linux-zen-server/drivers/net/wireless/realtek/rtw88/phy.c

2544 lines
63 KiB
C
Raw Permalink Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/* Copyright(c) 2018-2019 Realtek Corporation
*/
#include <linux/bcd.h>
#include "main.h"
#include "reg.h"
#include "fw.h"
#include "phy.h"
#include "debug.h"
#include "regd.h"
#include "sar.h"
struct phy_cfg_pair {
u32 addr;
u32 data;
};
union phy_table_tile {
struct rtw_phy_cond cond;
struct phy_cfg_pair cfg;
};
static const u32 db_invert_table[12][8] = {
{10, 13, 16, 20,
25, 32, 40, 50},
{64, 80, 101, 128,
160, 201, 256, 318},
{401, 505, 635, 800,
1007, 1268, 1596, 2010},
{316, 398, 501, 631,
794, 1000, 1259, 1585},
{1995, 2512, 3162, 3981,
5012, 6310, 7943, 10000},
{12589, 15849, 19953, 25119,
31623, 39811, 50119, 63098},
{79433, 100000, 125893, 158489,
199526, 251189, 316228, 398107},
{501187, 630957, 794328, 1000000,
1258925, 1584893, 1995262, 2511886},
{3162278, 3981072, 5011872, 6309573,
7943282, 1000000, 12589254, 15848932},
{19952623, 25118864, 31622777, 39810717,
50118723, 63095734, 79432823, 100000000},
{125892541, 158489319, 199526232, 251188643,
316227766, 398107171, 501187234, 630957345},
{794328235, 1000000000, 1258925412, 1584893192,
1995262315, 2511886432U, 3162277660U, 3981071706U}
};
u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M };
u8 rtw_ofdm_rates[] = {
DESC_RATE6M, DESC_RATE9M, DESC_RATE12M,
DESC_RATE18M, DESC_RATE24M, DESC_RATE36M,
DESC_RATE48M, DESC_RATE54M
};
u8 rtw_ht_1s_rates[] = {
DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2,
DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5,
DESC_RATEMCS6, DESC_RATEMCS7
};
u8 rtw_ht_2s_rates[] = {
DESC_RATEMCS8, DESC_RATEMCS9, DESC_RATEMCS10,
DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13,
DESC_RATEMCS14, DESC_RATEMCS15
};
u8 rtw_vht_1s_rates[] = {
DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1,
DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3,
DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5,
DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7,
DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9
};
u8 rtw_vht_2s_rates[] = {
DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1,
DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3,
DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5,
DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7,
DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9
};
u8 *rtw_rate_section[RTW_RATE_SECTION_MAX] = {
rtw_cck_rates, rtw_ofdm_rates,
rtw_ht_1s_rates, rtw_ht_2s_rates,
rtw_vht_1s_rates, rtw_vht_2s_rates
};
EXPORT_SYMBOL(rtw_rate_section);
u8 rtw_rate_size[RTW_RATE_SECTION_MAX] = {
ARRAY_SIZE(rtw_cck_rates),
ARRAY_SIZE(rtw_ofdm_rates),
ARRAY_SIZE(rtw_ht_1s_rates),
ARRAY_SIZE(rtw_ht_2s_rates),
ARRAY_SIZE(rtw_vht_1s_rates),
ARRAY_SIZE(rtw_vht_2s_rates)
};
EXPORT_SYMBOL(rtw_rate_size);
static const u8 rtw_cck_size = ARRAY_SIZE(rtw_cck_rates);
static const u8 rtw_ofdm_size = ARRAY_SIZE(rtw_ofdm_rates);
static const u8 rtw_ht_1s_size = ARRAY_SIZE(rtw_ht_1s_rates);
static const u8 rtw_ht_2s_size = ARRAY_SIZE(rtw_ht_2s_rates);
static const u8 rtw_vht_1s_size = ARRAY_SIZE(rtw_vht_1s_rates);
static const u8 rtw_vht_2s_size = ARRAY_SIZE(rtw_vht_2s_rates);
enum rtw_phy_band_type {
PHY_BAND_2G = 0,
PHY_BAND_5G = 1,
};
static void rtw_phy_cck_pd_init(struct rtw_dev *rtwdev)
{
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
u8 i, j;
for (i = 0; i <= RTW_CHANNEL_WIDTH_40; i++) {
for (j = 0; j < RTW_RF_PATH_MAX; j++)
dm_info->cck_pd_lv[i][j] = CCK_PD_LV0;
}
dm_info->cck_fa_avg = CCK_FA_AVG_RESET;
}
void rtw_phy_set_edcca_th(struct rtw_dev *rtwdev, u8 l2h, u8 h2l)
{
struct rtw_hw_reg_offset *edcca_th = rtwdev->chip->edcca_th;
rtw_write32_mask(rtwdev,
edcca_th[EDCCA_TH_L2H_IDX].hw_reg.addr,
edcca_th[EDCCA_TH_L2H_IDX].hw_reg.mask,
l2h + edcca_th[EDCCA_TH_L2H_IDX].offset);
rtw_write32_mask(rtwdev,
edcca_th[EDCCA_TH_H2L_IDX].hw_reg.addr,
edcca_th[EDCCA_TH_H2L_IDX].hw_reg.mask,
h2l + edcca_th[EDCCA_TH_H2L_IDX].offset);
}
EXPORT_SYMBOL(rtw_phy_set_edcca_th);
void rtw_phy_adaptivity_set_mode(struct rtw_dev *rtwdev)
{
const struct rtw_chip_info *chip = rtwdev->chip;
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
/* turn off in debugfs for debug usage */
if (!rtw_edcca_enabled) {
dm_info->edcca_mode = RTW_EDCCA_NORMAL;
rtw_dbg(rtwdev, RTW_DBG_PHY, "EDCCA disabled, cannot be set\n");
return;
}
switch (rtwdev->regd.dfs_region) {
case NL80211_DFS_ETSI:
dm_info->edcca_mode = RTW_EDCCA_ADAPTIVITY;
dm_info->l2h_th_ini = chip->l2h_th_ini_ad;
break;
case NL80211_DFS_JP:
dm_info->edcca_mode = RTW_EDCCA_ADAPTIVITY;
dm_info->l2h_th_ini = chip->l2h_th_ini_cs;
break;
default:
dm_info->edcca_mode = RTW_EDCCA_NORMAL;
break;
}
}
static void rtw_phy_adaptivity_init(struct rtw_dev *rtwdev)
{
const struct rtw_chip_info *chip = rtwdev->chip;
rtw_phy_adaptivity_set_mode(rtwdev);
if (chip->ops->adaptivity_init)
chip->ops->adaptivity_init(rtwdev);
}
static void rtw_phy_adaptivity(struct rtw_dev *rtwdev)
{
if (rtwdev->chip->ops->adaptivity)
rtwdev->chip->ops->adaptivity(rtwdev);
}
static void rtw_phy_cfo_init(struct rtw_dev *rtwdev)
{
const struct rtw_chip_info *chip = rtwdev->chip;
if (chip->ops->cfo_init)
chip->ops->cfo_init(rtwdev);
}
static void rtw_phy_tx_path_div_init(struct rtw_dev *rtwdev)
{
struct rtw_path_div *path_div = &rtwdev->dm_path_div;
path_div->current_tx_path = rtwdev->chip->default_1ss_tx_path;
path_div->path_a_cnt = 0;
path_div->path_a_sum = 0;
path_div->path_b_cnt = 0;
path_div->path_b_sum = 0;
}
void rtw_phy_init(struct rtw_dev *rtwdev)
{
const struct rtw_chip_info *chip = rtwdev->chip;
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
u32 addr, mask;
dm_info->fa_history[3] = 0;
dm_info->fa_history[2] = 0;
dm_info->fa_history[1] = 0;
dm_info->fa_history[0] = 0;
dm_info->igi_bitmap = 0;
dm_info->igi_history[3] = 0;
dm_info->igi_history[2] = 0;
dm_info->igi_history[1] = 0;
addr = chip->dig[0].addr;
mask = chip->dig[0].mask;
dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask);
rtw_phy_cck_pd_init(rtwdev);
dm_info->iqk.done = false;
rtw_phy_adaptivity_init(rtwdev);
rtw_phy_cfo_init(rtwdev);
rtw_phy_tx_path_div_init(rtwdev);
}
EXPORT_SYMBOL(rtw_phy_init);
void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi)
{
const struct rtw_chip_info *chip = rtwdev->chip;
struct rtw_hal *hal = &rtwdev->hal;
u32 addr, mask;
u8 path;
if (chip->dig_cck) {
const struct rtw_hw_reg *dig_cck = &chip->dig_cck[0];
rtw_write32_mask(rtwdev, dig_cck->addr, dig_cck->mask, igi >> 1);
}
for (path = 0; path < hal->rf_path_num; path++) {
addr = chip->dig[path].addr;
mask = chip->dig[path].mask;
rtw_write32_mask(rtwdev, addr, mask, igi);
}
}
static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev)
{
const struct rtw_chip_info *chip = rtwdev->chip;
chip->ops->false_alarm_statistics(rtwdev);
}
#define RA_FLOOR_TABLE_SIZE 7
#define RA_FLOOR_UP_GAP 3
static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi)
{
u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100};
u8 new_level = 0;
int i;
for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++)
if (i >= old_level)
table[i] += RA_FLOOR_UP_GAP;
for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) {
if (rssi < table[i]) {
new_level = i;
break;
}
}
return new_level;
}
struct rtw_phy_stat_iter_data {
struct rtw_dev *rtwdev;
u8 min_rssi;
};
