *core;
core = container_of(pub, struct brcmf_core_priv, pub);
core->chip->resetcore(core, prereset, reset, postreset);
}
static void
brcmf_chip_cm3_set_passive(struct brcmf_chip_priv *chip)
{
struct brcmf_core *core;
struct brcmf_core_priv *sr;
brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CM3);
core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
D11_BCMA_IOCTL_PHYCLOCKEN,
D11_BCMA_IOCTL_PHYCLOCKEN,
D11_BCMA_IOCTL_PHYCLOCKEN);
core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
brcmf_chip_resetcore(core, 0, 0, 0);
/* disable bank #3 remap for this device */
if (chip->pub.chip == BRCM_CC_43430_CHIP_ID ||
chip->pub.chip == CY_CC_43439_CHIP_ID) {
sr = container_of(core, struct brcmf_core_priv, pub);
brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankidx), 3);
brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankpda), 0);
}
}
static bool brcmf_chip_cm3_set_active(struct brcmf_chip_priv *chip)
{
struct brcmf_core *core;
core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
if (!brcmf_chip_iscoreup(core)) {
brcmf_err("SOCRAM core is down after reset?\n");
return false;
}
chip->ops->activate(chip->ctx, &chip->pub, 0);
core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CM3);
brcmf_chip_resetcore(core, 0, 0, 0);
return true;
}
static inline void
brcmf_chip_cr4_set_passive(struct brcmf_chip_priv *chip)
{
struct brcmf_core *core;
brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CR4);
core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
D11_BCMA_IOCTL_PHYCLOCKEN,
D11_BCMA_IOCTL_PHYCLOCKEN,
D11_BCMA_IOCTL_PHYCLOCKEN);
}
static bool brcmf_chip_cr4_set_active(struct brcmf_chip_priv *chip, u32 rstvec)
{
struct brcmf_core *core;
chip->ops->activate(chip->ctx, &chip->pub, rstvec);
/* restore ARM */
core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CR4);
brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0);
return true;
}
static inline void
brcmf_chip_ca7_set_passive(struct brcmf_chip_priv *chip)
{
struct brcmf_core *core;
brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CA7);
core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
D11_BCMA_IOCTL_PHYCLOCKEN,
D11_BCMA_IOCTL_PHYCLOCKEN,
D11_BCMA_IOCTL_PHYCLOCKEN);
}
static bool brcmf_chip_ca7_set_active(struct brcmf_chip_priv *chip, u32 rstvec)
{
struct brcmf_core *core;
chip->ops->activate(chip->ctx, &chip->pub, rstvec);
/* restore ARM */
core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CA7);
brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0);
return true;
}
void brcmf_chip_set_passive(struct brcmf_chip *pub)
{
struct brcmf_chip_priv *chip;
struct brcmf_core *arm;
brcmf_dbg(TRACE, "Enter\n");
chip = container_of(pub, struct brcmf_chip_priv, pub);
arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
if (arm) {
brcmf_chip_cr4_set_passive(chip);
return;
}
arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CA7);
if (arm) {
brcmf_chip_ca7_set_passive(chip);
return;
}
arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3);
if (arm) {
brcmf_chip_cm3_set_passive(chip);
return;
}
}
bool brcmf_chip_set_active(struct brcmf_chip *pub, u32 rstvec)
{
struct brcmf_chip_priv *chip;
struct brcmf_core *arm;
brcmf_dbg(TRACE, "Enter\n");
chip = container_of(pub, struct brcmf_chip_priv, pub);
arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
if (arm)
return brcmf_chip_cr4_set_active(chip, rstvec);
arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CA7);
if (arm)
return brcmf_chip_ca7_set_active(chip, rstvec);
arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3);
if (arm)
return brcmf_chip_cm3_set_active(chip);
return false;
}
bool brcmf_chip_sr_capable(struct brcmf_chip *pub)
{
u32 base, addr, reg, pmu_cc3_mask = ~0;
struct brcmf_chip_priv *chip;
struct brcmf_core *pmu = brcmf_chip_get_pmu(pub);
brcmf_dbg(TRACE, "Enter\n");
/* old chips with PMU version less than 17 don't support save restore */
if (pub->pmurev < 17)
return false;
base = brcmf_chip_get_chipcommon(pub)->base;
chip = container_of(pub, struct brcmf_chip_priv, pub);
switch (pub->chip) {
case BRCM_CC_4354_CHIP_ID:
case BRCM_CC_4356_CHIP_ID:
case BRCM_CC_4345_CHIP_ID:
case BRCM_CC_43454_CHIP_ID:
/* explicitly check SR engine enable bit */
pmu_cc3_mask = BIT(2);
fallthrough;
case BRCM_CC_43241_CHIP_ID:
case BRCM_CC_4335_CHIP_ID:
case BRCM_CC_4339_CHIP_ID:
/* read PMU chipcontrol register 3 */
addr = CORE_CC_REG(pmu->base, chipcontrol_addr);
chip->ops->write32(chip->ctx, addr, 3);
addr = CORE_CC_REG(pmu->base, chipcontrol_data);
reg = chip->ops->read32(chip->ctx, addr);
return (reg & pmu_cc3_mask) != 0;
case BRCM_CC_43430_CHIP_ID:
case CY_CC_43439_CHIP_ID:
addr = CORE_CC_REG(base, sr_control1);
reg = chip->ops->read32(chip->ctx, addr);
return reg != 0;
case BRCM_CC_4355_CHIP_ID:
case CY_CC_4373_CHIP_ID:
/* explicitly check SR engine enable bit */
addr = CORE_CC_REG(base, sr_control0);
reg = chip->ops->read32(chip->ctx, addr);
return (reg & CC_SR_CTL0_ENABLE_MASK) != 0;
case BRCM_CC_4359_CHIP_ID:
case CY_CC_43752_CHIP_ID:
case CY_CC_43012_CHIP_ID:
addr = CORE_CC_REG(pmu->base, retention_ctl);
reg = chip->ops->read32(chip->ctx, addr);
return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK |
PMU_RCTL_LOGIC_DISABLE_MASK)) == 0;
default:
addr = CORE_CC_REG(pmu->base, pmucapabilities_ext);
reg = chip->ops->read32(chip->ctx, addr);
if ((reg & PCAPEXT_SR_SUPPORTED_MASK) == 0)
return false;
addr = CORE_CC_REG(pmu->base, retention_ctl);
reg = chip->ops->read32(chip->ctx, addr);
return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK |
PMU_RCTL_LOGIC_DISABLE_MASK)) == 0;
}
}