1291 lines
33 KiB
C
1291 lines
33 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
||
|
/*
|
||
|
Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
|
||
|
Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
|
||
|
Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
|
||
|
<http://rt2x00.serialmonkey.com>
|
||
|
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
Module: rt2x00lib
|
||
|
Abstract: rt2x00 queue specific routines.
|
||
|
*/
|
||
|
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/dma-mapping.h>
|
||
|
|
||
|
#include "rt2x00.h"
|
||
|
#include "rt2x00lib.h"
|
||
|
|
||
|
struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp)
|
||
|
{
|
||
|
struct data_queue *queue = entry->queue;
|
||
|
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
|
||
|
struct sk_buff *skb;
|
||
|
struct skb_frame_desc *skbdesc;
|
||
|
unsigned int frame_size;
|
||
|
unsigned int head_size = 0;
|
||
|
unsigned int tail_size = 0;
|
||
|
|
||
|
/*
|
||
|
* The frame size includes descriptor size, because the
|
||
|
* hardware directly receive the frame into the skbuffer.
|
||
|
*/
|
||
|
frame_size = queue->data_size + queue->desc_size + queue->winfo_size;
|
||
|
|
||
|
/*
|
||
|
* The payload should be aligned to a 4-byte boundary,
|
||
|
* this means we need at least 3 bytes for moving the frame
|
||
|
* into the correct offset.
|
||
|
*/
|
||
|
head_size = 4;
|
||
|
|
||
|
/*
|
||
|
* For IV/EIV/ICV assembly we must make sure there is
|
||
|
* at least 8 bytes bytes available in headroom for IV/EIV
|
||
|
* and 8 bytes for ICV data as tailroon.
|
||
|
*/
|
||
|
if (rt2x00_has_cap_hw_crypto(rt2x00dev)) {
|
||
|
head_size += 8;
|
||
|
tail_size += 8;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Allocate skbuffer.
|
||
|
*/
|
||
|
skb = __dev_alloc_skb(frame_size + head_size + tail_size, gfp);
|
||
|
if (!skb)
|
||
|
return NULL;
|
||
|
|
||
|
/*
|
||
|
* Make sure we not have a frame with the requested bytes
|
||
|
* available in the head and tail.
|
||
|
*/
|
||
|
skb_reserve(skb, head_size);
|
||
|
skb_put(skb, frame_size);
|
||
|
|
||
|
/*
|
||
|
* Populate skbdesc.
|
||
|
*/
|
||
|
skbdesc = get_skb_frame_desc(skb);
|
||
|
memset(skbdesc, 0, sizeof(*skbdesc));
|
||
|
|
||
|
if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA)) {
|
||
|
dma_addr_t skb_dma;
|
||
|
|
||
|
skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len,
|
||
|
DMA_FROM_DEVICE);
|
||
|
if (unlikely(dma_mapping_error(rt2x00dev->dev, skb_dma))) {
|
||
|
dev_kfree_skb_any(skb);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
skbdesc->skb_dma = skb_dma;
|
||
|
skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
|
||
|
}
|
||
|
|
||
|
return skb;
|
||
|
}
|
||
|
|
||
|
int rt2x00queue_map_txskb(struct queue_entry *entry)
|
||
|
{
|
||
|
struct device *dev = entry->queue->rt2x00dev->dev;
|
||
|
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
|
||
|
|
||
|
skbdesc->skb_dma =
|
||
|
dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
|
||
|
|
||
|
if (unlikely(dma_mapping_error(dev, skbdesc->skb_dma)))
|
||
|
return -ENOMEM;
|
||
|
|
||
|
skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
|
||
|
rt2x00lib_dmadone(entry);
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
|
||
|
|
||
|
void rt2x00queue_unmap_skb(struct queue_entry *entry)
|
||
|
{
|
||
|
struct device *dev = entry->queue->rt2x00dev->dev;
|
||
|
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
|
||
|
|
||
|
if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
|
||
|
dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
|
||
|
DMA_FROM_DEVICE);
|
||
|
skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
|
||
|
} else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
|
||
|
dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
|
||
|
DMA_TO_DEVICE);
|
||
|
skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
|
||
|
|
||
|
void rt2x00queue_free_skb(struct queue_entry *entry)
|
||
|
{
|
||
|
if (!entry->skb)
|
||
|
return;
|
||
|
|
||
|
rt2x00queue_unmap_skb(entry);
|
||
|
dev_kfree_skb_any(entry->skb);
|
||
|
entry->skb = NULL;
|
||
|
}
|
||
|
|
||
|
void rt2x00queue_align_frame(struct sk_buff *skb)
|
||
|
{
|
||
|
unsigned int frame_length = skb->len;
|
||
|
unsigned int align = ALIGN_SIZE(skb, 0);
|
||
|
|
||
|
if (!align)
|
||
|
return;
|
||
|
|
||
|
skb_push(skb, align);
|
||
|
memmove(skb->data, skb->data + align, frame_length);
|
||
|
skb_trim(skb, frame_length);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* H/W needs L2 padding between the header and the paylod if header size
|
||
|
* is not 4 bytes aligned.