static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta)
{
struct rtw_phy_stat_iter_data *iter_data = data;
struct rtw_dev *rtwdev = iter_data->rtwdev;
struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
u8 rssi;
rssi = ewma_rssi_read(&si->avg_rssi);
si->rssi_level = rtw_phy_get_rssi_level(si->rssi_level, rssi);
rtw_fw_send_rssi_info(rtwdev, si);
iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi);
}
static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev)
{
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
struct rtw_phy_stat_iter_data data = {};
data.rtwdev = rtwdev;
data.min_rssi = U8_MAX;
rtw_iterate_stas(rtwdev, rtw_phy_stat_rssi_iter, &data);
dm_info->pre_min_rssi = dm_info->min_rssi;
dm_info->min_rssi = data.min_rssi;
}
static void rtw_phy_stat_rate_cnt(struct rtw_dev *rtwdev)
{
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
dm_info->last_pkt_count = dm_info->cur_pkt_count;
memset(&dm_info->cur_pkt_count, 0, sizeof(dm_info->cur_pkt_count));
}
static void rtw_phy_statistics(struct rtw_dev *rtwdev)
{
rtw_phy_stat_rssi(rtwdev);
rtw_phy_stat_false_alarm(rtwdev);
rtw_phy_stat_rate_cnt(rtwdev);
}
#define DIG_PERF_FA_TH_LOW 250
#define DIG_PERF_FA_TH_HIGH 500
#define DIG_PERF_FA_TH_EXTRA_HIGH 750
#define DIG_PERF_MAX 0x5a
#define DIG_PERF_MID 0x40
#define DIG_CVRG_FA_TH_LOW 2000
#define DIG_CVRG_FA_TH_HIGH 4000
#define DIG_CVRG_FA_TH_EXTRA_HIGH 5000
#define DIG_CVRG_MAX 0x2a
#define DIG_CVRG_MID 0x26
#define DIG_CVRG_MIN 0x1c
#define DIG_RSSI_GAIN_OFFSET 15
static bool
rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info)
{
u16 fa_lo = DIG_PERF_FA_TH_LOW;
u16 fa_hi = DIG_PERF_FA_TH_HIGH;
u16 *fa_history;
u8 *igi_history;
u8 damping_rssi;
u8 min_rssi;
u8 diff;
u8 igi_bitmap;
bool damping = false;
min_rssi = dm_info->min_rssi;
if (dm_info->damping) {
damping_rssi = dm_info->damping_rssi;
diff = min_rssi > damping_rssi ? min_rssi - damping_rssi :
damping_rssi - min_rssi;
if (diff > 3 || dm_info->damping_cnt++ > 20) {
dm_info->damping = false;
return false;
}
return true;
}
igi_history = dm_info->igi_history;
fa_history = dm_info->fa_history;
igi_bitmap = dm_info->igi_bitmap & 0xf;
switch (igi_bitmap) {
case 5:
/* down -> up -> down -> up */
if (igi_history[0] > igi_history[1] &&
igi_history[2] > igi_history[3] &&
igi_history[0] - igi_history[1] >= 2 &&
igi_history[2] - igi_history[3] >= 2 &&
fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
fa_history[2] > fa_hi && fa_history[3] < fa_lo)
damping = true;
break;
case 9:
/* up -> down -> down -> up */
if (igi_history[0] > igi_history[1] &&
igi_history[3] > igi_history[2] &&
igi_history[0] - igi_history[1] >= 4 &&
igi_history[3] - igi_history[2] >= 2 &&
fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
fa_history[2] < fa_lo && fa_history[3] > fa_hi)
damping = true;
break;
default:
return false;
}
if (damping) {
dm_info->damping = true;
dm_info->damping_cnt = 0;
dm_info->damping_rssi = min_rssi;
}
return damping;
}
static void rtw_phy_dig_get_boundary(struct rtw_dev *rtwdev,
struct rtw_dm_info *dm_info,
u8 *upper, u8 *lower, bool linked)
{
u8 dig_max, dig_min, dig_mid;
u8 min_rssi;
if (linked) {
dig_max = DIG_PERF_MAX;
dig_mid = DIG_PERF_MID;
dig_min = rtwdev->chip->dig_min;
min_rssi = max_t(u8, dm_info->min_rssi, dig_min);
} else {
dig_max = DIG_CVRG_MAX;
dig_mid = DIG_CVRG_MID;
dig_min = DIG_CVRG_MIN;
min_rssi = dig_min;
}
/* DIG MAX should be bounded by minimum RSSI with offset +15 */
dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET);
*lower = clamp_t(u8, min_rssi, dig_min, dig_mid);
*upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max);
}
static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info,
u16 *fa_th, u8 *step, bool linked)
{
u8 min_rssi, pre_min_rssi;
min_rssi = dm_info->min_rssi;
pre_min_rssi = dm_info->pre_min_rssi;
step[0] = 4;
step[1] = 3;
step[2] = 2;
if (linked) {
fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH;
fa_th[1] = DIG_PERF_FA_TH_HIGH;
fa_th[2] = DIG_PERF_FA_TH_LOW;
if (pre_min_rssi > min_rssi) {
step[0] = 6;
step[1] = 4;
step[2] = 2;
}
} else {
fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH;
fa_th[1] = DIG_CVRG_FA_TH_HIGH;
fa_th[2] = DIG_CVRG_FA_TH_LOW;
}
}
static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa)
{
u8 *igi_history;
u16 *fa_history;
u8 igi_bitmap;
bool up;
igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe;
igi_history = dm_info->igi_history;
fa_history = dm_info->fa_history;
up = igi > igi_history[0];
igi_bitmap |= up;
igi_history[3] = igi_history[2];
igi_history[2] = igi_history[1];
igi_history[1] = igi_history[0];
igi_history[0] = igi;
fa_history[3] = fa_history[2];
fa_history[2] = fa_history[1];
fa_history[1] = fa_history[0];
fa_history[0] = fa;
dm_info->igi_bitmap = igi_bitmap;
}
static void rtw_phy_dig(struct rtw_dev *rtwdev)
{
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
u8 upper_bound, lower_bound;
u8 pre_igi, cur_igi;
u16 fa_th[3], fa_cnt;
u8 level;
u8 step[3];
bool linked;
if (test_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags))
return;
if (rtw_phy_dig_check_damping(dm_info))
return;
linked = !!rtwdev->sta_cnt;
fa_cnt = dm_info->total_fa_cnt;
pre_igi = dm_info->igi_history[0];
rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked);
/* test the false alarm count from the highest threshold level first,
* and increase it by corresponding step size
*
* note that the step size is offset by -2, compensate it afterall
*/
cur_igi = pre_igi;
for (level = 0; level < 3; level++) {
if (fa_cnt > fa_th[level]) {
cur_igi += step[level];
break;
}
}
cur_igi -= 2;
/* calculate the upper/lower bound by the minimum rssi we have among
* the peers connected with us, meanwhile make sure the igi value does
* not beyond the hardware limitation
*/
rtw_phy_dig_get_boundary(rtwdev, dm_info, &upper_bound, &lower_bound,
linked);
cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound);
/* record current igi value and false alarm statistics for further
* damping checks, and record the trend of igi values
*/
rtw_phy_dig_recorder(dm_info, cur_igi, fa_cnt);
if (cur_igi != pre_igi)
rtw_phy_dig_write(rtwdev, cur_igi);
}
static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta)
{
struct rtw_dev *rtwdev = data;
struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
rtw_update_sta_info(rtwdev, si, false);
}
static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev)
{
if (rtwdev->watch_dog_cnt & 0x3)
return;
rtw_iterate_stas(rtwdev, rtw_phy_ra_info_update_iter, rtwdev);
}
static u32 rtw_phy_get_rrsr_mask(struct rtw_dev *rtwdev, u8 rate_idx)
{
u8 rate_order;
rate_order = rate_idx;
if (rate_idx >= DESC_RATEVHT4SS_MCS0)
rate_order -= DESC_RATEVHT4SS_MCS0;
else if (rate_idx >= DESC_RATEVHT3SS_MCS0)
rate_order -= DESC_RATEVHT3SS_MCS0;
else if (rate_idx >= DESC_RATEVHT2SS_MCS0)
rate_order -= DESC_RATEVHT2SS_MCS0;
else if (rate_idx >= DESC_RATEVHT1SS_MCS0)
rate_order -= DESC_RATEVHT1SS_MCS0;
else if (rate_idx >= DESC_RATEMCS24)
rate_order -= DESC_RATEMCS24;
else if (rate_idx >= DESC_RATEMCS16)
rate_order -= DESC_RATEMCS16;
else if (rate_idx >= DESC_RATEMCS8)
rate_order -= DESC_RATEMCS8;
else if (rate_idx >= DESC_RATEMCS0)
rate_order -= DESC_RATEMCS0;
else if (rate_idx >= DESC_RATE6M)
rate_order -= DESC_RATE6M;
else
rate_order -= DESC_RATE1M;
if (rate_idx >= DESC_RATEMCS0 || rate_order == 0)
rate_order++;
