linux-zen-server/drivers/net/wireless/realtek/rtw88/pci.c

1840 lines
47 KiB
C
Raw Permalink Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/* Copyright(c) 2018-2019 Realtek Corporation
*/
#include <linux/module.h>
#include <linux/pci.h>
#include "main.h"
#include "pci.h"
#include "reg.h"
#include "tx.h"
#include "rx.h"
#include "fw.h"
#include "ps.h"
#include "debug.h"
static bool rtw_disable_msi;
static bool rtw_pci_disable_aspm;
module_param_named(disable_msi, rtw_disable_msi, bool, 0644);
module_param_named(disable_aspm, rtw_pci_disable_aspm, bool, 0644);
MODULE_PARM_DESC(disable_msi, "Set Y to disable MSI interrupt support");
MODULE_PARM_DESC(disable_aspm, "Set Y to disable PCI ASPM support");
static u32 rtw_pci_tx_queue_idx_addr[] = {
[RTW_TX_QUEUE_BK] = RTK_PCI_TXBD_IDX_BKQ,
[RTW_TX_QUEUE_BE] = RTK_PCI_TXBD_IDX_BEQ,
[RTW_TX_QUEUE_VI] = RTK_PCI_TXBD_IDX_VIQ,
[RTW_TX_QUEUE_VO] = RTK_PCI_TXBD_IDX_VOQ,
[RTW_TX_QUEUE_MGMT] = RTK_PCI_TXBD_IDX_MGMTQ,
[RTW_TX_QUEUE_HI0] = RTK_PCI_TXBD_IDX_HI0Q,
[RTW_TX_QUEUE_H2C] = RTK_PCI_TXBD_IDX_H2CQ,
};
static u8 rtw_pci_get_tx_qsel(struct sk_buff *skb,
enum rtw_tx_queue_type queue)
{
switch (queue) {
case RTW_TX_QUEUE_BCN:
return TX_DESC_QSEL_BEACON;
case RTW_TX_QUEUE_H2C:
return TX_DESC_QSEL_H2C;
case RTW_TX_QUEUE_MGMT:
return TX_DESC_QSEL_MGMT;
case RTW_TX_QUEUE_HI0:
return TX_DESC_QSEL_HIGH;
default:
return skb->priority;
}
};
static u8 rtw_pci_read8(struct rtw_dev *rtwdev, u32 addr)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
return readb(rtwpci->mmap + addr);
}
static u16 rtw_pci_read16(struct rtw_dev *rtwdev, u32 addr)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
return readw(rtwpci->mmap + addr);
}
static u32 rtw_pci_read32(struct rtw_dev *rtwdev, u32 addr)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
return readl(rtwpci->mmap + addr);
}
static void rtw_pci_write8(struct rtw_dev *rtwdev, u32 addr, u8 val)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
writeb(val, rtwpci->mmap + addr);
}
static void rtw_pci_write16(struct rtw_dev *rtwdev, u32 addr, u16 val)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
writew(val, rtwpci->mmap + addr);
}
static void rtw_pci_write32(struct rtw_dev *rtwdev, u32 addr, u32 val)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
writel(val, rtwpci->mmap + addr);
}
static inline void *rtw_pci_get_tx_desc(struct rtw_pci_tx_ring *tx_ring, u8 idx)
{
int offset = tx_ring->r.desc_size * idx;
return tx_ring->r.head + offset;
}
static void rtw_pci_free_tx_ring_skbs(struct rtw_dev *rtwdev,
struct rtw_pci_tx_ring *tx_ring)
{
struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
struct rtw_pci_tx_data *tx_data;
struct sk_buff *skb, *tmp;
dma_addr_t dma;
/* free every skb remained in tx list */
skb_queue_walk_safe(&tx_ring->queue, skb, tmp) {
__skb_unlink(skb, &tx_ring->queue);
tx_data = rtw_pci_get_tx_data(skb);
dma = tx_data->dma;
dma_unmap_single(&pdev->dev, dma, skb->len, DMA_TO_DEVICE);
dev_kfree_skb_any(skb);
}
}
static void rtw_pci_free_tx_ring(struct rtw_dev *rtwdev,
struct rtw_pci_tx_ring *tx_ring)
{
struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
u8 *head = tx_ring->r.head;
u32 len = tx_ring->r.len;
int ring_sz = len * tx_ring->r.desc_size;
rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
/* free the ring itself */
dma_free_coherent(&pdev->dev, ring_sz, head, tx_ring->r.dma);
tx_ring->r.head = NULL;
}
static void rtw_pci_free_rx_ring_skbs(struct rtw_dev *rtwdev,
struct rtw_pci_rx_ring *rx_ring)
{
struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
struct sk_buff *skb;
int buf_sz = RTK_PCI_RX_BUF_SIZE;
dma_addr_t dma;
int i;
for (i = 0; i < rx_ring->r.len; i++) {
skb = rx_ring->buf[i];
if (!skb)
continue;
dma = *((dma_addr_t *)skb->cb);
dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
dev_kfree_skb(skb);
rx_ring->buf[i] = NULL;
}
}
static void rtw_pci_free_rx_ring(struct rtw_dev *rtwdev,
struct rtw_pci_rx_ring *rx_ring)
{
struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
u8 *head = rx_ring->r.head;
int ring_sz = rx_ring->r.desc_size * rx_ring->r.len;
rtw_pci_free_rx_ring_skbs(rtwdev, rx_ring);
dma_free_coherent(&pdev->dev, ring_sz, head, rx_ring->r.dma);
}
static void rtw_pci_free_trx_ring(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
struct rtw_pci_tx_ring *tx_ring;
struct rtw_pci_rx_ring *rx_ring;
int i;
for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
tx_ring = &rtwpci->tx_rings[i];
rtw_pci_free_tx_ring(rtwdev, tx_ring);
}
for (i = 0; i < RTK_MAX_RX_QUEUE_NUM; i++) {
rx_ring = &rtwpci->rx_rings[i];
rtw_pci_free_rx_ring(rtwdev, rx_ring);
}
}
static int rtw_pci_init_tx_ring(struct rtw_dev *rtwdev,
struct rtw_pci_tx_ring *tx_ring,
u8 desc_size, u32 len)
{
struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
int ring_sz = desc_size * len;
dma_addr_t dma;
u8 *head;
if (len > TRX_BD_IDX_MASK) {
rtw_err(rtwdev, "len %d exceeds maximum TX entries\n", len);
return -EINVAL;
}
head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
if (!head) {
rtw_err(rtwdev, "failed to allocate tx ring\n");
return -ENOMEM;
}
skb_queue_head_init(&tx_ring->queue);
tx_ring->r.head = head;
tx_ring->r.dma = dma;
tx_ring->r.len = len;
tx_ring->r.desc_size = desc_size;
tx_ring->r.wp = 0;
tx_ring->r.rp = 0;
return 0;
}
static int rtw_pci_reset_rx_desc(struct rtw_dev *rtwdev, struct sk_buff *skb,
struct rtw_pci_rx_ring *rx_ring,
u32 idx, u32 desc_sz)
{
struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
struct rtw_pci_rx_buffer_desc *buf_desc;
int buf_sz = RTK_PCI_RX_BUF_SIZE;
dma_addr_t dma;
if (!skb)
return -EINVAL;
dma = dma_map_single(&pdev->dev, skb->data, buf_sz, DMA_FROM_DEVICE);
if (dma_mapping_error(&pdev->dev, dma))
return -EBUSY;
*((dma_addr_t *)skb->cb) = dma;
buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
idx * desc_sz);
memset(buf_desc, 0, sizeof(*buf_desc));
buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
buf_desc->dma = cpu_to_le32(dma);
return 0;
}
static void rtw_pci_sync_rx_desc_device(struct rtw_dev *rtwdev, dma_addr_t dma,
struct rtw_pci_rx_ring *rx_ring,
u32 idx, u32 desc_sz)
{
struct device *dev = rtwdev->dev;
struct rtw_pci_rx_buffer_desc *buf_desc;
int buf_sz = RTK_PCI_RX_BUF_SIZE;
dma_sync_single_for_device(dev, dma, buf_sz, DMA_FROM_DEVICE);
buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
idx * desc_sz);
memset(buf_desc, 0, sizeof(*buf_desc));
buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