|
||
|
*/
|
||
|
void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int hdr_len)
|
||
|
{
|
||
|
unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
|
||
|
|
||
|
if (!l2pad)
|
||
|
return;
|
||
|
|
||
|
skb_push(skb, l2pad);
|
||
|
memmove(skb->data, skb->data + l2pad, hdr_len);
|
||
|
}
|
||
|
|
||
|
void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int hdr_len)
|
||
|
{
|
||
|
unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
|
||
|
|
||
|
if (!l2pad)
|
||
|
return;
|
||
|
|
||
|
memmove(skb->data + l2pad, skb->data, hdr_len);
|
||
|
skb_pull(skb, l2pad);
|
||
|
}
|
||
|
|
||
|
static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev,
|
||
|
struct sk_buff *skb,
|
||
|
struct txentry_desc *txdesc)
|
||
|
{
|
||
|
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
|
||
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
|
||
|
struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
|
||
|
u16 seqno;
|
||
|
|
||
|
if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
|
||
|
return;
|
||
|
|
||
|
__set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
|
||
|
|
||
|
if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_SW_SEQNO)) {
|
||
|
/*
|
||
|
* rt2800 has a H/W (or F/W) bug, device incorrectly increase
|
||
|
* seqno on retransmitted data (non-QOS) and management frames.
|
||
|
* To workaround the problem let's generate seqno in software.
|
||
|
* Except for beacons which are transmitted periodically by H/W
|
||
|
* hence hardware has to assign seqno for them.
|
||
|
*/
|
||
|
if (ieee80211_is_beacon(hdr->frame_control)) {
|
||
|
__set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
|
||
|
/* H/W will generate sequence number */
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
__clear_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The hardware is not able to insert a sequence number. Assign a
|
||
|
* software generated one here.
|
||
|
*
|
||
|
* This is wrong because beacons are not getting sequence
|
||
|
* numbers assigned properly.
|
||
|
*
|
||
|
* A secondary problem exists for drivers that cannot toggle
|
||
|
* sequence counting per-frame, since those will override the
|
||
|
* sequence counter given by mac80211.
|
||
|
*/
|
||
|
if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
|
||
|
seqno = atomic_add_return(0x10, &intf->seqno);
|
||
|
else
|
||
|
seqno = atomic_read(&intf->seqno);
|
||
|
|
||
|
hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
|
||
|
hdr->seq_ctrl |= cpu_to_le16(seqno);
|
||
|
}
|
||
|
|
||
|
static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev,
|
||
|
struct sk_buff *skb,
|
||
|
struct txentry_desc *txdesc,
|
||
|
const struct rt2x00_rate *hwrate)
|
||
|
{
|
||
|
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
|
||
|
struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
|
||
|
unsigned int data_length;
|
||
|
unsigned int duration;
|
||
|
unsigned int residual;
|
||
|
|
||
|
/*
|
||
|
* Determine with what IFS priority this frame should be send.
|
||
|
* Set ifs to IFS_SIFS when the this is not the first fragment,
|
||
|
* or this fragment came after RTS/CTS.
|
||
|
*/
|
||
|
if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
|
||
|
txdesc->u.plcp.ifs = IFS_BACKOFF;
|
||
|
else
|
||
|
txdesc->u.plcp.ifs = IFS_SIFS;
|
||
|
|
||
|
/* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
|
||
|
data_length = skb->len + 4;
|
||
|
data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb);
|
||
|
|
||
|
/*
|
||
|
* PLCP setup
|
||
|
* Length calculation depends on OFDM/CCK rate.
|
||
|
*/
|
||
|
txdesc->u.plcp.signal = hwrate->plcp;
|
||
|
txdesc->u.plcp.service = 0x04;
|
||
|
|
||
|
if (hwrate->flags & DEV_RATE_OFDM) {
|
||
|
txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
|
||
|
txdesc->u.plcp.length_low = data_length & 0x3f;
|
||
|
} else {
|
||
|
/*
|
||
|
* Convert length to microseconds.
|
||
|
*/
|
||
|
residual = GET_DURATION_RES(data_length, hwrate->bitrate);
|
||
|
duration = GET_DURATION(data_length, hwrate->bitrate);
|
||
|
|
||
|
if (residual != 0) {
|
||
|
duration++;
|
||
|
|
||
|
/*
|
||
|
* Check if we need to set the Length Extension
|
||
|
*/
|
||
|
if (hwrate->bitrate == 110 && residual <= 30)
|
||
|
txdesc->u.plcp.service |= 0x80;
|
||
|
}
|
||
|
|
||
|
txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
|
||
|
txdesc->u.plcp.length_low = duration & 0xff;
|
||
|
|
||
|
/*
|
||
|
* When preamble is enabled we should set the
|
||
|
* preamble bit for the signal.
|
||
|
*/
|
||
|
if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
|
||
|
txdesc->u.plcp.signal |= 0x08;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev,
|
||
|
struct sk_buff *skb,
|
||
|
struct txentry_desc *txdesc,
|
||
|
struct ieee80211_sta *sta,
|
||
|
const struct rt2x00_rate *hwrate)
|
||
|
{
|
||
|
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
|
||
|
struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
|
||
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
|
||
|
struct rt2x00_sta *sta_priv = NULL;
|
||
|
u8 density = 0;
|
||
|
|
||
|
if (sta) {
|
||
|
sta_priv = sta_to_rt2x00_sta(sta);
|
||
|
txdesc->u.ht.wcid = sta_priv->wcid;
|
||
|
density = sta->deflink.ht_cap.ampdu_density;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
|
||
|
* mcs rate to be used
|
||
|
*/
|
||
|
if (txrate->flags & IEEE80211_TX_RC_MCS) {
|
||
|
txdesc->u.ht.mcs = txrate->idx;
|
||
|
|
||
|
/*
|
||
|
* MIMO PS should be set to 1 for STA's using dynamic SM PS
|
||
|
* when using more then one tx stream (>MCS7).