return GENMASK(rate_order + RRSR_RATE_ORDER_CCK_LEN - 1, 0);
}
static void rtw_phy_rrsr_mask_min_iter(void *data, struct ieee80211_sta *sta)
{
struct rtw_dev *rtwdev = (struct rtw_dev *)data;
struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
u32 mask = 0;
mask = rtw_phy_get_rrsr_mask(rtwdev, si->ra_report.desc_rate);
if (mask < dm_info->rrsr_mask_min)
dm_info->rrsr_mask_min = mask;
}
static void rtw_phy_rrsr_update(struct rtw_dev *rtwdev)
{
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
dm_info->rrsr_mask_min = RRSR_RATE_ORDER_MAX;
rtw_iterate_stas(rtwdev, rtw_phy_rrsr_mask_min_iter, rtwdev);
rtw_write32(rtwdev, REG_RRSR, dm_info->rrsr_val_init & dm_info->rrsr_mask_min);
}
static void rtw_phy_dpk_track(struct rtw_dev *rtwdev)
{
const struct rtw_chip_info *chip = rtwdev->chip;
if (chip->ops->dpk_track)
chip->ops->dpk_track(rtwdev);
}
struct rtw_rx_addr_match_data {
struct rtw_dev *rtwdev;
struct ieee80211_hdr *hdr;
struct rtw_rx_pkt_stat *pkt_stat;
u8 *bssid;
};
static void rtw_phy_parsing_cfo_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct rtw_rx_addr_match_data *iter_data = data;
struct rtw_dev *rtwdev = iter_data->rtwdev;
struct rtw_rx_pkt_stat *pkt_stat = iter_data->pkt_stat;
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
struct rtw_cfo_track *cfo = &dm_info->cfo_track;
u8 *bssid = iter_data->bssid;
u8 i;
if (!ether_addr_equal(vif->bss_conf.bssid, bssid))
return;
for (i = 0; i < rtwdev->hal.rf_path_num; i++) {
cfo->cfo_tail[i] += pkt_stat->cfo_tail[i];
cfo->cfo_cnt[i]++;
}
cfo->packet_count++;
}
void rtw_phy_parsing_cfo(struct rtw_dev *rtwdev,
struct rtw_rx_pkt_stat *pkt_stat)
{
struct ieee80211_hdr *hdr = pkt_stat->hdr;
struct rtw_rx_addr_match_data data = {};
if (pkt_stat->crc_err || pkt_stat->icv_err || !pkt_stat->phy_status ||
ieee80211_is_ctl(hdr->frame_control))
return;
data.rtwdev = rtwdev;
data.hdr = hdr;
data.pkt_stat = pkt_stat;
data.bssid = get_hdr_bssid(hdr);
rtw_iterate_vifs_atomic(rtwdev, rtw_phy_parsing_cfo_iter, &data);
}
EXPORT_SYMBOL(rtw_phy_parsing_cfo);
static void rtw_phy_cfo_track(struct rtw_dev *rtwdev)
{
const struct rtw_chip_info *chip = rtwdev->chip;
if (chip->ops->cfo_track)
chip->ops->cfo_track(rtwdev);
}
#define CCK_PD_FA_LV1_MIN 1000
#define CCK_PD_FA_LV0_MAX 500
static u8 rtw_phy_cck_pd_lv_unlink(struct rtw_dev *rtwdev)
{
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
u32 cck_fa_avg = dm_info->cck_fa_avg;
if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
return CCK_PD_LV1;
if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
return CCK_PD_LV0;
return CCK_PD_LV_MAX;
}
#define CCK_PD_IGI_LV4_VAL 0x38
#define CCK_PD_IGI_LV3_VAL 0x2a
#define CCK_PD_IGI_LV2_VAL 0x24
#define CCK_PD_RSSI_LV4_VAL 32
#define CCK_PD_RSSI_LV3_VAL 32
#define CCK_PD_RSSI_LV2_VAL 24
static u8 rtw_phy_cck_pd_lv_link(struct rtw_dev *rtwdev)
{
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
u8 igi = dm_info->igi_history[0];
u8 rssi = dm_info->min_rssi;
u32 cck_fa_avg = dm_info->cck_fa_avg;
if (igi > CCK_PD_IGI_LV4_VAL && rssi > CCK_PD_RSSI_LV4_VAL)
return CCK_PD_LV4;
if (igi > CCK_PD_IGI_LV3_VAL && rssi > CCK_PD_RSSI_LV3_VAL)
return CCK_PD_LV3;
if (igi > CCK_PD_IGI_LV2_VAL || rssi > CCK_PD_RSSI_LV2_VAL)
return CCK_PD_LV2;
if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
return CCK_PD_LV1;
if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
return CCK_PD_LV0;
return CCK_PD_LV_MAX;
}
static u8 rtw_phy_cck_pd_lv(struct rtw_dev *rtwdev)
{
if (!rtw_is_assoc(rtwdev))
return rtw_phy_cck_pd_lv_unlink(rtwdev);
else
return rtw_phy_cck_pd_lv_link(rtwdev);
}
static void rtw_phy_cck_pd(struct rtw_dev *rtwdev)
{
const struct rtw_chip_info *chip = rtwdev->chip;
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
u32 cck_fa = dm_info->cck_fa_cnt;
u8 level;
if (rtwdev->hal.current_band_type != RTW_BAND_2G)
return;
if (dm_info->cck_fa_avg == CCK_FA_AVG_RESET)
dm_info->cck_fa_avg = cck_fa;
else
dm_info->cck_fa_avg = (dm_info->cck_fa_avg * 3 + cck_fa) >> 2;
rtw_dbg(rtwdev, RTW_DBG_PHY, "IGI=0x%x, rssi_min=%d, cck_fa=%d\n",
dm_info->igi_history[0], dm_info->min_rssi,
dm_info->fa_history[0]);
rtw_dbg(rtwdev, RTW_DBG_PHY, "cck_fa_avg=%d, cck_pd_default=%d\n",
dm_info->cck_fa_avg, dm_info->cck_pd_default);
level = rtw_phy_cck_pd_lv(rtwdev);
if (level >= CCK_PD_LV_MAX)
return;
if (chip->ops->cck_pd_set)
chip->ops->cck_pd_set(rtwdev, level);
}
static void rtw_phy_pwr_track(struct rtw_dev *rtwdev)
{
rtwdev->chip->ops->pwr_track(rtwdev);
}
static void rtw_phy_ra_track(struct rtw_dev *rtwdev)
{
rtw_fw_update_wl_phy_info(rtwdev);
rtw_phy_ra_info_update(rtwdev);
rtw_phy_rrsr_update(rtwdev);
}
void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev)
{
/* for further calculation */
rtw_phy_statistics(rtwdev);
rtw_phy_dig(rtwdev);
rtw_phy_cck_pd(rtwdev);
rtw_phy_ra_track(rtwdev);
rtw_phy_tx_path_diversity(rtwdev);
rtw_phy_cfo_track(rtwdev);
rtw_phy_dpk_track(rtwdev);
rtw_phy_pwr_track(rtwdev);
if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_ADAPTIVITY))
rtw_fw_adaptivity(rtwdev);
else
rtw_phy_adaptivity(rtwdev);
}
#define FRAC_BITS 3
static u8 rtw_phy_power_2_db(s8 power)
{
if (power <= -100 || power >= 20)
return 0;
else if (power >= 0)
return 100;
else
return 100 + power;
}
static u64 rtw_phy_db_2_linear(u8 power_db)
{
u8 i, j;
u64 linear;
if (power_db > 96)
power_db = 96;
else if (power_db < 1)
return 1;
/* 1dB ~ 96dB */
i = (power_db - 1) >> 3;
j = (power_db - 1) - (i << 3);
linear = db_invert_table[i][j];
linear = i > 2 ? linear << FRAC_BITS : linear;
return linear;
}
static u8 rtw_phy_linear_2_db(u64 linear)
{
u8 i;
u8 j;
u32 dB;
for (i = 0; i < 12; i++) {
for (j = 0; j < 8; j++) {
if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j])
goto cnt;
else if (i > 2 && linear <= db_invert_table[i][j])
goto cnt;
}
}
return 96; /* maximum 96 dB */
cnt:
if (j == 0 && i == 0)
goto end;
if (j == 0) {
if (i != 3) {
if (db_invert_table[i][0] - linear >
linear - db_invert_table[i - 1][7]) {
i = i - 1;
j = 7;
}
} else {
if (db_invert_table[3][0] - linear >
linear - db_invert_table[2][7]) {
i = 2;
j = 7;
}
}
} else {
if (db_invert_table[i][j] - linear >
linear - db_invert_table[i][j - 1]) {
j = j - 1;
}
}
end:
dB = (i << 3) + j + 1;
return dB;
}
u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num)
{
s8 power;
u8 power_db;
u64 linear;
u64 sum = 0;
u8 path;
for (path = 0; path < path_num; path++) {
power = rf_power[path];
power_db = rtw_phy_power_2_db(power);
linear = rtw_phy_db_2_linear(power_db);
sum += linear;
}
sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS;
switch (path_num) {
case 2:
sum >>= 1;
break;
case 3:
sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5;
break;
case 4:
sum >>= 2;
break;
default:
break;
}
return rtw_phy_linear_2_db(sum);
}
EXPORT_SYMBOL(rtw_phy_rf_power_2_rssi);
u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
u32 addr, u32 mask)
{
struct rtw_hal *hal = &rtwdev->hal;
const struct rtw_chip_info *chip = rtwdev->chip;
const u32 *base_addr = chip->rf_base_addr;
u32 val, direct_addr;
if (rf_path >= hal->rf_phy_num) {
rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
return INV_RF_DATA;
}
addr &= 0xff;
direct_addr = base_addr[rf_path] + (addr << 2);
mask &= RFREG_MASK;
val = rtw_read32_mask(rtwdev, direct_addr, mask);
return val;
}
EXPORT_SYMBOL(rtw_phy_read_rf);
u32 rtw_phy_read_rf_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