buf_desc->dma = cpu_to_le32(dma);
}
static int rtw_pci_init_rx_ring(struct rtw_dev *rtwdev,
struct rtw_pci_rx_ring *rx_ring,
u8 desc_size, u32 len)
{
struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
struct sk_buff *skb = NULL;
dma_addr_t dma;
u8 *head;
int ring_sz = desc_size * len;
int buf_sz = RTK_PCI_RX_BUF_SIZE;
int i, allocated;
int ret = 0;
head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
if (!head) {
rtw_err(rtwdev, "failed to allocate rx ring\n");
return -ENOMEM;
}
rx_ring->r.head = head;
for (i = 0; i < len; i++) {
skb = dev_alloc_skb(buf_sz);
if (!skb) {
allocated = i;
ret = -ENOMEM;
goto err_out;
}
memset(skb->data, 0, buf_sz);
rx_ring->buf[i] = skb;
ret = rtw_pci_reset_rx_desc(rtwdev, skb, rx_ring, i, desc_size);
if (ret) {
allocated = i;
dev_kfree_skb_any(skb);
goto err_out;
}
}
rx_ring->r.dma = dma;
rx_ring->r.len = len;
rx_ring->r.desc_size = desc_size;
rx_ring->r.wp = 0;
rx_ring->r.rp = 0;
return 0;
err_out:
for (i = 0; i < allocated; i++) {
skb = rx_ring->buf[i];
if (!skb)
continue;
dma = *((dma_addr_t *)skb->cb);
dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
dev_kfree_skb_any(skb);
rx_ring->buf[i] = NULL;
}
dma_free_coherent(&pdev->dev, ring_sz, head, dma);
rtw_err(rtwdev, "failed to init rx buffer\n");
return ret;
}
static int rtw_pci_init_trx_ring(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
struct rtw_pci_tx_ring *tx_ring;
struct rtw_pci_rx_ring *rx_ring;
const struct rtw_chip_info *chip = rtwdev->chip;
int i = 0, j = 0, tx_alloced = 0, rx_alloced = 0;
int tx_desc_size, rx_desc_size;
u32 len;
int ret;
tx_desc_size = chip->tx_buf_desc_sz;
for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
tx_ring = &rtwpci->tx_rings[i];
len = max_num_of_tx_queue(i);
ret = rtw_pci_init_tx_ring(rtwdev, tx_ring, tx_desc_size, len);
if (ret)
goto out;
}
rx_desc_size = chip->rx_buf_desc_sz;
for (j = 0; j < RTK_MAX_RX_QUEUE_NUM; j++) {
rx_ring = &rtwpci->rx_rings[j];
ret = rtw_pci_init_rx_ring(rtwdev, rx_ring, rx_desc_size,
RTK_MAX_RX_DESC_NUM);
if (ret)
goto out;
}
return 0;
out:
tx_alloced = i;
for (i = 0; i < tx_alloced; i++) {
tx_ring = &rtwpci->tx_rings[i];
rtw_pci_free_tx_ring(rtwdev, tx_ring);
}
rx_alloced = j;
for (j = 0; j < rx_alloced; j++) {
rx_ring = &rtwpci->rx_rings[j];
rtw_pci_free_rx_ring(rtwdev, rx_ring);
}
return ret;
}
static void rtw_pci_deinit(struct rtw_dev *rtwdev)
{
rtw_pci_free_trx_ring(rtwdev);
}
static int rtw_pci_init(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
int ret = 0;
rtwpci->irq_mask[0] = IMR_HIGHDOK |
IMR_MGNTDOK |
IMR_BKDOK |
IMR_BEDOK |
IMR_VIDOK |
IMR_VODOK |
IMR_ROK |
IMR_BCNDMAINT_E |
IMR_C2HCMD |
0;
rtwpci->irq_mask[1] = IMR_TXFOVW |
0;
rtwpci->irq_mask[3] = IMR_H2CDOK |
0;
spin_lock_init(&rtwpci->irq_lock);
spin_lock_init(&rtwpci->hwirq_lock);
ret = rtw_pci_init_trx_ring(rtwdev);
return ret;
}
static void rtw_pci_reset_buf_desc(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
u32 len;
u8 tmp;
dma_addr_t dma;
tmp = rtw_read8(rtwdev, RTK_PCI_CTRL + 3);
rtw_write8(rtwdev, RTK_PCI_CTRL + 3, tmp | 0xf7);
dma = rtwpci->tx_rings[RTW_TX_QUEUE_BCN].r.dma;
rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BCNQ, dma);
if (!rtw_chip_wcpu_11n(rtwdev)) {
len = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.len;
dma = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.dma;
rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.rp = 0;
rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.wp = 0;
rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_H2CQ, len & TRX_BD_IDX_MASK);
rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_H2CQ, dma);
}
len = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.len;
dma = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.dma;
rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.rp = 0;
rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.wp = 0;
rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BKQ, len & TRX_BD_IDX_MASK);
rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BKQ, dma);
len = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.len;
dma = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.dma;
rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.rp = 0;
rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.wp = 0;
rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BEQ, len & TRX_BD_IDX_MASK);
rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BEQ, dma);
len = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.len;
dma = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.dma;
rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.rp = 0;
rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.wp = 0;
rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VOQ, len & TRX_BD_IDX_MASK);
rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VOQ, dma);
len = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.len;
dma = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.dma;
rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.rp = 0;
rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.wp = 0;
rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VIQ, len & TRX_BD_IDX_MASK);
rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VIQ, dma);
len = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.len;
dma = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.dma;
rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.rp = 0;
rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.wp = 0;
rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_MGMTQ, len & TRX_BD_IDX_MASK);
rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_MGMTQ, dma);
len = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.len;
dma = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.dma;
rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.rp = 0;
rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.wp = 0;
rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_HI0Q, len & TRX_BD_IDX_MASK);
rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_HI0Q, dma);
len = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.len;
dma = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.dma;
rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.rp = 0;
rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.wp = 0;
rtw_write16(rtwdev, RTK_PCI_RXBD_NUM_MPDUQ, len & TRX_BD_IDX_MASK);