|
||
|
*/
|
||
|
if (sta && txdesc->u.ht.mcs > 7 &&
|
||
|
sta->deflink.smps_mode == IEEE80211_SMPS_DYNAMIC)
|
||
|
__set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags);
|
||
|
} else {
|
||
|
txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs);
|
||
|
if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
|
||
|
txdesc->u.ht.mcs |= 0x08;
|
||
|
}
|
||
|
|
||
|
if (test_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags)) {
|
||
|
if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
|
||
|
txdesc->u.ht.txop = TXOP_SIFS;
|
||
|
else
|
||
|
txdesc->u.ht.txop = TXOP_BACKOFF;
|
||
|
|
||
|
/* Left zero on all other settings. */
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Only one STBC stream is supported for now.
|
||
|
*/
|
||
|
if (tx_info->flags & IEEE80211_TX_CTL_STBC)
|
||
|
txdesc->u.ht.stbc = 1;
|
||
|
|
||
|
/*
|
||
|
* This frame is eligible for an AMPDU, however, don't aggregate
|
||
|
* frames that are intended to probe a specific tx rate.
|
||
|
*/
|
||
|
if (tx_info->flags & IEEE80211_TX_CTL_AMPDU &&
|
||
|
!(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) {
|
||
|
__set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags);
|
||
|
txdesc->u.ht.mpdu_density = density;
|
||
|
txdesc->u.ht.ba_size = 7; /* FIXME: What value is needed? */
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Set 40Mhz mode if necessary (for legacy rates this will
|
||
|
* duplicate the frame to both channels).
|
||
|
*/
|
||
|
if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH ||
|
||
|
txrate->flags & IEEE80211_TX_RC_DUP_DATA)
|
||
|
__set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags);
|
||
|
if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
|
||
|
__set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags);
|
||
|
|
||
|
/*
|
||
|
* Determine IFS values
|
||
|
* - Use TXOP_BACKOFF for management frames except beacons
|
||
|
* - Use TXOP_SIFS for fragment bursts
|
||
|
* - Use TXOP_HTTXOP for everything else
|
||
|
*
|
||
|
* Note: rt2800 devices won't use CTS protection (if used)
|
||
|
* for frames not transmitted with TXOP_HTTXOP
|
||
|
*/
|
||
|
if (ieee80211_is_mgmt(hdr->frame_control) &&
|
||
|
!ieee80211_is_beacon(hdr->frame_control))
|
||
|
txdesc->u.ht.txop = TXOP_BACKOFF;
|
||
|
else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
|
||
|
txdesc->u.ht.txop = TXOP_SIFS;
|
||
|
else
|
||
|
txdesc->u.ht.txop = TXOP_HTTXOP;
|
||
|
}
|
||
|
|
||
|
static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
|
||
|
struct sk_buff *skb,
|
||
|
struct txentry_desc *txdesc,
|
||
|
struct ieee80211_sta *sta)
|
||
|
{
|
||
|
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
|
||
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
|
||
|
struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
|
||
|
struct ieee80211_rate *rate;
|
||
|
const struct rt2x00_rate *hwrate = NULL;
|
||
|
|
||
|
memset(txdesc, 0, sizeof(*txdesc));
|
||
|
|
||
|
/*
|
||
|
* Header and frame information.
|
||
|
*/
|
||
|
txdesc->length = skb->len;
|
||
|
txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb);
|
||
|
|
||
|
/*
|
||
|
* Check whether this frame is to be acked.
|
||
|
*/
|
||
|
if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
|
||
|
__set_bit(ENTRY_TXD_ACK, &txdesc->flags);
|
||
|
|
||
|
/*
|
||
|
* Check if this is a RTS/CTS frame
|
||
|
*/
|
||
|
if (ieee80211_is_rts(hdr->frame_control) ||
|
||
|
ieee80211_is_cts(hdr->frame_control)) {
|
||
|
__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
|
||
|
if (ieee80211_is_rts(hdr->frame_control))
|
||
|
__set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
|
||
|
else
|
||
|
__set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
|
||
|
if (tx_info->control.rts_cts_rate_idx >= 0)
|
||
|
rate =
|
||
|
ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Determine retry information.
|
||
|
*/
|
||
|
txdesc->retry_limit = tx_info->control.rates[0].count - 1;
|
||
|
if (txdesc->retry_limit >= rt2x00dev->long_retry)
|
||
|
__set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
|
||
|
|
||
|
/*
|
||
|
* Check if more fragments are pending
|
||
|
*/
|
||
|
if (ieee80211_has_morefrags(hdr->frame_control)) {
|
||
|
__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
|
||
|
__set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check if more frames (!= fragments) are pending
|
||
|
*/
|
||
|
if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
|
||
|
__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
|
||
|
|
||
|
/*
|
||
|
* Beacons and probe responses require the tsf timestamp
|
||
|
* to be inserted into the frame.
|
||
|
*/
|
||
|
if ((ieee80211_is_beacon(hdr->frame_control) ||
|
||
|
ieee80211_is_probe_resp(hdr->frame_control)) &&
|
||
|
!(tx_info->flags & IEEE80211_TX_CTL_INJECTED))
|
||
|
__set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
|
||
|
|
||
|
if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
|
||
|
!test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
|
||
|
__set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
|
||
|
|
||
|
/*
|
||
|
* Determine rate modulation.
|
||
|
*/
|
||
|
if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
|
||
|
txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
|
||
|
else if (txrate->flags & IEEE80211_TX_RC_MCS)
|
||
|
txdesc->rate_mode = RATE_MODE_HT_MIX;
|
||
|
else {
|
||
|
rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
|
||
|
hwrate = rt2x00_get_rate(rate->hw_value);
|
||
|
if (hwrate->flags & DEV_RATE_OFDM)
|
||
|
txdesc->rate_mode = RATE_MODE_OFDM;
|
||
|
else
|
||
|
txdesc->rate_mode = RATE_MODE_CCK;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Apply TX descriptor handling by components
|
||
|
*/
|
||
|
rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc);
|
||
|
rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc);
|
||
|
|
||
|
if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_HT_TX_DESC))
|
||
|
rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc,
|
||
|
sta, hwrate);
|
||
|
else
|
||
|
rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc,
|
||
|
hwrate);
|
||
|
}
|
||
|
|
||
|
static int rt2x00queue_write_tx_data(struct queue_entry *entry,
|
||
|
struct txentry_desc *txdesc)
|
||
|
{
|
||
|
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
|
||
|
|
||
|
/*
|
||
|
* This should not happen, we already checked the entry
|
||
|
* was ours. When the hardware disagrees there has been
|
||
|
* a queue corruption!