u32 addr, u32 mask)
{
struct rtw_hal *hal = &rtwdev->hal;
const struct rtw_chip_info *chip = rtwdev->chip;
const struct rtw_rf_sipi_addr *rf_sipi_addr;
const struct rtw_rf_sipi_addr *rf_sipi_addr_a;
u32 val32;
u32 en_pi;
u32 r_addr;
u32 shift;
if (rf_path >= hal->rf_phy_num) {
rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
return INV_RF_DATA;
}
if (!chip->rf_sipi_read_addr) {
rtw_err(rtwdev, "rf_sipi_read_addr isn't defined\n");
return INV_RF_DATA;
}
rf_sipi_addr = &chip->rf_sipi_read_addr[rf_path];
rf_sipi_addr_a = &chip->rf_sipi_read_addr[RF_PATH_A];
addr &= 0xff;
val32 = rtw_read32(rtwdev, rf_sipi_addr->hssi_2);
val32 = (val32 & ~LSSI_READ_ADDR_MASK) | (addr << 23);
rtw_write32(rtwdev, rf_sipi_addr->hssi_2, val32);
/* toggle read edge of path A */
val32 = rtw_read32(rtwdev, rf_sipi_addr_a->hssi_2);
rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 & ~LSSI_READ_EDGE_MASK);
rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 | LSSI_READ_EDGE_MASK);
udelay(120);
en_pi = rtw_read32_mask(rtwdev, rf_sipi_addr->hssi_1, BIT(8));
r_addr = en_pi ? rf_sipi_addr->lssi_read_pi : rf_sipi_addr->lssi_read;
val32 = rtw_read32_mask(rtwdev, r_addr, LSSI_READ_DATA_MASK);
shift = __ffs(mask);
return (val32 & mask) >> shift;
}
EXPORT_SYMBOL(rtw_phy_read_rf_sipi);
bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
u32 addr, u32 mask, u32 data)
{
struct rtw_hal *hal = &rtwdev->hal;
const struct rtw_chip_info *chip = rtwdev->chip;
const u32 *sipi_addr = chip->rf_sipi_addr;
u32 data_and_addr;
u32 old_data = 0;
u32 shift;
if (rf_path >= hal->rf_phy_num) {
rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
return false;
}
addr &= 0xff;
mask &= RFREG_MASK;
if (mask != RFREG_MASK) {
old_data = chip->ops->read_rf(rtwdev, rf_path, addr, RFREG_MASK);
if (old_data == INV_RF_DATA) {
rtw_err(rtwdev, "Write fail, rf is disabled\n");
return false;
}
shift = __ffs(mask);
data = ((old_data) & (~mask)) | (data << shift);
}
data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff;
rtw_write32(rtwdev, sipi_addr[rf_path], data_and_addr);
udelay(13);
return true;
}
EXPORT_SYMBOL(rtw_phy_write_rf_reg_sipi);
bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
u32 addr, u32 mask, u32 data)
{
struct rtw_hal *hal = &rtwdev->hal;
const struct rtw_chip_info *chip = rtwdev->chip;
const u32 *base_addr = chip->rf_base_addr;
u32 direct_addr;
if (rf_path >= hal->rf_phy_num) {
rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
return false;
}
addr &= 0xff;
direct_addr = base_addr[rf_path] + (addr << 2);
mask &= RFREG_MASK;
rtw_write32_mask(rtwdev, direct_addr, mask, data);
udelay(1);
return true;
}
bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
u32 addr, u32 mask, u32 data)
{
if (addr != 0x00)
return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data);
return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data);
}
EXPORT_SYMBOL(rtw_phy_write_rf_reg_mix);
void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg)
{
struct rtw_hal *hal = &rtwdev->hal;
struct rtw_efuse *efuse = &rtwdev->efuse;
struct rtw_phy_cond cond = {0};
cond.cut = hal->cut_version ? hal->cut_version : 15;
cond.pkg = pkg ? pkg : 15;
cond.plat = 0x04;
cond.rfe = efuse->rfe_option;
switch (rtw_hci_type(rtwdev)) {
case RTW_HCI_TYPE_USB:
cond.intf = INTF_USB;
break;
case RTW_HCI_TYPE_SDIO:
cond.intf = INTF_SDIO;
break;
case RTW_HCI_TYPE_PCIE:
default:
cond.intf = INTF_PCIE;
break;
}
hal->phy_cond = cond;
rtw_dbg(rtwdev, RTW_DBG_PHY, "phy cond=0x%08x\n", *((u32 *)&hal->phy_cond));
}
static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond)
{
struct rtw_hal *hal = &rtwdev->hal;
struct rtw_phy_cond drv_cond = hal->phy_cond;
if (cond.cut && cond.cut != drv_cond.cut)
return false;
if (cond.pkg && cond.pkg != drv_cond.pkg)
return false;
if (cond.intf && cond.intf != drv_cond.intf)
return false;
if (cond.rfe != drv_cond.rfe)
return false;
return true;
}
void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
{
const union phy_table_tile *p = tbl->data;
const union phy_table_tile *end = p + tbl->size / 2;
struct rtw_phy_cond pos_cond = {0};
bool is_matched = true, is_skipped = false;
BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair));
for (; p < end; p++) {
if (p->cond.pos) {
switch (p->cond.branch) {
case BRANCH_ENDIF:
is_matched = true;
is_skipped = false;
break;
case BRANCH_ELSE:
is_matched = is_skipped ? false : true;
break;
case BRANCH_IF:
case BRANCH_ELIF:
default:
pos_cond = p->cond;
break;
}
} else if (p->cond.neg) {
if (!is_skipped) {
if (check_positive(rtwdev, pos_cond)) {
is_matched = true;
is_skipped = true;
} else {
is_matched = false;
is_skipped = false;
}
} else {
is_matched = false;
}
} else if (is_matched) {
(*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data);
}
}
}
EXPORT_SYMBOL(rtw_parse_tbl_phy_cond);
#define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8))
static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i)
{
if (rtwdev->chip->is_pwr_by_rate_dec)
return bcd_to_dec_pwr_by_rate(hex, i);
return (hex >> (i * 8)) & 0xFF;
}
static void
rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev,
u32 addr, u32 mask, u32 val, u8 *rate,
u8 *pwr_by_rate, u8 *rate_num)
{
int i;
switch (addr) {
case 0xE00:
case 0x830:
rate[0] = DESC_RATE6M;
rate[1] = DESC_RATE9M;
rate[2] = DESC_RATE12M;
rate[3] = DESC_RATE18M;
for (i = 0; i < 4; ++i)
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
*rate_num = 4;
break;
case 0xE04:
case 0x834:
rate[0] = DESC_RATE24M;
rate[1] = DESC_RATE36M;
rate[2] = DESC_RATE48M;
rate[3] = DESC_RATE54M;
for (i = 0; i < 4; ++i)
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
*rate_num = 4;
break;
case 0xE08:
rate[0] = DESC_RATE1M;
pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1);
*rate_num = 1;
break;
case 0x86C:
if (mask == 0xffffff00) {
rate[0] = DESC_RATE2M;
rate[1] = DESC_RATE5_5M;
rate[2] = DESC_RATE11M;
for (i = 1; i < 4; ++i)
pwr_by_rate[i - 1] =
tbl_to_dec_pwr_by_rate(rtwdev, val, i);
*rate_num = 3;
} else if (mask == 0x000000ff) {
rate[0] = DESC_RATE11M;
pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0);
*rate_num = 1;
}
break;
case 0xE10:
case 0x83C:
rate[0] = DESC_RATEMCS0;
rate[1] = DESC_RATEMCS1;
rate[2] = DESC_RATEMCS2;
rate[3] = DESC_RATEMCS3;
for (i = 0; i < 4; ++i)
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
*rate_num = 4;
break;
case 0xE14:
case 0x848:
rate[0] = DESC_RATEMCS4;
rate[1] = DESC_RATEMCS5;
rate[2] = DESC_RATEMCS6;
rate[3] = DESC_RATEMCS7;
for (i = 0; i < 4; ++i)
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
*rate_num = 4;
break;
case 0xE18:
case 0x84C:
rate[0] = DESC_RATEMCS8;
rate[1] = DESC_RATEMCS9;
rate[2] = DESC_RATEMCS10;
rate[3] = DESC_RATEMCS11;
for (i = 0; i < 4; ++i)
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
*rate_num = 4;
break;
case 0xE1C:
case 0x868:
rate[0] = DESC_RATEMCS12;
rate[1] = DESC_RATEMCS13;
rate[2] = DESC_RATEMCS14;
rate[3] = DESC_RATEMCS15;
for (i = 0; i < 4; ++i)
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
*rate_num = 4;
break;
case 0x838:
rate[0] = DESC_RATE1M;
rate[1] = DESC_RATE2M;
rate[2] = DESC_RATE5_5M;
for (i = 1; i < 4; ++i)
pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev,
val, i);
*rate_num = 3;
break;
case 0xC20:
case 0xE20:
case 0x1820:
case 0x1A20:
rate[0] = DESC_RATE1M;
rate[1] = DESC_RATE2M;
rate[2] = DESC_RATE5_5M;
rate[3] = DESC_RATE11M;