rtw_write32(rtwdev, RTK_PCI_RXBD_DESA_MPDUQ, dma);
/* reset read/write point */
rtw_write32(rtwdev, RTK_PCI_TXBD_RWPTR_CLR, 0xffffffff);
/* reset H2C Queue index in a single write */
if (rtw_chip_wcpu_11ac(rtwdev))
rtw_write32_set(rtwdev, RTK_PCI_TXBD_H2CQ_CSR,
BIT_CLR_H2CQ_HOST_IDX | BIT_CLR_H2CQ_HW_IDX);
}
static void rtw_pci_reset_trx_ring(struct rtw_dev *rtwdev)
{
rtw_pci_reset_buf_desc(rtwdev);
}
static void rtw_pci_enable_interrupt(struct rtw_dev *rtwdev,
struct rtw_pci *rtwpci, bool exclude_rx)
{
unsigned long flags;
u32 imr0_unmask = exclude_rx ? IMR_ROK : 0;
spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
rtw_write32(rtwdev, RTK_PCI_HIMR0, rtwpci->irq_mask[0] & ~imr0_unmask);
rtw_write32(rtwdev, RTK_PCI_HIMR1, rtwpci->irq_mask[1]);
if (rtw_chip_wcpu_11ac(rtwdev))
rtw_write32(rtwdev, RTK_PCI_HIMR3, rtwpci->irq_mask[3]);
rtwpci->irq_enabled = true;
spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
}
static void rtw_pci_disable_interrupt(struct rtw_dev *rtwdev,
struct rtw_pci *rtwpci)
{
unsigned long flags;
spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
if (!rtwpci->irq_enabled)
goto out;
rtw_write32(rtwdev, RTK_PCI_HIMR0, 0);
rtw_write32(rtwdev, RTK_PCI_HIMR1, 0);
if (rtw_chip_wcpu_11ac(rtwdev))
rtw_write32(rtwdev, RTK_PCI_HIMR3, 0);
rtwpci->irq_enabled = false;
out:
spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
}
static void rtw_pci_dma_reset(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
{
/* reset dma and rx tag */
rtw_write32_set(rtwdev, RTK_PCI_CTRL,
BIT_RST_TRXDMA_INTF | BIT_RX_TAG_EN);
rtwpci->rx_tag = 0;
}
static int rtw_pci_setup(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
rtw_pci_reset_trx_ring(rtwdev);
rtw_pci_dma_reset(rtwdev, rtwpci);
return 0;
}
static void rtw_pci_dma_release(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
{
struct rtw_pci_tx_ring *tx_ring;
enum rtw_tx_queue_type queue;
rtw_pci_reset_trx_ring(rtwdev);
for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
tx_ring = &rtwpci->tx_rings[queue];
rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
}
}
static void rtw_pci_napi_start(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
if (test_and_set_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
return;
napi_enable(&rtwpci->napi);
}
static void rtw_pci_napi_stop(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
if (!test_and_clear_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
return;
napi_synchronize(&rtwpci->napi);
napi_disable(&rtwpci->napi);
}
static int rtw_pci_start(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
rtw_pci_napi_start(rtwdev);
spin_lock_bh(&rtwpci->irq_lock);
rtwpci->running = true;
rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
spin_unlock_bh(&rtwpci->irq_lock);
return 0;
}
static void rtw_pci_stop(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
struct pci_dev *pdev = rtwpci->pdev;
spin_lock_bh(&rtwpci->irq_lock);
rtwpci->running = false;
rtw_pci_disable_interrupt(rtwdev, rtwpci);
spin_unlock_bh(&rtwpci->irq_lock);
synchronize_irq(pdev->irq);
rtw_pci_napi_stop(rtwdev);
spin_lock_bh(&rtwpci->irq_lock);
rtw_pci_dma_release(rtwdev, rtwpci);
spin_unlock_bh(&rtwpci->irq_lock);
}
static void rtw_pci_deep_ps_enter(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
struct rtw_pci_tx_ring *tx_ring;
enum rtw_tx_queue_type queue;
bool tx_empty = true;
if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
goto enter_deep_ps;
lockdep_assert_held(&rtwpci->irq_lock);
/* Deep PS state is not allowed to TX-DMA */
for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
/* BCN queue is rsvd page, does not have DMA interrupt
* H2C queue is managed by firmware
*/
if (queue == RTW_TX_QUEUE_BCN ||
queue == RTW_TX_QUEUE_H2C)
continue;
tx_ring = &rtwpci->tx_rings[queue];
/* check if there is any skb DMAing */
if (skb_queue_len(&tx_ring->queue)) {
tx_empty = false;
break;
}
}
if (!tx_empty) {
rtw_dbg(rtwdev, RTW_DBG_PS,
"TX path not empty, cannot enter deep power save state\n");
return;
}
enter_deep_ps:
set_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags);
rtw_power_mode_change(rtwdev, true);
}
static void rtw_pci_deep_ps_leave(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
lockdep_assert_held(&rtwpci->irq_lock);
if (test_and_clear_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
rtw_power_mode_change(rtwdev, false);
}
static void rtw_pci_deep_ps(struct rtw_dev *rtwdev, bool enter)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
spin_lock_bh(&rtwpci->irq_lock);
if (enter && !test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
rtw_pci_deep_ps_enter(rtwdev);
if (!enter && test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
rtw_pci_deep_ps_leave(rtwdev);
spin_unlock_bh(&rtwpci->irq_lock);
}
static void rtw_pci_release_rsvd_page(struct rtw_pci *rtwpci,
struct rtw_pci_tx_ring *ring)
{
struct sk_buff *prev = skb_dequeue(&ring->queue);
struct rtw_pci_tx_data *tx_data;
dma_addr_t dma;
if (!prev)
return;
tx_data = rtw_pci_get_tx_data(prev);
dma = tx_data->dma;
dma_unmap_single(&rtwpci->pdev->dev, dma, prev->len, DMA_TO_DEVICE);
dev_kfree_skb_any(prev);
}
static void rtw_pci_dma_check(struct rtw_dev *rtwdev,
struct rtw_pci_rx_ring *rx_ring,
u32 idx)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
const struct rtw_chip_info *chip = rtwdev->chip;
struct rtw_pci_rx_buffer_desc *buf_desc;
u32 desc_sz = chip->rx_buf_desc_sz;
u16 total_pkt_size;
buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
idx * desc_sz);
total_pkt_size = le16_to_cpu(buf_desc->total_pkt_size);
/* rx tag mismatch, throw a warning */
if (total_pkt_size != rtwpci->rx_tag)
rtw_warn(rtwdev, "pci bus timeout, check dma status\n");
rtwpci->rx_tag = (rtwpci->rx_tag + 1) % RX_TAG_MAX;
}
static u32 __pci_get_hw_tx_ring_rp(struct rtw_dev *rtwdev, u8 pci_q)
{
u32 bd_idx_addr = rtw_pci_tx_queue_idx_addr[pci_q];
u32 bd_idx = rtw_read16(rtwdev, bd_idx_addr + 2);
return FIELD_GET(TRX_BD_IDX_MASK, bd_idx);
}
static void __pci_flush_queue(struct rtw_dev *rtwdev, u8 pci_q, bool drop)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
struct rtw_pci_tx_ring *ring = &rtwpci->tx_rings[pci_q];
u32 cur_rp;
u8 i;
/* Because the time taked by the I/O in __pci_get_hw_tx_ring_rp is a
* bit dynamic, it's hard to define a reasonable fixed total timeout to
* use read_poll_timeout* helper. Instead, we can ensure a reasonable
* polling times, so we just use for loop with udelay here.