|
||
|
*/
|
||
|
if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
|
||
|
rt2x00dev->ops->lib->get_entry_state(entry))) {
|
||
|
rt2x00_err(rt2x00dev,
|
||
|
"Corrupt queue %d, accessing entry which is not ours\n"
|
||
|
"Please file bug report to %s\n",
|
||
|
entry->queue->qid, DRV_PROJECT);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Add the requested extra tx headroom in front of the skb.
|
||
|
*/
|
||
|
skb_push(entry->skb, rt2x00dev->extra_tx_headroom);
|
||
|
memset(entry->skb->data, 0, rt2x00dev->extra_tx_headroom);
|
||
|
|
||
|
/*
|
||
|
* Call the driver's write_tx_data function, if it exists.
|
||
|
*/
|
||
|
if (rt2x00dev->ops->lib->write_tx_data)
|
||
|
rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
|
||
|
|
||
|
/*
|
||
|
* Map the skb to DMA.
|
||
|
*/
|
||
|
if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA) &&
|
||
|
rt2x00queue_map_txskb(entry))
|
||
|
return -ENOMEM;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
|
||
|
struct txentry_desc *txdesc)
|
||
|
{
|
||
|
struct data_queue *queue = entry->queue;
|
||
|
|
||
|
queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
|
||
|
|
||
|
/*
|
||
|
* All processing on the frame has been completed, this means
|
||
|
* it is now ready to be dumped to userspace through debugfs.
|
||
|
*/
|
||
|
rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry);
|
||
|
}
|
||
|
|
||
|
static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
|
||
|
struct txentry_desc *txdesc)
|
||
|
{
|
||
|
/*
|
||
|
* Check if we need to kick the queue, there are however a few rules
|
||
|
* 1) Don't kick unless this is the last in frame in a burst.
|
||
|
* When the burst flag is set, this frame is always followed
|
||
|
* by another frame which in some way are related to eachother.
|
||
|
* This is true for fragments, RTS or CTS-to-self frames.
|
||
|
* 2) Rule 1 can be broken when the available entries
|
||
|
* in the queue are less then a certain threshold.
|
||
|
*/
|
||
|
if (rt2x00queue_threshold(queue) ||
|
||
|
!test_bit(ENTRY_TXD_BURST, &txdesc->flags))
|
||
|
queue->rt2x00dev->ops->lib->kick_queue(queue);
|
||
|
}
|
||
|
|
||
|
static void rt2x00queue_bar_check(struct queue_entry *entry)
|
||
|
{
|
||
|
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
|
||
|
struct ieee80211_bar *bar = (void *) (entry->skb->data +
|
||
|
rt2x00dev->extra_tx_headroom);
|
||
|
struct rt2x00_bar_list_entry *bar_entry;
|
||
|
|
||
|
if (likely(!ieee80211_is_back_req(bar->frame_control)))
|
||
|
return;
|
||
|
|
||
|
bar_entry = kmalloc(sizeof(*bar_entry), GFP_ATOMIC);
|
||
|
|
||
|
/*
|
||
|
* If the alloc fails we still send the BAR out but just don't track
|
||
|
* it in our bar list. And as a result we will report it to mac80211
|
||
|
* back as failed.
|
||
|
*/
|
||
|
if (!bar_entry)
|
||
|
return;
|
||
|
|
||
|
bar_entry->entry = entry;
|
||
|
bar_entry->block_acked = 0;
|
||
|
|
||
|
/*
|
||
|
* Copy the relevant parts of the 802.11 BAR into out check list
|
||
|
* such that we can use RCU for less-overhead in the RX path since
|
||
|
* sending BARs and processing the according BlockAck should be
|
||
|
* the exception.
|
||
|
*/
|
||
|
memcpy(bar_entry->ra, bar->ra, sizeof(bar->ra));
|
||
|
memcpy(bar_entry->ta, bar->ta, sizeof(bar->ta));
|
||
|
bar_entry->control = bar->control;
|
||
|
bar_entry->start_seq_num = bar->start_seq_num;
|
||
|
|
||
|
/*
|
||
|
* Insert BAR into our BAR check list.
|
||
|
*/
|
||
|
spin_lock_bh(&rt2x00dev->bar_list_lock);
|
||
|
list_add_tail_rcu(&bar_entry->list, &rt2x00dev->bar_list);
|
||
|
spin_unlock_bh(&rt2x00dev->bar_list_lock);
|
||
|
}
|
||
|
|
||
|
int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
|
||
|
struct ieee80211_sta *sta, bool local)
|
||
|
{
|
||
|
struct ieee80211_tx_info *tx_info;
|
||
|
struct queue_entry *entry;
|
||
|
struct txentry_desc txdesc;
|
||
|
struct skb_frame_desc *skbdesc;
|
||
|
u8 rate_idx, rate_flags;
|
||
|
int ret = 0;
|
||
|
|
||
|
/*
|
||
|
* Copy all TX descriptor information into txdesc,
|
||
|
* after that we are free to use the skb->cb array
|
||
|
* for our information.