for (i = 0; i < 4; ++i)
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
*rate_num = 4;
break;
case 0xC24:
case 0xE24:
case 0x1824:
case 0x1A24:
rate[0] = DESC_RATE6M;
rate[1] = DESC_RATE9M;
rate[2] = DESC_RATE12M;
rate[3] = DESC_RATE18M;
for (i = 0; i < 4; ++i)
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
*rate_num = 4;
break;
case 0xC28:
case 0xE28:
case 0x1828:
case 0x1A28:
rate[0] = DESC_RATE24M;
rate[1] = DESC_RATE36M;
rate[2] = DESC_RATE48M;
rate[3] = DESC_RATE54M;
for (i = 0; i < 4; ++i)
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
*rate_num = 4;
break;
case 0xC2C:
case 0xE2C:
case 0x182C:
case 0x1A2C:
rate[0] = DESC_RATEMCS0;
rate[1] = DESC_RATEMCS1;
rate[2] = DESC_RATEMCS2;
rate[3] = DESC_RATEMCS3;
for (i = 0; i < 4; ++i)
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
*rate_num = 4;
break;
case 0xC30:
case 0xE30:
case 0x1830:
case 0x1A30:
rate[0] = DESC_RATEMCS4;
rate[1] = DESC_RATEMCS5;
rate[2] = DESC_RATEMCS6;
rate[3] = DESC_RATEMCS7;
for (i = 0; i < 4; ++i)
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
*rate_num = 4;
break;
case 0xC34:
case 0xE34:
case 0x1834:
case 0x1A34:
rate[0] = DESC_RATEMCS8;
rate[1] = DESC_RATEMCS9;
rate[2] = DESC_RATEMCS10;
rate[3] = DESC_RATEMCS11;
for (i = 0; i < 4; ++i)
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
*rate_num = 4;
break;
case 0xC38:
case 0xE38:
case 0x1838:
case 0x1A38:
rate[0] = DESC_RATEMCS12;
rate[1] = DESC_RATEMCS13;
rate[2] = DESC_RATEMCS14;
rate[3] = DESC_RATEMCS15;
for (i = 0; i < 4; ++i)
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
*rate_num = 4;
break;
case 0xC3C:
case 0xE3C:
case 0x183C:
case 0x1A3C:
rate[0] = DESC_RATEVHT1SS_MCS0;
rate[1] = DESC_RATEVHT1SS_MCS1;
rate[2] = DESC_RATEVHT1SS_MCS2;
rate[3] = DESC_RATEVHT1SS_MCS3;
for (i = 0; i < 4; ++i)
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
*rate_num = 4;
break;
case 0xC40:
case 0xE40:
case 0x1840:
case 0x1A40:
rate[0] = DESC_RATEVHT1SS_MCS4;
rate[1] = DESC_RATEVHT1SS_MCS5;
rate[2] = DESC_RATEVHT1SS_MCS6;
rate[3] = DESC_RATEVHT1SS_MCS7;
for (i = 0; i < 4; ++i)
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
*rate_num = 4;
break;
case 0xC44:
case 0xE44:
case 0x1844:
case 0x1A44:
rate[0] = DESC_RATEVHT1SS_MCS8;
rate[1] = DESC_RATEVHT1SS_MCS9;
rate[2] = DESC_RATEVHT2SS_MCS0;
rate[3] = DESC_RATEVHT2SS_MCS1;
for (i = 0; i < 4; ++i)
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
*rate_num = 4;
break;
case 0xC48:
case 0xE48:
case 0x1848:
case 0x1A48:
rate[0] = DESC_RATEVHT2SS_MCS2;
rate[1] = DESC_RATEVHT2SS_MCS3;
rate[2] = DESC_RATEVHT2SS_MCS4;
rate[3] = DESC_RATEVHT2SS_MCS5;
for (i = 0; i < 4; ++i)
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
*rate_num = 4;
break;
case 0xC4C:
case 0xE4C:
case 0x184C:
case 0x1A4C:
rate[0] = DESC_RATEVHT2SS_MCS6;
rate[1] = DESC_RATEVHT2SS_MCS7;
rate[2] = DESC_RATEVHT2SS_MCS8;
rate[3] = DESC_RATEVHT2SS_MCS9;
for (i = 0; i < 4; ++i)
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
*rate_num = 4;
break;
case 0xCD8:
case 0xED8:
case 0x18D8:
case 0x1AD8:
rate[0] = DESC_RATEMCS16;
rate[1] = DESC_RATEMCS17;
rate[2] = DESC_RATEMCS18;
rate[3] = DESC_RATEMCS19;
for (i = 0; i < 4; ++i)
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
*rate_num = 4;
break;
case 0xCDC:
case 0xEDC:
case 0x18DC:
case 0x1ADC:
rate[0] = DESC_RATEMCS20;
rate[1] = DESC_RATEMCS21;
rate[2] = DESC_RATEMCS22;
rate[3] = DESC_RATEMCS23;
for (i = 0; i < 4; ++i)
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
*rate_num = 4;
break;
case 0xCE0:
case 0xEE0:
case 0x18E0:
case 0x1AE0:
rate[0] = DESC_RATEVHT3SS_MCS0;
rate[1] = DESC_RATEVHT3SS_MCS1;
rate[2] = DESC_RATEVHT3SS_MCS2;
rate[3] = DESC_RATEVHT3SS_MCS3;
for (i = 0; i < 4; ++i)
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
*rate_num = 4;
break;
case 0xCE4:
case 0xEE4:
case 0x18E4:
case 0x1AE4:
rate[0] = DESC_RATEVHT3SS_MCS4;
rate[1] = DESC_RATEVHT3SS_MCS5;
rate[2] = DESC_RATEVHT3SS_MCS6;
rate[3] = DESC_RATEVHT3SS_MCS7;
for (i = 0; i < 4; ++i)
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
*rate_num = 4;
break;
case 0xCE8:
case 0xEE8:
case 0x18E8:
case 0x1AE8:
rate[0] = DESC_RATEVHT3SS_MCS8;
rate[1] = DESC_RATEVHT3SS_MCS9;
for (i = 0; i < 2; ++i)
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
*rate_num = 2;
break;
default:
rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr);
break;
}
}
static void rtw_phy_store_tx_power_by_rate(struct rtw_dev *rtwdev,
u32 band, u32 rfpath, u32 txnum,
u32 regaddr, u32 bitmask, u32 data)
{
struct rtw_hal *hal = &rtwdev->hal;
u8 rate_num = 0;
u8 rate;
u8 rates[RTW_RF_PATH_MAX] = {0};
s8 offset;
s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0};
int i;
rtw_phy_get_rate_values_of_txpwr_by_rate(rtwdev, regaddr, bitmask, data,
rates, pwr_by_rate, &rate_num);
if (WARN_ON(rfpath >= RTW_RF_PATH_MAX ||
(band != PHY_BAND_2G && band != PHY_BAND_5G) ||
rate_num > RTW_RF_PATH_MAX))
return;
for (i = 0; i < rate_num; i++) {
offset = pwr_by_rate[i];
rate = rates[i];
if (band == PHY_BAND_2G)
hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset;
else if (band == PHY_BAND_5G)
hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset;
else
continue;
}
}
void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
{
const struct rtw_phy_pg_cfg_pair *p = tbl->data;
const struct rtw_phy_pg_cfg_pair *end = p + tbl->size;
for (; p < end; p++) {
if (p->addr == 0xfe || p->addr == 0xffe) {
msleep(50);
continue;
}
rtw_phy_store_tx_power_by_rate(rtwdev, p->band, p->rf_path,
p->tx_num, p->addr, p->bitmask,
p->data);
}
}
EXPORT_SYMBOL(rtw_parse_tbl_bb_pg);
static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = {
36, 38, 40, 42, 44, 46, 48, /* Band 1 */
52, 54, 56, 58, 60, 62, 64, /* Band 2 */
100, 102, 104, 106, 108, 110, 112, /* Band 3 */
116, 118, 120, 122, 124, 126, 128, /* Band 3 */
132, 134, 136, 138, 140, 142, 144, /* Band 3 */
149, 151, 153, 155, 157, 159, 161, /* Band 4 */
165, 167, 169, 171, 173, 175, 177}; /* Band 4 */
static int rtw_channel_to_idx(u8 band, u8 channel)
{
int ch_idx;
u8 n_channel;
if (band == PHY_BAND_2G) {
ch_idx = channel - 1;
n_channel = RTW_MAX_CHANNEL_NUM_2G;
} else if (band == PHY_BAND_5G) {
n_channel = RTW_MAX_CHANNEL_NUM_5G;
for (ch_idx = 0; ch_idx < n_channel; ch_idx++)
if (rtw_channel_idx_5g[ch_idx] == channel)
break;
} else {
return -1;
}
if (ch_idx >= n_channel)
return -1;
return ch_idx;
}
static void rtw_phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band,
u8 bw, u8 rs, u8 ch, s8 pwr_limit)
{
struct rtw_hal *hal = &rtwdev->hal;
u8 max_power_index = rtwdev->chip->max_power_index;
s8 ww;
int ch_idx;
pwr_limit = clamp_t(s8, pwr_limit,
-max_power_index, max_power_index);
ch_idx = rtw_channel_to_idx(band, ch);
if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX ||
rs >= RTW_RATE_SECTION_MAX || ch_idx < 0) {
WARN(1,
"wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n",
regd, band, bw, rs, ch_idx, pwr_limit);
return;
}
if (band == PHY_BAND_2G) {
hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit;
ww = hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx];
ww = min_t(s8, ww, pwr_limit);
hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
} else if (band == PHY_BAND_5G) {
hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit;
ww = hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx];
ww = min_t(s8, ww, pwr_limit);
hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
}
}
/* cross-reference 5G power limits if values are not assigned */
static void
rtw_xref_5g_txpwr_lmt(struct rtw_dev *rtwdev, u8 regd,
u8 bw, u8 ch_idx, u8 rs_ht, u8 rs_vht)
{
struct rtw_hal *hal = &rtwdev->hal;
u8 max_power_index = rtwdev->chip->max_power_index;
s8 lmt_ht = hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx];
s8 lmt_vht = hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx];
if (lmt_ht == lmt_vht)
return;
if (lmt_ht == max_power_index)
hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx] = lmt_vht;
else if (lmt_vht == max_power_index)
hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx] = lmt_ht;
}
/* cross-reference power limits for ht and vht */
static void
rtw_xref_txpwr_lmt_by_rs(struct rtw_dev *rtwdev, u8 regd, u8 bw, u8 ch_idx)
{
u8 rs_idx, rs_ht, rs_vht;
u8 rs_cmp[2][2] = {{RTW_RATE_SECTION_HT_1S, RTW_RATE_SECTION_VHT_1S},
{RTW_RATE_SECTION_HT_2S, RTW_RATE_SECTION_VHT_2S} };
for (rs_idx = 0; rs_idx < 2; rs_idx++) {
rs_ht = rs_cmp[rs_idx][0];
rs_vht = rs_cmp[rs_idx][1];
rtw_xref_5g_txpwr_lmt(rtwdev, regd, bw, ch_idx, rs_ht, rs_vht);
}
}
/* cross-reference power limits for 5G channels */
static void
rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev *rtwdev, u8 regd, u8 bw)
{
u8 ch_idx;
for (ch_idx = 0; ch_idx < RTW_MAX_CHANNEL_NUM_5G; ch_idx++)
rtw_xref_txpwr_lmt_by_rs(rtwdev, regd, bw, ch_idx);
}
/* cross-reference power limits for 20/40M bandwidth */
static void
rtw_xref_txpwr_lmt_by_bw(struct rtw_dev *rtwdev, u8 regd)
{
u8 bw;
for (bw = RTW_CHANNEL_WIDTH_20; bw <= RTW_CHANNEL_WIDTH_40; bw++)
rtw_xref_5g_txpwr_lmt_by_ch(rtwdev, regd, bw);
}
/* cross-reference power limits */
static void rtw_xref_txpwr_lmt(struct rtw_dev *rtwdev)
{
u8 regd;
for (regd = 0; regd < RTW_REGD_MAX; regd++)
rtw_xref_txpwr_lmt_by_bw(rtwdev, regd);
}
static void
__cfg_txpwr_lmt_by_alt(struct rtw_hal *hal, u8 regd, u8 regd_alt, u8 bw, u8 rs)
{
u8 ch;
for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
hal->tx_pwr_limit_2g[regd][bw][rs][ch] =
hal->tx_pwr_limit_2g[regd_alt][bw][rs][ch];
for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
hal->tx_pwr_limit_5g[regd][bw][rs][ch] =
hal->tx_pwr_limit_5g[regd_alt][bw][rs][ch];
}
static void
rtw_cfg_txpwr_lmt_by_alt(struct rtw_dev *rtwdev, u8 regd, u8 regd_alt)
{
u8 bw, rs;
for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
__cfg_txpwr_lmt_by_alt(&rtwdev->hal, regd, regd_alt,
bw, rs);
}
void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev,
const struct rtw_table *tbl)
{
const struct rtw_txpwr_lmt_cfg_pair *p = tbl->data;
const struct rtw_txpwr_lmt_cfg_pair *end = p + tbl->size;
u32 regd_cfg_flag = 0;
u8 regd_alt;
u8 i;
for (; p < end; p++) {
regd_cfg_flag |= BIT(p->regd);
rtw_phy_set_tx_power_limit(rtwdev, p->regd, p->band,
p->bw, p->rs, p->ch, p->txpwr_lmt);
}
for (i = 0; i < RTW_REGD_MAX; i++) {
if (i == RTW_REGD_WW)
continue;
if (regd_cfg_flag & BIT(i))
continue;
rtw_dbg(rtwdev, RTW_DBG_REGD,
"txpwr regd %d does not be configured\n", i);
if (rtw_regd_has_alt(i, &regd_alt) &&
regd_cfg_flag & BIT(regd_alt)) {
rtw_dbg(rtwdev, RTW_DBG_REGD,
"cfg txpwr regd %d by regd %d as alternative\n",
i, regd_alt);
rtw_cfg_txpwr_lmt_by_alt(rtwdev, i, regd_alt);
continue;
}
rtw_dbg(rtwdev, RTW_DBG_REGD, "cfg txpwr regd %d by WW\n", i);
rtw_cfg_txpwr_lmt_by_alt(rtwdev, i, RTW_REGD_WW);
}
rtw_xref_txpwr_lmt(rtwdev);
}
EXPORT_SYMBOL(rtw_parse_tbl_txpwr_lmt);
void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
u32 addr, u32 data)
{
rtw_write8(rtwdev, addr, data);
}
EXPORT_SYMBOL(rtw_phy_cfg_mac);
void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
u32 addr, u32 data)
{
rtw_write32(rtwdev, addr, data);
}
EXPORT_SYMBOL(rtw_phy_cfg_agc);
void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
u32 addr, u32 data)
{
if (addr == 0xfe)
msleep(50);
else if (addr == 0xfd)
mdelay(5);
else if (addr == 0xfc)
mdelay(1);
else if (addr == 0xfb)
usleep_range(50, 60);
else if (addr == 0xfa)
udelay(5);
else if (addr == 0xf9)
udelay(1);
else
rtw_write32(rtwdev, addr, data);
}
EXPORT_SYMBOL(rtw_phy_cfg_bb);
void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
u32 addr, u32 data)
{
if (addr == 0xffe) {
msleep(50);
} else if (addr == 0xfe) {
usleep_range(100, 110);
} else {
rtw_write_rf(rtwdev, tbl->rf_path, addr, RFREG_MASK, data);
udelay(1);
}
}
EXPORT_SYMBOL(rtw_phy_cfg_rf);
static void rtw_load_rfk_table(struct rtw_dev *rtwdev)
{
const struct rtw_chip_info *chip = rtwdev->chip;
struct rtw_dpk_info *dpk_info = &rtwdev->dm_info.dpk_info;
if (!chip->rfk_init_tbl)
return;
rtw_write32_mask(rtwdev, 0x1e24, BIT(17), 0x1);
rtw_write32_mask(rtwdev, 0x1cd0, BIT(28), 0x1);
rtw_write32_mask(rtwdev, 0x1cd0, BIT(29), 0x1);
rtw_write32_mask(rtwdev, 0x1cd0, BIT(30), 0x1);
rtw_write32_mask(rtwdev, 0x1cd0, BIT(31), 0x0);
rtw_load_table(rtwdev, chip->rfk_init_tbl);
dpk_info->is_dpk_pwr_on = true;
}
void rtw_phy_load_tables(struct rtw_dev *rtwdev)
{
const struct rtw_chip_info *chip = rtwdev->chip;
u8 rf_path;
rtw_load_table(rtwdev, chip->mac_tbl);
rtw_load_table(rtwdev, chip->bb_tbl);
rtw_load_table(rtwdev, chip->agc_tbl);
rtw_load_rfk_table(rtwdev);
for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) {
const struct rtw_table *tbl;
tbl = chip->rf_tbl[rf_path];
rtw_load_table(rtwdev, tbl);
}
}
EXPORT_SYMBOL(rtw_phy_load_tables);
static u8 rtw_get_channel_group(u8 channel, u8 rate)
{
switch (channel) {
default:
WARN_ON(1);
fallthrough;
case 1:
case 2:
case 36:
case 38:
case 40:
case 42:
return 0;
case 3:
case 4:
case 5:
case 44:
case 46:
case 48:
case 50:
return 1;
case 6:
case 7:
case 8:
case 52:
case 54:
case 56:
case 58:
return 2;
case 9:
case 10:
case 11:
case 60:
case 62:
case 64:
return 3;
case 12:
case 13:
case 100:
case 102:
case 104:
case 106:
return 4;
case 14:
return rate <= DESC_RATE11M ? 5 : 4;
case 108:
case 110:
case 112:
case 114:
return 5;
case 116:
case 118:
case 120:
case 122:
return 6;
case 124:
case 126:
case 128:
case 130:
return 7;
case 132:
case 134:
case 136:
case 138:
return 8;
case 140:
case 142:
case 144:
return 9;
case 149:
case 151:
case 153:
case 155:
return 10;
case 157:
case 159:
case 161:
return 11;
case 165:
case 167:
case 169:
case 171:
return 12;
case 173:
case 175:
case 177:
return 13;
}
}
static s8 rtw_phy_get_dis_dpd_by_rate_diff(struct rtw_dev *rtwdev, u16 rate)
{
const struct rtw_chip_info *chip = rtwdev->chip;
s8 dpd_diff = 0;
if (!chip->en_dis_dpd)
return 0;
#define RTW_DPD_RATE_CHECK(_rate) \
case DESC_RATE ## _rate: \
if (DIS_DPD_RATE ## _rate & chip->dpd_ratemask) \
dpd_diff = -6 * chip->txgi_factor; \
break
switch (rate) {
RTW_DPD_RATE_CHECK(6M);
RTW_DPD_RATE_CHECK(9M);
RTW_DPD_RATE_CHECK(MCS0);
RTW_DPD_RATE_CHECK(MCS1);
RTW_DPD_RATE_CHECK(MCS8);
RTW_DPD_RATE_CHECK(MCS9);
RTW_DPD_RATE_CHECK(VHT1SS_MCS0);
RTW_DPD_RATE_CHECK(VHT1SS_MCS1);
RTW_DPD_RATE_CHECK(VHT2SS_MCS0);
RTW_DPD_RATE_CHECK(VHT2SS_MCS1);
}
#undef RTW_DPD_RATE_CHECK
return dpd_diff;
}
static u8 rtw_phy_get_2g_tx_power_index(struct rtw_dev *rtwdev,
struct rtw_2g_txpwr_idx *pwr_idx_2g,
enum rtw_bandwidth bandwidth,
u8 rate, u8 group)
{
const struct rtw_chip_info *chip = rtwdev->chip;
u8 tx_power;
bool mcs_rate;
bool above_2ss;
u8 factor = chip->txgi_factor;
if (rate <= DESC_RATE11M)
tx_power = pwr_idx_2g->cck_base[group];
else
tx_power = pwr_idx_2g->bw40_base[group];
if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor;
mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
(rate >= DESC_RATEVHT1SS_MCS0 &&
rate <= DESC_RATEVHT2SS_MCS9);
above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
(rate >= DESC_RATEVHT2SS_MCS0);
if (!mcs_rate)
return tx_power;
switch (bandwidth) {
default:
WARN_ON(1);
fallthrough;
case RTW_CHANNEL_WIDTH_20:
tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor;
if (above_2ss)
tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor;
break;
case RTW_CHANNEL_WIDTH_40:
/* bw40 is the base power */
if (above_2ss)
tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor;
break;
}
return tx_power;
}
static u8 rtw_phy_get_5g_tx_power_index(struct rtw_dev *rtwdev,
struct rtw_5g_txpwr_idx *pwr_idx_5g,
enum rtw_bandwidth bandwidth,
u8 rate, u8 group)
{
const struct rtw_chip_info *chip = rtwdev->chip;
u8 tx_power;
u8 upper, lower;
bool mcs_rate;
bool above_2ss;
u8 factor = chip->txgi_factor;
tx_power = pwr_idx_5g->bw40_base[group];
mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
(rate >= DESC_RATEVHT1SS_MCS0 &&
rate <= DESC_RATEVHT2SS_MCS9);
above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
(rate >= DESC_RATEVHT2SS_MCS0);
if (!mcs_rate) {
tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor;
return tx_power;
}
switch (bandwidth) {
default:
WARN_ON(1);
fallthrough;
case RTW_CHANNEL_WIDTH_20:
tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor;
if (above_2ss)
tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor;
break;
case RTW_CHANNEL_WIDTH_40:
/* bw40 is the base power */
if (above_2ss)
tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor;
break;
case RTW_CHANNEL_WIDTH_80:
/* the base idx of bw80 is the average of bw40+/bw40- */
lower = pwr_idx_5g->bw40_base[group];
upper = pwr_idx_5g->bw40_base[group + 1];
tx_power = (lower + upper) / 2;
tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor;
if (above_2ss)
tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor;
break;
}
return tx_power;
}
/* return RTW_RATE_SECTION_MAX to indicate rate is invalid */
static u8 rtw_phy_rate_to_rate_section(u8 rate)
{
if (rate >= DESC_RATE1M && rate <= DESC_RATE11M)
return RTW_RATE_SECTION_CCK;
else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
return RTW_RATE_SECTION_OFDM;
else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7)
return RTW_RATE_SECTION_HT_1S;
else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15)
return RTW_RATE_SECTION_HT_2S;
else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9)
return RTW_RATE_SECTION_VHT_1S;
else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9)
return RTW_RATE_SECTION_VHT_2S;
else
return RTW_RATE_SECTION_MAX;
}
static s8 rtw_phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band,
enum rtw_bandwidth bw, u8 rf_path,
u8 rate, u8 channel, u8 regd)
{
struct rtw_hal *hal = &rtwdev->hal;
u8 *cch_by_bw = hal->cch_by_bw;
s8 power_limit = (s8)rtwdev->chip->max_power_index;
u8 rs = rtw_phy_rate_to_rate_section(rate);
int ch_idx;
u8 cur_bw, cur_ch;
s8 cur_lmt;
if (regd > RTW_REGD_WW)
return power_limit;
if (rs == RTW_RATE_SECTION_MAX)
goto err;
/* only 20M BW with cck and ofdm */
if (rs == RTW_RATE_SECTION_CCK || rs == RTW_RATE_SECTION_OFDM)
bw = RTW_CHANNEL_WIDTH_20;
/* only 20/40M BW with ht */
if (rs == RTW_RATE_SECTION_HT_1S || rs == RTW_RATE_SECTION_HT_2S)
bw = min_t(u8, bw, RTW_CHANNEL_WIDTH_40);
/* select min power limit among [20M BW ~ current BW] */
for (cur_bw = RTW_CHANNEL_WIDTH_20; cur_bw <= bw; cur_bw++) {
cur_ch = cch_by_bw[cur_bw];
ch_idx = rtw_channel_to_idx(band, cur_ch);
if (ch_idx < 0)
goto err;
cur_lmt = cur_ch <= RTW_MAX_CHANNEL_NUM_2G ?
hal->tx_pwr_limit_2g[regd][cur_bw][rs][ch_idx] :
hal->tx_pwr_limit_5g[regd][cur_bw][rs][ch_idx];
power_limit = min_t(s8, cur_lmt, power_limit);
}
return power_limit;
err:
WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n",
band, bw, rf_path, rate, channel);
return (s8)rtwdev->chip->max_power_index;
}
static s8 rtw_phy_get_tx_power_sar(struct rtw_dev *rtwdev, u8 sar_band,
u8 rf_path, u8 rate)
{
u8 rs = rtw_phy_rate_to_rate_section(rate);
struct rtw_sar_arg arg = {
.sar_band = sar_band,
.path = rf_path,
.rs = rs,
};
if (rs == RTW_RATE_SECTION_MAX)
goto err;
return rtw_query_sar(rtwdev, &arg);
err:
WARN(1, "invalid arguments, sar_band=%d, path=%d, rate=%d\n",
sar_band, rf_path, rate);
return (s8)rtwdev->chip->max_power_index;
}
void rtw_get_tx_power_params(struct rtw_dev *rtwdev, u8 path, u8 rate, u8 bw,
u8 ch, u8 regd, struct rtw_power_params *pwr_param)
{
struct rtw_hal *hal = &rtwdev->hal;
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
struct rtw_txpwr_idx *pwr_idx;
u8 group, band;
u8 *base = &pwr_param->pwr_base;
s8 *offset = &pwr_param->pwr_offset;
s8 *limit = &pwr_param->pwr_limit;
s8 *remnant = &pwr_param->pwr_remnant;
s8 *sar = &pwr_param->pwr_sar;
pwr_idx = &rtwdev->efuse.txpwr_idx_table[path];
group = rtw_get_channel_group(ch, rate);
/* base power index for 2.4G/5G */
if (IS_CH_2G_BAND(ch)) {
band = PHY_BAND_2G;
*base = rtw_phy_get_2g_tx_power_index(rtwdev,
&pwr_idx->pwr_idx_2g,
bw, rate, group);
*offset = hal->tx_pwr_by_rate_offset_2g[path][rate];
} else {
band = PHY_BAND_5G;
*base = rtw_phy_get_5g_tx_power_index(rtwdev,
&pwr_idx->pwr_idx_5g,
bw, rate, group);
*offset = hal->tx_pwr_by_rate_offset_5g[path][rate];
}
*limit = rtw_phy_get_tx_power_limit(rtwdev, band, bw, path,
rate, ch, regd);
*remnant = (rate <= DESC_RATE11M ? dm_info->txagc_remnant_cck :
dm_info->txagc_remnant_ofdm);
*sar = rtw_phy_get_tx_power_sar(rtwdev, hal->sar_band, path, rate);
}
u8
rtw_phy_get_tx_power_index(struct rtw_dev *rtwdev, u8 rf_path, u8 rate,
enum rtw_bandwidth bandwidth, u8 channel, u8 regd)
{
struct rtw_power_params pwr_param = {0};
u8 tx_power;
s8 offset;
rtw_get_tx_power_params(rtwdev, rf_path, rate, bandwidth,
channel, regd, &pwr_param);
tx_power = pwr_param.pwr_base;
offset = min3(pwr_param.pwr_offset,
pwr_param.pwr_limit,
pwr_param.pwr_sar);
if (rtwdev->chip->en_dis_dpd)
offset += rtw_phy_get_dis_dpd_by_rate_diff(rtwdev, rate);
tx_power += offset + pwr_param.pwr_remnant;
if (tx_power > rtwdev->chip->max_power_index)
tx_power = rtwdev->chip->max_power_index;
return tx_power;
}
EXPORT_SYMBOL(rtw_phy_get_tx_power_index);
static void rtw_phy_set_tx_power_index_by_rs(struct rtw_dev *rtwdev,
u8 ch, u8 path, u8 rs)
{
struct rtw_hal *hal = &rtwdev->hal;
u8 regd = rtw_regd_get(rtwdev);
u8 *rates;
u8 size;
u8 rate;
u8 pwr_idx;
u8 bw;
int i;
if (rs >= RTW_RATE_SECTION_MAX)
return;
rates = rtw_rate_section[rs];
size = rtw_rate_size[rs];
bw = hal->current_band_width;
for (i = 0; i < size; i++) {
rate = rates[i];
pwr_idx = rtw_phy_get_tx_power_index(rtwdev, path, rate,
bw, ch, regd);
hal->tx_pwr_tbl[path][rate] = pwr_idx;
}
}
/* set tx power level by path for each rates, note that the order of the rates
* are *very* important, bacause 8822B/8821C combines every four bytes of tx
* power index into a four-byte power index register, and calls set_tx_agc to
* write these values into hardware
*/
static void rtw_phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev,
u8 ch, u8 path)
{
struct rtw_hal *hal = &rtwdev->hal;
u8 rs;
/* do not need cck rates if we are not in 2.4G */
if (hal->current_band_type == RTW_BAND_2G)
rs = RTW_RATE_SECTION_CCK;
else
rs = RTW_RATE_SECTION_OFDM;
for (; rs < RTW_RATE_SECTION_MAX; rs++)
rtw_phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs);