*/
for (i = 0; i < 30; i++) {
cur_rp = __pci_get_hw_tx_ring_rp(rtwdev, pci_q);
if (cur_rp == ring->r.wp)
return;
udelay(1);
}
if (!drop)
rtw_warn(rtwdev, "timed out to flush pci tx ring[%d]\n", pci_q);
}
static void __rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 pci_queues,
bool drop)
{
u8 q;
for (q = 0; q < RTK_MAX_TX_QUEUE_NUM; q++) {
/* It may be not necessary to flush BCN and H2C tx queues. */
if (q == RTW_TX_QUEUE_BCN || q == RTW_TX_QUEUE_H2C)
continue;
if (pci_queues & BIT(q))
__pci_flush_queue(rtwdev, q, drop);
}
}
static void rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 queues, bool drop)
{
u32 pci_queues = 0;
u8 i;
/* If all of the hardware queues are requested to flush,
* flush all of the pci queues.
*/
if (queues == BIT(rtwdev->hw->queues) - 1) {
pci_queues = BIT(RTK_MAX_TX_QUEUE_NUM) - 1;
} else {
for (i = 0; i < rtwdev->hw->queues; i++)
if (queues & BIT(i))
pci_queues |= BIT(rtw_tx_ac_to_hwq(i));
}
__rtw_pci_flush_queues(rtwdev, pci_queues, drop);
}
static void rtw_pci_tx_kick_off_queue(struct rtw_dev *rtwdev,
enum rtw_tx_queue_type queue)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
struct rtw_pci_tx_ring *ring;
u32 bd_idx;
ring = &rtwpci->tx_rings[queue];
bd_idx = rtw_pci_tx_queue_idx_addr[queue];
spin_lock_bh(&rtwpci->irq_lock);
if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
rtw_pci_deep_ps_leave(rtwdev);
rtw_write16(rtwdev, bd_idx, ring->r.wp & TRX_BD_IDX_MASK);
spin_unlock_bh(&rtwpci->irq_lock);
}
static void rtw_pci_tx_kick_off(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
enum rtw_tx_queue_type queue;
for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++)
if (test_and_clear_bit(queue, rtwpci->tx_queued))
rtw_pci_tx_kick_off_queue(rtwdev, queue);
}
static int rtw_pci_tx_write_data(struct rtw_dev *rtwdev,
struct rtw_tx_pkt_info *pkt_info,
struct sk_buff *skb,
enum rtw_tx_queue_type queue)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
const struct rtw_chip_info *chip = rtwdev->chip;
struct rtw_pci_tx_ring *ring;
struct rtw_pci_tx_data *tx_data;
dma_addr_t dma;
u32 tx_pkt_desc_sz = chip->tx_pkt_desc_sz;
u32 tx_buf_desc_sz = chip->tx_buf_desc_sz;
u32 size;
u32 psb_len;
u8 *pkt_desc;
struct rtw_pci_tx_buffer_desc *buf_desc;
ring = &rtwpci->tx_rings[queue];
size = skb->len;
if (queue == RTW_TX_QUEUE_BCN)
rtw_pci_release_rsvd_page(rtwpci, ring);
else if (!avail_desc(ring->r.wp, ring->r.rp, ring->r.len))
return -ENOSPC;
pkt_desc = skb_push(skb, chip->tx_pkt_desc_sz);
memset(pkt_desc, 0, tx_pkt_desc_sz);
pkt_info->qsel = rtw_pci_get_tx_qsel(skb, queue);
rtw_tx_fill_tx_desc(pkt_info, skb);
dma = dma_map_single(&rtwpci->pdev->dev, skb->data, skb->len,
DMA_TO_DEVICE);
if (dma_mapping_error(&rtwpci->pdev->dev, dma))
return -EBUSY;
/* after this we got dma mapped, there is no way back */
buf_desc = get_tx_buffer_desc(ring, tx_buf_desc_sz);
memset(buf_desc, 0, tx_buf_desc_sz);
psb_len = (skb->len - 1) / 128 + 1;
if (queue == RTW_TX_QUEUE_BCN)
psb_len |= 1 << RTK_PCI_TXBD_OWN_OFFSET;
buf_desc[0].psb_len = cpu_to_le16(psb_len);
buf_desc[0].buf_size = cpu_to_le16(tx_pkt_desc_sz);
buf_desc[0].dma = cpu_to_le32(dma);
buf_desc[1].buf_size = cpu_to_le16(size);
buf_desc[1].dma = cpu_to_le32(dma + tx_pkt_desc_sz);
tx_data = rtw_pci_get_tx_data(skb);
tx_data->dma = dma;
tx_data->sn = pkt_info->sn;
spin_lock_bh(&rtwpci->irq_lock);
skb_queue_tail(&ring->queue, skb);
if (queue == RTW_TX_QUEUE_BCN)
goto out_unlock;
/* update write-index, and kick it off later */
set_bit(queue, rtwpci->tx_queued);
if (++ring->r.wp >= ring->r.len)
ring->r.wp = 0;
out_unlock:
spin_unlock_bh(&rtwpci->irq_lock);
return 0;
}
static int rtw_pci_write_data_rsvd_page(struct rtw_dev *rtwdev, u8 *buf,
u32 size)
{
struct sk_buff *skb;
struct rtw_tx_pkt_info pkt_info = {0};
u8 reg_bcn_work;
int ret;
skb = rtw_tx_write_data_rsvd_page_get(rtwdev, &pkt_info, buf, size);
if (!skb)
return -ENOMEM;
ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_BCN);
if (ret) {
rtw_err(rtwdev, "failed to write rsvd page data\n");
return ret;
}
/* reserved pages go through beacon queue */
reg_bcn_work = rtw_read8(rtwdev, RTK_PCI_TXBD_BCN_WORK);
reg_bcn_work |= BIT_PCI_BCNQ_FLAG;
rtw_write8(rtwdev, RTK_PCI_TXBD_BCN_WORK, reg_bcn_work);
return 0;
}
static int rtw_pci_write_data_h2c(struct rtw_dev *rtwdev, u8 *buf, u32 size)
{
struct sk_buff *skb;
struct rtw_tx_pkt_info pkt_info = {0};
int ret;
skb = rtw_tx_write_data_h2c_get(rtwdev, &pkt_info, buf, size);
if (!skb)
return -ENOMEM;
ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_H2C);
if (ret) {
rtw_err(rtwdev, "failed to write h2c data\n");
return ret;
}
rtw_pci_tx_kick_off_queue(rtwdev, RTW_TX_QUEUE_H2C);
return 0;
}
static int rtw_pci_tx_write(struct rtw_dev *rtwdev,
struct rtw_tx_pkt_info *pkt_info,
struct sk_buff *skb)
{
enum rtw_tx_queue_type queue = rtw_tx_queue_mapping(skb);