|
||
|
*/
|
||
|
rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc, sta);
|
||
|
|
||
|
/*
|
||
|
* All information is retrieved from the skb->cb array,
|
||
|
* now we should claim ownership of the driver part of that
|
||
|
* array, preserving the bitrate index and flags.
|
||
|
*/
|
||
|
tx_info = IEEE80211_SKB_CB(skb);
|
||
|
rate_idx = tx_info->control.rates[0].idx;
|
||
|
rate_flags = tx_info->control.rates[0].flags;
|
||
|
skbdesc = get_skb_frame_desc(skb);
|
||
|
memset(skbdesc, 0, sizeof(*skbdesc));
|
||
|
skbdesc->tx_rate_idx = rate_idx;
|
||
|
skbdesc->tx_rate_flags = rate_flags;
|
||
|
|
||
|
if (local)
|
||
|
skbdesc->flags |= SKBDESC_NOT_MAC80211;
|
||
|
|
||
|
/*
|
||
|
* When hardware encryption is supported, and this frame
|
||
|
* is to be encrypted, we should strip the IV/EIV data from
|
||
|
* the frame so we can provide it to the driver separately.
|
||
|
*/
|
||
|
if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
|
||
|
!test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
|
||
|
if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_COPY_IV))
|
||
|
rt2x00crypto_tx_copy_iv(skb, &txdesc);
|
||
|
else
|
||
|
rt2x00crypto_tx_remove_iv(skb, &txdesc);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* When DMA allocation is required we should guarantee to the
|
||
|
* driver that the DMA is aligned to a 4-byte boundary.
|
||
|
* However some drivers require L2 padding to pad the payload
|
||
|
* rather then the header. This could be a requirement for
|
||
|
* PCI and USB devices, while header alignment only is valid
|
||
|
* for PCI devices.
|
||
|
*/
|
||
|
if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_L2PAD))
|
||
|
rt2x00queue_insert_l2pad(skb, txdesc.header_length);
|
||
|
else if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_DMA))
|
||
|
rt2x00queue_align_frame(skb);
|
||
|
|
||
|
/*
|
||
|
* That function must be called with bh disabled.
|
||
|
*/
|
||
|
spin_lock(&queue->tx_lock);
|
||
|
|
||
|
if (unlikely(rt2x00queue_full(queue))) {
|
||
|
rt2x00_dbg(queue->rt2x00dev, "Dropping frame due to full tx queue %d\n",
|
||
|
queue->qid);
|
||
|
ret = -ENOBUFS;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
entry = rt2x00queue_get_entry(queue, Q_INDEX);
|
||
|
|
||
|
if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
|
||
|
&entry->flags))) {
|
||
|
rt2x00_err(queue->rt2x00dev,
|
||
|
"Arrived at non-free entry in the non-full queue %d\n"
|
||
|
"Please file bug report to %s\n",
|
||
|
queue->qid, DRV_PROJECT);
|
||
|
ret = -EINVAL;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
entry->skb = skb;
|
||
|
|
||
|
/*
|
||
|
* It could be possible that the queue was corrupted and this
|
||
|
* call failed. Since we always return NETDEV_TX_OK to mac80211,
|
||
|
* this frame will simply be dropped.
|
||
|
*/
|
||
|
if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
|
||
|
clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
|
||
|
entry->skb = NULL;
|
||
|
ret = -EIO;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Put BlockAckReqs into our check list for driver BA processing.
|
||
|
*/
|
||
|
rt2x00queue_bar_check(entry);
|
||
|
|
||
|
set_bit(ENTRY_DATA_PENDING, &entry->flags);
|
||
|
|
||
|
rt2x00queue_index_inc(entry, Q_INDEX);
|
||
|
rt2x00queue_write_tx_descriptor(entry, &txdesc);
|
||
|
rt2x00queue_kick_tx_queue(queue, &txdesc);
|
||
|
|
||
|
out:
|
||
|
/*
|
||
|
* Pausing queue has to be serialized with rt2x00lib_txdone(), so we
|
||
|
* do this under queue->tx_lock. Bottom halve was already disabled
|
||
|
* before ieee80211_xmit() call.
|
||
|
*/
|
||
|
if (rt2x00queue_threshold(queue))
|
||
|
rt2x00queue_pause_queue(queue);
|
||
|
|
||
|
spin_unlock(&queue->tx_lock);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
|
||
|
struct ieee80211_vif *vif)
|
||
|
{
|
||
|
struct rt2x00_intf *intf = vif_to_intf(vif);
|
||
|
|
||
|
if (unlikely(!intf->beacon))
|
||
|
return -ENOBUFS;
|
||
|
|
||
|
/*
|
||
|
* Clean up the beacon skb.
|
||
|
*/
|
||
|
rt2x00queue_free_skb(intf->beacon);
|
||
|
|
||
|
/*
|
||
|
* Clear beacon (single bssid devices don't need to clear the beacon
|
||
|
* since the beacon queue will get stopped anyway).
|
||
|
*/
|
||
|
if (rt2x00dev->ops->lib->clear_beacon)
|
||
|
rt2x00dev->ops->lib->clear_beacon(intf->beacon);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
|
||
|
struct ieee80211_vif *vif)
|
||
|
{
|
||
|
struct rt2x00_intf *intf = vif_to_intf(vif);
|
||
|
struct skb_frame_desc *skbdesc;
|
||
|
struct txentry_desc txdesc;
|
||
|
|
||
|
if (unlikely(!intf->beacon))
|
||
|
return -ENOBUFS;
|
||
|
|
||
|
/*
|
||
|
* Clean up the beacon skb.