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
struct rtw_pci_tx_ring *ring;
int ret;
ret = rtw_pci_tx_write_data(rtwdev, pkt_info, skb, queue);
if (ret)
return ret;
ring = &rtwpci->tx_rings[queue];
spin_lock_bh(&rtwpci->irq_lock);
if (avail_desc(ring->r.wp, ring->r.rp, ring->r.len) < 2) {
ieee80211_stop_queue(rtwdev->hw, skb_get_queue_mapping(skb));
ring->queue_stopped = true;
}
spin_unlock_bh(&rtwpci->irq_lock);
return 0;
}
static void rtw_pci_tx_isr(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
u8 hw_queue)
{
struct ieee80211_hw *hw = rtwdev->hw;
struct ieee80211_tx_info *info;
struct rtw_pci_tx_ring *ring;
struct rtw_pci_tx_data *tx_data;
struct sk_buff *skb;
u32 count;
u32 bd_idx_addr;
u32 bd_idx, cur_rp, rp_idx;
u16 q_map;
ring = &rtwpci->tx_rings[hw_queue];
bd_idx_addr = rtw_pci_tx_queue_idx_addr[hw_queue];
bd_idx = rtw_read32(rtwdev, bd_idx_addr);
cur_rp = bd_idx >> 16;
cur_rp &= TRX_BD_IDX_MASK;
rp_idx = ring->r.rp;
if (cur_rp >= ring->r.rp)
count = cur_rp - ring->r.rp;
else
count = ring->r.len - (ring->r.rp - cur_rp);
while (count--) {
skb = skb_dequeue(&ring->queue);
if (!skb) {
rtw_err(rtwdev, "failed to dequeue %d skb TX queue %d, BD=0x%08x, rp %d -> %d\n",
count, hw_queue, bd_idx, ring->r.rp, cur_rp);
break;
}
tx_data = rtw_pci_get_tx_data(skb);
dma_unmap_single(&rtwpci->pdev->dev, tx_data->dma, skb->len,
DMA_TO_DEVICE);
/* just free command packets from host to card */
if (hw_queue == RTW_TX_QUEUE_H2C) {
dev_kfree_skb_irq(skb);
continue;
}
if (ring->queue_stopped &&
avail_desc(ring->r.wp, rp_idx, ring->r.len) > 4) {
q_map = skb_get_queue_mapping(skb);
ieee80211_wake_queue(hw, q_map);
ring->queue_stopped = false;
}
if (++rp_idx >= ring->r.len)
rp_idx = 0;
skb_pull(skb, rtwdev->chip->tx_pkt_desc_sz);
info = IEEE80211_SKB_CB(skb);
/* enqueue to wait for tx report */
if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
rtw_tx_report_enqueue(rtwdev, skb, tx_data->sn);
continue;
}
/* always ACK for others, then they won't be marked as drop */
if (info->flags & IEEE80211_TX_CTL_NO_ACK)
info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
else
info->flags |= IEEE80211_TX_STAT_ACK;
ieee80211_tx_info_clear_status(info);
ieee80211_tx_status_irqsafe(hw, skb);
}
ring->r.rp = cur_rp;
}
static void rtw_pci_rx_isr(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
struct napi_struct *napi = &rtwpci->napi;
napi_schedule(napi);
}
static int rtw_pci_get_hw_rx_ring_nr(struct rtw_dev *rtwdev,
struct rtw_pci *rtwpci)
{
struct rtw_pci_rx_ring *ring;
int count = 0;
u32 tmp, cur_wp;
ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
tmp = rtw_read32(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ);
cur_wp = u32_get_bits(tmp, TRX_BD_HW_IDX_MASK);
if (cur_wp >= ring->r.wp)
count = cur_wp - ring->r.wp;
else
count = ring->r.len - (ring->r.wp - cur_wp);
return count;
}
static u32 rtw_pci_rx_napi(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
u8 hw_queue, u32 limit)
{
const struct rtw_chip_info *chip = rtwdev->chip;
struct napi_struct *napi = &rtwpci->napi;
struct rtw_pci_rx_ring *ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
struct rtw_rx_pkt_stat pkt_stat;
struct ieee80211_rx_status rx_status;
struct sk_buff *skb, *new;
u32 cur_rp = ring->r.rp;
u32 count, rx_done = 0;
u32 pkt_offset;
u32 pkt_desc_sz = chip->rx_pkt_desc_sz;
u32 buf_desc_sz = chip->rx_buf_desc_sz;
u32 new_len;
u8 *rx_desc;
dma_addr_t dma;
count = rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci);
count = min(count, limit);
while (count--) {
rtw_pci_dma_check(rtwdev, ring, cur_rp);
skb = ring->buf[cur_rp];
dma = *((dma_addr_t *)skb->cb);
dma_sync_single_for_cpu(rtwdev->dev, dma, RTK_PCI_RX_BUF_SIZE,
DMA_FROM_DEVICE);
rx_desc = skb->data;
chip->ops->query_rx_desc(rtwdev, rx_desc, &pkt_stat, &rx_status);
/* offset from rx_desc to payload */
pkt_offset = pkt_desc_sz + pkt_stat.drv_info_sz +
pkt_stat.shift;
/* allocate a new skb for this frame,
* discard the frame if none available
*/
new_len = pkt_stat.pkt_len + pkt_offset;
new = dev_alloc_skb(new_len);
if (WARN_ONCE(!new, "rx routine starvation\n"))
goto next_rp;
/* put the DMA data including rx_desc from phy to new skb */
skb_put_data(new, skb->data, new_len);
if (pkt_stat.is_c2h) {
rtw_fw_c2h_cmd_rx_irqsafe(rtwdev, pkt_offset, new);
} else {
/* remove rx_desc */
skb_pull(new, pkt_offset);
rtw_rx_stats(rtwdev, pkt_stat.vif, new);
memcpy(new->cb, &rx_status, sizeof(rx_status));
ieee80211_rx_napi(rtwdev->hw, NULL, new, napi);
rx_done++;
}
next_rp:
/* new skb delivered to mac80211, re-enable original skb DMA */
rtw_pci_sync_rx_desc_device(rtwdev, dma, ring, cur_rp,
buf_desc_sz);
/* host read next element in ring */
if (++cur_rp >= ring->r.len)
cur_rp = 0;
}
ring->r.rp = cur_rp;
/* 'rp', the last position we have read, is seen as previous posistion
* of 'wp' that is used to calculate 'count' next time.
*/
ring->r.wp = cur_rp;
rtw_write16(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ, ring->r.rp);
return rx_done;
}
static void rtw_pci_irq_recognized(struct rtw_dev *rtwdev,
struct rtw_pci *rtwpci, u32 *irq_status)
{
unsigned long flags;
spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
irq_status[0] = rtw_read32(rtwdev, RTK_PCI_HISR0);
irq_status[1] = rtw_read32(rtwdev, RTK_PCI_HISR1);
if (rtw_chip_wcpu_11ac(rtwdev))
irq_status[3] = rtw_read32(rtwdev, RTK_PCI_HISR3);
else
irq_status[3] = 0;
irq_status[0] &= rtwpci->irq_mask[0];
irq_status[1] &= rtwpci->irq_mask[1];
irq_status[3] &= rtwpci->irq_mask[3];
rtw_write32(rtwdev, RTK_PCI_HISR0, irq_status[0]);
rtw_write32(rtwdev, RTK_PCI_HISR1, irq_status[1]);
if (rtw_chip_wcpu_11ac(rtwdev))
rtw_write32(rtwdev, RTK_PCI_HISR3, irq_status[3]);
spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
}
static irqreturn_t rtw_pci_interrupt_handler(int irq, void *dev)
{
struct rtw_dev *rtwdev = dev;
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
/* disable RTW PCI interrupt to avoid more interrupts before the end of
* thread function
*
* disable HIMR here to also avoid new HISR flag being raised before
* the HISRs have been Write-1-cleared for MSI. If not all of the HISRs
* are cleared, the edge-triggered interrupt will not be generated when
* a new HISR flag is set.
*/
rtw_pci_disable_interrupt(rtwdev, rtwpci);
return IRQ_WAKE_THREAD;
}
static irqreturn_t rtw_pci_interrupt_threadfn(int irq, void *dev)
{
struct rtw_dev *rtwdev = dev;
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
u32 irq_status[4];
bool rx = false;
spin_lock_bh(&rtwpci->irq_lock);
rtw_pci_irq_recognized(rtwdev, rtwpci, irq_status);
if (irq_status[0] & IMR_MGNTDOK)
rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_MGMT);
if (irq_status[0] & IMR_HIGHDOK)
rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_HI0);
if (irq_status[0] & IMR_BEDOK)
rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BE);
if (irq_status[0] & IMR_BKDOK)
rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BK);
if (irq_status[0] & IMR_VODOK)
rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VO);
if (irq_status[0] & IMR_VIDOK)
rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VI);
if (irq_status[3] & IMR_H2CDOK)
rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_H2C);
if (irq_status[0] & IMR_ROK) {
rtw_pci_rx_isr(rtwdev);
rx = true;
}
if (unlikely(irq_status[0] & IMR_C2HCMD))
rtw_fw_c2h_cmd_isr(rtwdev);
/* all of the jobs for this interrupt have been done */
if (rtwpci->running)
rtw_pci_enable_interrupt(rtwdev, rtwpci, rx);
spin_unlock_bh(&rtwpci->irq_lock);
return IRQ_HANDLED;
}
static int rtw_pci_io_mapping(struct rtw_dev *rtwdev,
struct pci_dev *pdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
unsigned long len;
u8 bar_id = 2;
int ret;
ret = pci_request_regions(pdev, KBUILD_MODNAME);
if (ret) {
rtw_err(rtwdev, "failed to request pci regions\n");
return ret;
}
len = pci_resource_len(pdev, bar_id);
rtwpci->mmap = pci_iomap(pdev, bar_id, len);
if (!rtwpci->mmap) {
pci_release_regions(pdev);
rtw_err(rtwdev, "failed to map pci memory\n");
return -ENOMEM;
}
return 0;
}
static void rtw_pci_io_unmapping(struct rtw_dev *rtwdev,
struct pci_dev *pdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
if (rtwpci->mmap) {
pci_iounmap(pdev, rtwpci->mmap);
pci_release_regions(pdev);
}
}
static void rtw_dbi_write8(struct rtw_dev *rtwdev, u16 addr, u8 data)
{
u16 write_addr;
u16 remainder = addr & ~(BITS_DBI_WREN | BITS_DBI_ADDR_MASK);
u8 flag;
u8 cnt;
write_addr = addr & BITS_DBI_ADDR_MASK;
write_addr |= u16_encode_bits(BIT(remainder), BITS_DBI_WREN);
rtw_write8(rtwdev, REG_DBI_WDATA_V1 + remainder, data);
rtw_write16(rtwdev, REG_DBI_FLAG_V1, write_addr);
rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_WFLAG >> 16);
for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
if (flag == 0)
return;
udelay(10);
}
WARN(flag, "failed to write to DBI register, addr=0x%04x\n", addr);
}
static int rtw_dbi_read8(struct rtw_dev *rtwdev, u16 addr, u8 *value)
{
u16 read_addr = addr & BITS_DBI_ADDR_MASK;
u8 flag;
u8 cnt;
rtw_write16(rtwdev, REG_DBI_FLAG_V1, read_addr);
rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_RFLAG >> 16);
for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
if (flag == 0) {
read_addr = REG_DBI_RDATA_V1 + (addr & 3);
*value = rtw_read8(rtwdev, read_addr);
return 0;
}
udelay(10);
}
WARN(1, "failed to read DBI register, addr=0x%04x\n", addr);
return -EIO;
}
static void rtw_mdio_write(struct rtw_dev *rtwdev, u8 addr, u16 data, bool g1)
{
u8 page;
u8 wflag;
u8 cnt;
rtw_write16(rtwdev, REG_MDIO_V1, data);
page = addr < RTW_PCI_MDIO_PG_SZ ? 0 : 1;
page += g1 ? RTW_PCI_MDIO_PG_OFFS_G1 : RTW_PCI_MDIO_PG_OFFS_G2;
rtw_write8(rtwdev, REG_PCIE_MIX_CFG, addr & BITS_MDIO_ADDR_MASK);
rtw_write8(rtwdev, REG_PCIE_MIX_CFG + 3, page);
rtw_write32_mask(rtwdev, REG_PCIE_MIX_CFG, BIT_MDIO_WFLAG_V1, 1);
for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
wflag = rtw_read32_mask(rtwdev, REG_PCIE_MIX_CFG,
BIT_MDIO_WFLAG_V1);
if (wflag == 0)
return;
udelay(10);
}
WARN(wflag, "failed to write to MDIO register, addr=0x%02x\n", addr);
}
static void rtw_pci_clkreq_set(struct rtw_dev *rtwdev, bool enable)
{
u8 value;
int ret;
if (rtw_pci_disable_aspm)
return;
ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
if (ret) {
rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
return;
}
if (enable)
value |= BIT_CLKREQ_SW_EN;
else
value &= ~BIT_CLKREQ_SW_EN;
rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
}
static void rtw_pci_clkreq_pad_low(struct rtw_dev *rtwdev, bool enable)
{
u8 value;
int ret;
ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
if (ret) {
rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
return;
}
if (enable)
value &= ~BIT_CLKREQ_N_PAD;
else
value |= BIT_CLKREQ_N_PAD;
rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
}
static void rtw_pci_aspm_set(struct rtw_dev *rtwdev, bool enable)
{
u8 value;
int ret;
if (rtw_pci_disable_aspm)
return;
ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
if (ret) {
rtw_err(rtwdev, "failed to read ASPM, ret=%d", ret);
return;
}
if (enable)
value |= BIT_L1_SW_EN;
else
value &= ~BIT_L1_SW_EN;
rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
}
static void rtw_pci_link_ps(struct rtw_dev *rtwdev, bool enter)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
/* Like CLKREQ, ASPM is also implemented by two HW modules, and can
* only be enabled when host supports it.
*
* And ASPM mechanism should be enabled when driver/firmware enters
* power save mode, without having heavy traffic. Because we've
* experienced some inter-operability issues that the link tends
* to enter L1 state on the fly even when driver is having high
* throughput. This is probably because the ASPM behavior slightly
* varies from different SOC.