|
||
|
*/
|
||
|
rt2x00queue_free_skb(intf->beacon);
|
||
|
|
||
|
intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif, 0);
|
||
|
if (!intf->beacon->skb)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
/*
|
||
|
* Copy all TX descriptor information into txdesc,
|
||
|
* after that we are free to use the skb->cb array
|
||
|
* for our information.
|
||
|
*/
|
||
|
rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc, NULL);
|
||
|
|
||
|
/*
|
||
|
* Fill in skb descriptor
|
||
|
*/
|
||
|
skbdesc = get_skb_frame_desc(intf->beacon->skb);
|
||
|
memset(skbdesc, 0, sizeof(*skbdesc));
|
||
|
|
||
|
/*
|
||
|
* Send beacon to hardware.
|
||
|
*/
|
||
|
rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
}
|
||
|
|
||
|
bool rt2x00queue_for_each_entry(struct data_queue *queue,
|
||
|
enum queue_index start,
|
||
|
enum queue_index end,
|
||
|
void *data,
|
||
|
bool (*fn)(struct queue_entry *entry,
|
||
|
void *data))
|
||
|
{
|
||
|
unsigned long irqflags;
|
||
|
unsigned int index_start;
|
||
|
unsigned int index_end;
|
||
|
unsigned int i;
|
||
|
|
||
|
if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
|
||
|
rt2x00_err(queue->rt2x00dev,
|
||
|
"Entry requested from invalid index range (%d - %d)\n",
|
||
|
start, end);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Only protect the range we are going to loop over,
|
||
|
* if during our loop a extra entry is set to pending
|
||
|
* it should not be kicked during this run, since it
|
||
|
* is part of another TX operation.
|
||
|
*/
|
||
|
spin_lock_irqsave(&queue->index_lock, irqflags);
|
||
|
index_start = queue->index[start];
|
||
|
index_end = queue->index[end];
|
||
|
spin_unlock_irqrestore(&queue->index_lock, irqflags);
|
||
|
|
||
|
/*
|
||
|
* Start from the TX done pointer, this guarantees that we will
|
||
|
* send out all frames in the correct order.
|
||
|
*/
|
||
|
if (index_start < index_end) {
|
||
|
for (i = index_start; i < index_end; i++) {
|
||
|
if (fn(&queue->entries[i], data))
|
||
|
return true;
|
||
|
}
|
||
|
} else {
|
||
|
for (i = index_start; i < queue->limit; i++) {
|
||
|
if (fn(&queue->entries[i], data))
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < index_end; i++) {
|
||
|
if (fn(&queue->entries[i], data))
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
|
||
|
|
||
|
struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
|
||
|
enum queue_index index)
|
||
|
{
|
||
|
struct queue_entry *entry;
|
||
|
unsigned long irqflags;
|
||
|
|
||
|
if (unlikely(index >= Q_INDEX_MAX)) {
|
||
|
rt2x00_err(queue->rt2x00dev, "Entry requested from invalid index type (%d)\n",
|
||
|
index);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
spin_lock_irqsave(&queue->index_lock, irqflags);
|
||
|
|
||
|
entry = &queue->entries[queue->index[index]];
|
||
|
|
||
|
spin_unlock_irqrestore(&queue->index_lock, irqflags);
|
||
|
|
||
|
return entry;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
|
||
|
|
||
|
void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
|
||
|
{
|
||
|
struct data_queue *queue = entry->queue;
|
||
|
unsigned long irqflags;
|
||
|
|
||
|
if (unlikely(index >= Q_INDEX_MAX)) {
|
||
|
rt2x00_err(queue->rt2x00dev,
|
||
|
"Index change on invalid index type (%d)\n", index);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
spin_lock_irqsave(&queue->index_lock, irqflags);
|
||
|
|
||
|
queue->index[index]++;
|
||
|
if (queue->index[index] >= queue->limit)
|
||
|
queue->index[index] = 0;
|
||
|
|
||
|
entry->last_action = jiffies;
|
||
|
|
||
|
if (index == Q_INDEX) {
|
||
|
queue->length++;
|
||
|
} else if (index == Q_INDEX_DONE) {
|
||
|
queue->length--;
|
||
|
queue->count++;
|
||
|
}
|
||
|
|
||
|
spin_unlock_irqrestore(&queue->index_lock, irqflags);
|
||
|
}
|
||
|
|
||
|
static void rt2x00queue_pause_queue_nocheck(struct data_queue *queue)
|
||
|
{
|
||
|
switch (queue->qid) {
|
||
|
case QID_AC_VO:
|
||
|
case QID_AC_VI:
|
||
|
case QID_AC_BE:
|
||
|
case QID_AC_BK:
|
||
|
/*
|
||
|
* For TX queues, we have to disable the queue
|
||
|
* inside mac80211.
|
||
|
*/
|
||
|
ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
void rt2x00queue_pause_queue(struct data_queue *queue)
|
||
|
{
|
||
|
if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
|
||
|
!test_bit(QUEUE_STARTED, &queue->flags) ||
|
||
|
test_and_set_bit(QUEUE_PAUSED, &queue->flags))
|
||
|
return;
|
||
|
|
||
|
rt2x00queue_pause_queue_nocheck(queue);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
|
||
|
|
||
|
void rt2x00queue_unpause_queue(struct data_queue *queue)
|
||
|
{
|
||
|
if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
|
||
|
!test_bit(QUEUE_STARTED, &queue->flags) ||
|
||
|
!test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
|
||
|
return;
|
||
|
|
||
|
switch (queue->qid) {
|
||
|
case QID_AC_VO:
|
||
|
case QID_AC_VI:
|
||
|
case QID_AC_BE:
|
||
|
case QID_AC_BK:
|
||
|
/*
|
||
|
* For TX queues, we have to enable the queue
|
||
|
* inside mac80211.