*/
if (!(rtwpci->link_ctrl & PCI_EXP_LNKCTL_ASPM_L1))
return;
if ((enter && atomic_dec_if_positive(&rtwpci->link_usage) == 0) ||
(!enter && atomic_inc_return(&rtwpci->link_usage) == 1))
rtw_pci_aspm_set(rtwdev, enter);
}
static void rtw_pci_link_cfg(struct rtw_dev *rtwdev)
{
const struct rtw_chip_info *chip = rtwdev->chip;
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
struct pci_dev *pdev = rtwpci->pdev;
u16 link_ctrl;
int ret;
/* RTL8822CE has enabled REFCLK auto calibration, it does not need
* to add clock delay to cover the REFCLK timing gap.
*/
if (chip->id == RTW_CHIP_TYPE_8822C)
rtw_dbi_write8(rtwdev, RTK_PCIE_CLKDLY_CTRL, 0);
/* Though there is standard PCIE configuration space to set the
* link control register, but by Realtek's design, driver should
* check if host supports CLKREQ/ASPM to enable the HW module.
*
* These functions are implemented by two HW modules associated,
* one is responsible to access PCIE configuration space to
* follow the host settings, and another is in charge of doing
* CLKREQ/ASPM mechanisms, it is default disabled. Because sometimes
* the host does not support it, and due to some reasons or wrong
* settings (ex. CLKREQ# not Bi-Direction), it could lead to device
* loss if HW misbehaves on the link.
*
* Hence it's designed that driver should first check the PCIE
* configuration space is sync'ed and enabled, then driver can turn
* on the other module that is actually working on the mechanism.
*/
ret = pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &link_ctrl);
if (ret) {
rtw_err(rtwdev, "failed to read PCI cap, ret=%d\n", ret);
return;
}
if (link_ctrl & PCI_EXP_LNKCTL_CLKREQ_EN)
rtw_pci_clkreq_set(rtwdev, true);
rtwpci->link_ctrl = link_ctrl;
}
static void rtw_pci_interface_cfg(struct rtw_dev *rtwdev)
{
const struct rtw_chip_info *chip = rtwdev->chip;
switch (chip->id) {
case RTW_CHIP_TYPE_8822C:
if (rtwdev->hal.cut_version >= RTW_CHIP_VER_CUT_D)
rtw_write32_mask(rtwdev, REG_HCI_MIX_CFG,
BIT_PCIE_EMAC_PDN_AUX_TO_FAST_CLK, 1);
break;
default:
break;
}
}
static void rtw_pci_phy_cfg(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
const struct rtw_chip_info *chip = rtwdev->chip;
struct pci_dev *pdev = rtwpci->pdev;
const struct rtw_intf_phy_para *para;
u16 cut;
u16 value;
u16 offset;
int i;
int ret;
cut = BIT(0) << rtwdev->hal.cut_version;
for (i = 0; i < chip->intf_table->n_gen1_para; i++) {
para = &chip->intf_table->gen1_para[i];
if (!(para->cut_mask & cut))
continue;
if (para->offset == 0xffff)
break;
offset = para->offset;
value = para->value;
if (para->ip_sel == RTW_IP_SEL_PHY)
rtw_mdio_write(rtwdev, offset, value, true);
else
rtw_dbi_write8(rtwdev, offset, value);
}
for (i = 0; i < chip->intf_table->n_gen2_para; i++) {
para = &chip->intf_table->gen2_para[i];
if (!(para->cut_mask & cut))
continue;
if (para->offset == 0xffff)
break;
offset = para->offset;
value = para->value;
if (para->ip_sel == RTW_IP_SEL_PHY)
rtw_mdio_write(rtwdev, offset, value, false);
else
rtw_dbi_write8(rtwdev, offset, value);
}
rtw_pci_link_cfg(rtwdev);
/* Disable 8821ce completion timeout by default */
if (chip->id == RTW_CHIP_TYPE_8821C) {
ret = pcie_capability_set_word(pdev, PCI_EXP_DEVCTL2,
PCI_EXP_DEVCTL2_COMP_TMOUT_DIS);
if (ret)
rtw_err(rtwdev, "failed to set PCI cap, ret = %d\n",
ret);
}
}
static int __maybe_unused rtw_pci_suspend(struct device *dev)
{
struct ieee80211_hw *hw = dev_get_drvdata(dev);
struct rtw_dev *rtwdev = hw->priv;
const struct rtw_chip_info *chip = rtwdev->chip;
struct rtw_efuse *efuse = &rtwdev->efuse;
if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
rtw_pci_clkreq_pad_low(rtwdev, true);
return 0;
}
static int __maybe_unused rtw_pci_resume(struct device *dev)
{
struct ieee80211_hw *hw = dev_get_drvdata(dev);
struct rtw_dev *rtwdev = hw->priv;
const struct rtw_chip_info *chip = rtwdev->chip;
struct rtw_efuse *efuse = &rtwdev->efuse;
if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
rtw_pci_clkreq_pad_low(rtwdev, false);
return 0;
}
SIMPLE_DEV_PM_OPS(rtw_pm_ops, rtw_pci_suspend, rtw_pci_resume);
EXPORT_SYMBOL(rtw_pm_ops);
static int rtw_pci_claim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
{
int ret;
ret = pci_enable_device(pdev);
if (ret) {
rtw_err(rtwdev, "failed to enable pci device\n");
return ret;
}
pci_set_master(pdev);
pci_set_drvdata(pdev, rtwdev->hw);
SET_IEEE80211_DEV(rtwdev->hw, &pdev->dev);
return 0;
}
static void rtw_pci_declaim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
{
pci_clear_master(pdev);
pci_disable_device(pdev);
}
static int rtw_pci_setup_resource(struct rtw_dev *rtwdev, struct pci_dev *pdev)
{
struct rtw_pci *rtwpci;
int ret;
rtwpci = (struct rtw_pci *)rtwdev->priv;
rtwpci->pdev = pdev;
/* after this driver can access to hw registers */
ret = rtw_pci_io_mapping(rtwdev, pdev);
if (ret) {
rtw_err(rtwdev, "failed to request pci io region\n");
goto err_out;
}
ret = rtw_pci_init(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to allocate pci resources\n");
goto err_io_unmap;
}
return 0;
err_io_unmap:
rtw_pci_io_unmapping(rtwdev, pdev);
err_out:
return ret;
}
static void rtw_pci_destroy(struct rtw_dev *rtwdev, struct pci_dev *pdev)
{
rtw_pci_deinit(rtwdev);
rtw_pci_io_unmapping(rtwdev, pdev);
}
static struct rtw_hci_ops rtw_pci_ops = {
.tx_write = rtw_pci_tx_write,
.tx_kick_off = rtw_pci_tx_kick_off,
.flush_queues = rtw_pci_flush_queues,
.setup = rtw_pci_setup,
.start = rtw_pci_start,
.stop = rtw_pci_stop,
.deep_ps = rtw_pci_deep_ps,
.link_ps = rtw_pci_link_ps,
.interface_cfg = rtw_pci_interface_cfg,
.read8 = rtw_pci_read8,
.read16 = rtw_pci_read16,
.read32 = rtw_pci_read32,
.write8 = rtw_pci_write8,
.write16 = rtw_pci_write16,
.write32 = rtw_pci_write32,
.write_data_rsvd_page = rtw_pci_write_data_rsvd_page,
.write_data_h2c = rtw_pci_write_data_h2c,
};
static int rtw_pci_request_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
{
unsigned int flags = PCI_IRQ_LEGACY;
int ret;
if (!rtw_disable_msi)
flags |= PCI_IRQ_MSI;
ret = pci_alloc_irq_vectors(pdev, 1, 1, flags);
if (ret < 0) {
rtw_err(rtwdev, "failed to alloc PCI irq vectors\n");
return ret;
}
ret = devm_request_threaded_irq(rtwdev->dev, pdev->irq,
rtw_pci_interrupt_handler,
rtw_pci_interrupt_threadfn,
IRQF_SHARED, KBUILD_MODNAME, rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to request irq %d\n", ret);
pci_free_irq_vectors(pdev);
}
return ret;
}
static void rtw_pci_free_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
{
devm_free_irq(rtwdev->dev, pdev->irq, rtwdev);
pci_free_irq_vectors(pdev);
}
static int rtw_pci_napi_poll(struct napi_struct *napi, int budget)
{
struct rtw_pci *rtwpci = container_of(napi, struct rtw_pci, napi);
struct rtw_dev *rtwdev = container_of((void *)rtwpci, struct rtw_dev,
priv);
int work_done = 0;
if (rtwpci->rx_no_aspm)
rtw_pci_link_ps(rtwdev, false);
while (work_done < budget) {
u32 work_done_once;
work_done_once = rtw_pci_rx_napi(rtwdev, rtwpci, RTW_RX_QUEUE_MPDU,
budget - work_done);
if (work_done_once == 0)
break;
work_done += work_done_once;
}
if (work_done < budget) {
napi_complete_done(napi, work_done);
spin_lock_bh(&rtwpci->irq_lock);
if (rtwpci->running)
rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
spin_unlock_bh(&rtwpci->irq_lock);
/* When ISR happens during polling and before napi_complete
* while no further data is received. Data on the dma_ring will
* not be processed immediately. Check whether dma ring is
* empty and perform napi_schedule accordingly.
*/
if (rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci))
napi_schedule(napi);
}
if (rtwpci->rx_no_aspm)
rtw_pci_link_ps(rtwdev, true);
return work_done;
}
static void rtw_pci_napi_init(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
init_dummy_netdev(&rtwpci->netdev);
netif_napi_add(&rtwpci->netdev, &rtwpci->napi, rtw_pci_napi_poll);
}
static void rtw_pci_napi_deinit(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
rtw_pci_napi_stop(rtwdev);
netif_napi_del(&rtwpci->napi);
}
int rtw_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct pci_dev *bridge = pci_upstream_bridge(pdev);
struct ieee80211_hw *hw;
struct rtw_dev *rtwdev;
struct rtw_pci *rtwpci;
int drv_data_size;
int ret;
drv_data_size = sizeof(struct rtw_dev) + sizeof(struct rtw_pci);
hw = ieee80211_alloc_hw(drv_data_size, &rtw_ops);
if (!hw) {
dev_err(&pdev->dev, "failed to allocate hw\n");
return -ENOMEM;
}
rtwdev = hw->priv;
rtwdev->hw = hw;
rtwdev->dev = &pdev->dev;
rtwdev->chip = (struct rtw_chip_info *)id->driver_data;
rtwdev->hci.ops = &rtw_pci_ops;
rtwdev->hci.type = RTW_HCI_TYPE_PCIE;
rtwpci = (struct rtw_pci *)rtwdev->priv;
atomic_set(&rtwpci->link_usage, 1);
ret = rtw_core_init(rtwdev);
if (ret)
goto err_release_hw;
rtw_dbg(rtwdev, RTW_DBG_PCI,
"rtw88 pci probe: vendor=0x%4.04X device=0x%4.04X rev=%d\n",
pdev->vendor, pdev->device, pdev->revision);
ret = rtw_pci_claim(rtwdev, pdev);
if (ret) {
rtw_err(rtwdev, "failed to claim pci device\n");
goto err_deinit_core;
}
ret = rtw_pci_setup_resource(rtwdev, pdev);
if (ret) {
rtw_err(rtwdev, "failed to setup pci resources\n");
goto err_pci_declaim;
}
rtw_pci_napi_init(rtwdev);
ret = rtw_chip_info_setup(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to setup chip information\n");
goto err_destroy_pci;
}
/* Disable PCIe ASPM L1 while doing NAPI poll for 8821CE */
if (rtwdev->chip->id == RTW_CHIP_TYPE_8821C && bridge->vendor == PCI_VENDOR_ID_INTEL)
rtwpci->rx_no_aspm = true;
rtw_pci_phy_cfg(rtwdev);
ret = rtw_register_hw(rtwdev, hw);
if (ret) {
rtw_err(rtwdev, "failed to register hw\n");
goto err_destroy_pci;
}
ret = rtw_pci_request_irq(rtwdev, pdev);
if (ret) {
ieee80211_unregister_hw(hw);
goto err_destroy_pci;
}
return 0;
err_destroy_pci:
rtw_pci_napi_deinit(rtwdev);
rtw_pci_destroy(rtwdev, pdev);
err_pci_declaim:
rtw_pci_declaim(rtwdev, pdev);
err_deinit_core:
rtw_core_deinit(rtwdev);
err_release_hw:
ieee80211_free_hw(hw);
return ret;
}
EXPORT_SYMBOL(rtw_pci_probe);
void rtw_pci_remove(struct pci_dev *pdev)
{
struct ieee80211_hw *hw = pci_get_drvdata(pdev);
struct rtw_dev *rtwdev;
struct rtw_pci *rtwpci;
if (!hw)
return;
rtwdev = hw->priv;
rtwpci = (struct rtw_pci *)rtwdev->priv;
rtw_unregister_hw(rtwdev, hw);
rtw_pci_disable_interrupt(rtwdev, rtwpci);
rtw_pci_napi_deinit(rtwdev);
rtw_pci_destroy(rtwdev, pdev);
rtw_pci_declaim(rtwdev, pdev);
rtw_pci_free_irq(rtwdev, pdev);
rtw_core_deinit(rtwdev);
ieee80211_free_hw(hw);
}
EXPORT_SYMBOL(rtw_pci_remove);
void rtw_pci_shutdown(struct pci_dev *pdev)
{
struct ieee80211_hw *hw = pci_get_drvdata(pdev);
struct rtw_dev *rtwdev;
const struct rtw_chip_info *chip;
if (!hw)
return;
rtwdev = hw->priv;
chip = rtwdev->chip;
if (chip->ops->shutdown)
chip->ops->shutdown(rtwdev);
pci_set_power_state(pdev, PCI_D3hot);
}
EXPORT_SYMBOL(rtw_pci_shutdown);
MODULE_AUTHOR("Realtek Corporation");
MODULE_DESCRIPTION("Realtek 802.11ac wireless PCI driver");
MODULE_LICENSE("Dual BSD/GPL");