|
||
|
*/
|
||
|
ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
|
||
|
break;
|
||
|
case QID_RX:
|
||
|
/*
|
||
|
* For RX we need to kick the queue now in order to
|
||
|
* receive frames.
|
||
|
*/
|
||
|
queue->rt2x00dev->ops->lib->kick_queue(queue);
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
|
||
|
|
||
|
void rt2x00queue_start_queue(struct data_queue *queue)
|
||
|
{
|
||
|
mutex_lock(&queue->status_lock);
|
||
|
|
||
|
if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
|
||
|
test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
|
||
|
mutex_unlock(&queue->status_lock);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
set_bit(QUEUE_PAUSED, &queue->flags);
|
||
|
|
||
|
queue->rt2x00dev->ops->lib->start_queue(queue);
|
||
|
|
||
|
rt2x00queue_unpause_queue(queue);
|
||
|
|
||
|
mutex_unlock(&queue->status_lock);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
|
||
|
|
||
|
void rt2x00queue_stop_queue(struct data_queue *queue)
|
||
|
{
|
||
|
mutex_lock(&queue->status_lock);
|
||
|
|
||
|
if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
|
||
|
mutex_unlock(&queue->status_lock);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
rt2x00queue_pause_queue_nocheck(queue);
|
||
|
|
||
|
queue->rt2x00dev->ops->lib->stop_queue(queue);
|
||
|
|
||
|
mutex_unlock(&queue->status_lock);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
|
||
|
|
||
|
void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
|
||
|
{
|
||
|
bool tx_queue =
|
||
|
(queue->qid == QID_AC_VO) ||
|
||
|
(queue->qid == QID_AC_VI) ||
|
||
|
(queue->qid == QID_AC_BE) ||
|
||
|
(queue->qid == QID_AC_BK);
|
||
|
|
||
|
if (rt2x00queue_empty(queue))
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* If we are not supposed to drop any pending
|
||
|
* frames, this means we must force a start (=kick)
|
||
|
* to the queue to make sure the hardware will
|
||
|
* start transmitting.
|
||
|
*/
|
||
|
if (!drop && tx_queue)
|
||
|
queue->rt2x00dev->ops->lib->kick_queue(queue);
|
||
|
|
||
|
/*
|
||
|
* Check if driver supports flushing, if that is the case we can
|
||
|
* defer the flushing to the driver. Otherwise we must use the
|
||
|
* alternative which just waits for the queue to become empty.
|
||
|
*/
|
||
|
if (likely(queue->rt2x00dev->ops->lib->flush_queue))
|
||
|
queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
|
||
|
|
||
|
/*
|
||
|
* The queue flush has failed...
|
||
|
*/
|
||
|
if (unlikely(!rt2x00queue_empty(queue)))
|
||
|
rt2x00_warn(queue->rt2x00dev, "Queue %d failed to flush\n",
|
||
|
queue->qid);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
|
||
|
|
||
|
void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
|
||
|
{
|
||
|
struct data_queue *queue;
|
||
|
|
||
|
/*
|
||
|
* rt2x00queue_start_queue will call ieee80211_wake_queue
|
||
|
* for each queue after is has been properly initialized.
|
||
|
*/
|
||
|
tx_queue_for_each(rt2x00dev, queue)
|
||
|
rt2x00queue_start_queue(queue);
|
||
|
|
||
|
rt2x00queue_start_queue(rt2x00dev->rx);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
|
||
|
|
||
|
void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
|
||
|
{
|
||
|
struct data_queue *queue;
|
||
|
|
||
|
/*
|
||
|
* rt2x00queue_stop_queue will call ieee80211_stop_queue
|
||
|
* as well, but we are completely shutting doing everything
|
||
|
* now, so it is much safer to stop all TX queues at once,
|
||
|
* and use rt2x00queue_stop_queue for cleaning up.
|
||
|
*/
|
||
|
ieee80211_stop_queues(rt2x00dev->hw);
|
||
|
|
||
|
tx_queue_for_each(rt2x00dev, queue)
|
||
|
rt2x00queue_stop_queue(queue);
|
||
|
|
||
|
rt2x00queue_stop_queue(rt2x00dev->rx);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
|
||
|
|
||
|
void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
|
||
|
{
|
||
|
struct data_queue *queue;
|
||
|
|
||
|
tx_queue_for_each(rt2x00dev, queue)
|
||
|
rt2x00queue_flush_queue(queue, drop);
|
||
|
|
||
|
rt2x00queue_flush_queue(rt2x00dev->rx, drop);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
|
||
|
|
||
|
static void rt2x00queue_reset(struct data_queue *queue)
|
||
|
{
|
||
|
unsigned long irqflags;
|
||
|
unsigned int i;
|
||
|
|
||
|
spin_lock_irqsave(&queue->index_lock, irqflags);
|
||
|
|
||
|
queue->count = 0;
|
||
|
queue->length = 0;
|
||
|
|
||
|
for (i = 0; i < Q_INDEX_MAX; i++)
|
||
|
queue->index[i] = 0;
|
||
|
|
||
|
spin_unlock_irqrestore(&queue->index_lock, irqflags);
|
||
|
}
|
||
|
|
||
|
void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
|
||
|
{
|
||
|
struct data_queue *queue;
|
||
|
unsigned int i;
|
||
|
|
||
|
queue_for_each(rt2x00dev, queue) {
|
||
|
rt2x00queue_reset(queue);
|
||
|
|
||
|
for (i = 0; i < queue->limit; i++)
|
||
|
rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int rt2x00queue_alloc_entries(struct data_queue *queue)
|
||
|
{
|
||
|
struct queue_entry *entries;
|
||
|
unsigned int entry_size;
|
||
|
unsigned int i;
|
||
|
|
||
|
rt2x00queue_reset(queue);
|
||
|
|
||
|
/*
|
||
|
* Allocate all queue entries.
|
||
|
*/
|
||
|
entry_size = sizeof(*entries) + queue->priv_size;
|
||
|
entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
|
||
|
if (!entries)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
#define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
|
||
|
(((char *)(__base)) + ((__limit) * (__esize)) + \
|
||
|
((__index) * (__psize)))
|
||
|
|
||
|
for (i = 0; i < queue->limit; i++) {
|
||
|
entries[i].flags = 0;
|
||
|
entries[i].queue = queue;
|
||
|
entries[i].skb = NULL;
|
||
|
entries[i].entry_idx = i;
|
||
|
entries[i].priv_data =
|
||
|
QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
|
||
|
sizeof(*entries), queue->priv_size);
|
||
|
}
|
||
|
|
||
|
#undef QUEUE_ENTRY_PRIV_OFFSET
|
||
|
|
||
|
queue->entries = entries;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void rt2x00queue_free_skbs(struct data_queue *queue)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
|
||
|
if (!queue->entries)
|
||
|
return;
|
||
|
|
||
|
for (i = 0; i < queue->limit; i++) {
|
||
|
rt2x00queue_free_skb(&queue->entries[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
struct sk_buff *skb;
|
||
|
|
||
|
for (i = 0; i < queue->limit; i++) {
|
||
|
skb = rt2x00queue_alloc_rxskb(&queue->entries[i], GFP_KERNEL);
|
||
|
if (!skb)
|
||
|
return -ENOMEM;
|
||
|
queue->entries[i].skb = skb;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
|
||
|
{
|
||
|
struct data_queue *queue;
|
||
|
int status;
|
||
|
|
||
|
status = rt2x00queue_alloc_entries(rt2x00dev->rx);
|
||
|
if (status)
|
||
|
goto exit;
|
||
|
|
||
|
tx_queue_for_each(rt2x00dev, queue) {
|
||
|
status = rt2x00queue_alloc_entries(queue);
|
||
|
if (status)
|
||
|
goto exit;
|
||
|
}
|
||
|
|
||
|
status = rt2x00queue_alloc_entries(rt2x00dev->bcn);
|
||
|
if (status)
|
||
|
goto exit;
|
||
|
|
||
|
if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE)) {
|
||
|
status = rt2x00queue_alloc_entries(rt2x00dev->atim);
|
||
|
if (status)
|
||
|
goto exit;
|
||
|
}
|
||
|
|
||
|
status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
|
||
|
if (status)
|
||
|
goto exit;
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
exit:
|
||
|
rt2x00_err(rt2x00dev, "Queue entries allocation failed\n");
|
||
|
|
||
|
rt2x00queue_uninitialize(rt2x00dev);
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
|
||
|
{
|
||
|
struct data_queue *queue;
|
||
|
|
||
|
rt2x00queue_free_skbs(rt2x00dev->rx);
|
||
|
|
||
|
queue_for_each(rt2x00dev, queue) {
|
||
|
kfree(queue->entries);
|
||
|
queue->entries = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
|
||
|
struct data_queue *queue, enum data_queue_qid qid)
|
||
|
{
|
||
|
mutex_init(&queue->status_lock);
|
||
|
spin_lock_init(&queue->tx_lock);
|
||
|
spin_lock_init(&queue->index_lock);
|
||
|
|
||
|
queue->rt2x00dev = rt2x00dev;
|
||
|
queue->qid = qid;
|
||
|
queue->txop = 0;
|
||
|
queue->aifs = 2;
|
||
|
queue->cw_min = 5;
|
||
|
queue->cw_max = 10;
|
||
|
|
||
|
rt2x00dev->ops->queue_init(queue);
|
||
|
|
||
|
queue->threshold = DIV_ROUND_UP(queue->limit, 10);
|
||
|
}
|
||
|
|
||
|
int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
|
||
|
{
|
||
|
struct data_queue *queue;
|
||
|
enum data_queue_qid qid;
|
||
|
unsigned int req_atim =
|
||
|
rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE);
|
||
|
|
||
|
/*
|
||
|
* We need the following queues:
|
||
|
* RX: 1
|
||
|
* TX: ops->tx_queues
|
||
|
* Beacon: 1
|
||
|
* Atim: 1 (if required)
|
||
|
*/
|
||
|
rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
|
||
|
|
||
|
queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
|
||
|
if (!queue)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
/*
|
||
|
* Initialize pointers
|
||
|
*/
|
||
|
rt2x00dev->rx = queue;
|
||
|
rt2x00dev->tx = &queue[1];
|
||
|
rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
|
||
|
rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
|
||
|
|
||
|
/*
|
||
|
* Initialize queue parameters.
|
||
|
* RX: qid = QID_RX
|
||
|
* TX: qid = QID_AC_VO + index
|
||
|
* TX: cw_min: 2^5 = 32.
|
||
|
* TX: cw_max: 2^10 = 1024.
|
||
|
* BCN: qid = QID_BEACON
|
||
|
* ATIM: qid = QID_ATIM
|
||
|
*/
|
||
|
rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
|
||
|
|
||
|
qid = QID_AC_VO;
|
||
|
tx_queue_for_each(rt2x00dev, queue)
|
||
|
rt2x00queue_init(rt2x00dev, queue, qid++);
|
||
|
|
||
|
rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
|
||
|
if (req_atim)
|
||
|
rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
|
||
|
{
|
||
|
kfree(rt2x00dev->rx);
|
||
|
rt2x00dev->rx = NULL;
|
||
|
rt2x00dev->tx = NULL;
|
||
|
rt2x00dev->bcn = NULL;
|
||
|
}
|