}
void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel)
{
const struct rtw_chip_info *chip = rtwdev->chip;
struct rtw_hal *hal = &rtwdev->hal;
u8 path;
mutex_lock(&hal->tx_power_mutex);
for (path = 0; path < hal->rf_path_num; path++)
rtw_phy_set_tx_power_level_by_path(rtwdev, channel, path);
chip->ops->set_tx_power_index(rtwdev);
mutex_unlock(&hal->tx_power_mutex);
}
EXPORT_SYMBOL(rtw_phy_set_tx_power_level);
static void
rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path,
u8 rs, u8 size, u8 *rates)
{
u8 rate;
u8 base_idx, rate_idx;
s8 base_2g, base_5g;
if (rs >= RTW_RATE_SECTION_VHT_1S)
base_idx = rates[size - 3];
else
base_idx = rates[size - 1];
base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx];
base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx];
hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g;
hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g;
for (rate = 0; rate < size; rate++) {
rate_idx = rates[rate];
hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g;
hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g;
}
}
void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal)
{
u8 path;
for (path = 0; path < RTW_RF_PATH_MAX; path++) {
rtw_phy_tx_power_by_rate_config_by_path(hal, path,
RTW_RATE_SECTION_CCK,
rtw_cck_size, rtw_cck_rates);
rtw_phy_tx_power_by_rate_config_by_path(hal, path,
RTW_RATE_SECTION_OFDM,
rtw_ofdm_size, rtw_ofdm_rates);
rtw_phy_tx_power_by_rate_config_by_path(hal, path,
RTW_RATE_SECTION_HT_1S,
rtw_ht_1s_size, rtw_ht_1s_rates);
rtw_phy_tx_power_by_rate_config_by_path(hal, path,
RTW_RATE_SECTION_HT_2S,
rtw_ht_2s_size, rtw_ht_2s_rates);
rtw_phy_tx_power_by_rate_config_by_path(hal, path,
RTW_RATE_SECTION_VHT_1S,
rtw_vht_1s_size, rtw_vht_1s_rates);
rtw_phy_tx_power_by_rate_config_by_path(hal, path,
RTW_RATE_SECTION_VHT_2S,
rtw_vht_2s_size, rtw_vht_2s_rates);
}
}
static void
__rtw_phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs)
{
s8 base;
u8 ch;
for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) {
base = hal->tx_pwr_by_rate_base_2g[0][rs];
hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base;
}
for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) {
base = hal->tx_pwr_by_rate_base_5g[0][rs];
hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base;
}
}
void rtw_phy_tx_power_limit_config(struct rtw_hal *hal)
{
u8 regd, bw, rs;
/* default at channel 1 */
hal->cch_by_bw[RTW_CHANNEL_WIDTH_20] = 1;
for (regd = 0; regd < RTW_REGD_MAX; regd++)
for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
__rtw_phy_tx_power_limit_config(hal, regd, bw, rs);
}
static void rtw_phy_init_tx_power_limit(struct rtw_dev *rtwdev,
u8 regd, u8 bw, u8 rs)
{
struct rtw_hal *hal = &rtwdev->hal;
s8 max_power_index = (s8)rtwdev->chip->max_power_index;
u8 ch;
/* 2.4G channels */
for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
hal->tx_pwr_limit_2g[regd][bw][rs][ch] = max_power_index;
/* 5G channels */
for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
hal->tx_pwr_limit_5g[regd][bw][rs][ch] = max_power_index;
}
void rtw_phy_init_tx_power(struct rtw_dev *rtwdev)
{
struct rtw_hal *hal = &rtwdev->hal;
u8 regd, path, rate, rs, bw;
/* init tx power by rate offset */
for (path = 0; path < RTW_RF_PATH_MAX; path++) {
for (rate = 0; rate < DESC_RATE_MAX; rate++) {
hal->tx_pwr_by_rate_offset_2g[path][rate] = 0;
hal->tx_pwr_by_rate_offset_5g[path][rate] = 0;
}
}
/* init tx power limit */
for (regd = 0; regd < RTW_REGD_MAX; regd++)
for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
rtw_phy_init_tx_power_limit(rtwdev, regd, bw,
rs);
}
void rtw_phy_config_swing_table(struct rtw_dev *rtwdev,
struct rtw_swing_table *swing_table)
{
const struct rtw_pwr_track_tbl *tbl = rtwdev->chip->pwr_track_tbl;
u8 channel = rtwdev->hal.current_channel;
if (IS_CH_2G_BAND(channel)) {
if (rtwdev->dm_info.tx_rate <= DESC_RATE11M) {
swing_table->p[RF_PATH_A] = tbl->pwrtrk_2g_ccka_p;
swing_table->n[RF_PATH_A] = tbl->pwrtrk_2g_ccka_n;
swing_table->p[RF_PATH_B] = tbl->pwrtrk_2g_cckb_p;
swing_table->n[RF_PATH_B] = tbl->pwrtrk_2g_cckb_n;
} else {
swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
}
} else if (IS_CH_5G_BAND_1(channel) || IS_CH_5G_BAND_2(channel)) {
swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_1];
swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_1];
swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_1];
swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_1];
} else if (IS_CH_5G_BAND_3(channel)) {
swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_2];
swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_2];
swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_2];
swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_2];
} else if (IS_CH_5G_BAND_4(channel)) {
swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_3];
swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_3];
swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_3];
swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_3];
} else {
swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
}
}
EXPORT_SYMBOL(rtw_phy_config_swing_table);
void rtw_phy_pwrtrack_avg(struct rtw_dev *rtwdev, u8 thermal, u8 path)
{
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
ewma_thermal_add(&dm_info->avg_thermal[path], thermal);
dm_info->thermal_avg[path] =
ewma_thermal_read(&dm_info->avg_thermal[path]);
}
EXPORT_SYMBOL(rtw_phy_pwrtrack_avg);
bool rtw_phy_pwrtrack_thermal_changed(struct rtw_dev *rtwdev, u8 thermal,
u8 path)
{
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
u8 avg = ewma_thermal_read(&dm_info->avg_thermal[path]);
if (avg == thermal)
return false;
return true;
}
EXPORT_SYMBOL(rtw_phy_pwrtrack_thermal_changed);
u8 rtw_phy_pwrtrack_get_delta(struct rtw_dev *rtwdev, u8 path)
{
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
u8 therm_avg, therm_efuse, therm_delta;
therm_avg = dm_info->thermal_avg[path];
therm_efuse = rtwdev->efuse.thermal_meter[path];
therm_delta = abs(therm_avg - therm_efuse);
return min_t(u8, therm_delta, RTW_PWR_TRK_TBL_SZ - 1);
}
EXPORT_SYMBOL(rtw_phy_pwrtrack_get_delta);
s8 rtw_phy_pwrtrack_get_pwridx(struct rtw_dev *rtwdev,
struct rtw_swing_table *swing_table,
u8 tbl_path, u8 therm_path, u8 delta)
{
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
const u8 *delta_swing_table_idx_pos;
const u8 *delta_swing_table_idx_neg;
if (delta >= RTW_PWR_TRK_TBL_SZ) {
rtw_warn(rtwdev, "power track table overflow\n");
return 0;
}
if (!swing_table) {
rtw_warn(rtwdev, "swing table not configured\n");
return 0;
}
delta_swing_table_idx_pos = swing_table->p[tbl_path];
delta_swing_table_idx_neg = swing_table->n[tbl_path];
if (!delta_swing_table_idx_pos || !delta_swing_table_idx_neg) {
rtw_warn(rtwdev, "invalid swing table index\n");
return 0;
}
if (dm_info->thermal_avg[therm_path] >
rtwdev->efuse.thermal_meter[therm_path])
return delta_swing_table_idx_pos[delta];
else
return -delta_swing_table_idx_neg[delta];
}
EXPORT_SYMBOL(rtw_phy_pwrtrack_get_pwridx);
bool rtw_phy_pwrtrack_need_lck(struct rtw_dev *rtwdev)
{
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
u8 delta_lck;
delta_lck = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_lck);
if (delta_lck >= rtwdev->chip->lck_threshold) {
dm_info->thermal_meter_lck = dm_info->thermal_avg[0];
return true;
}
return false;
}
EXPORT_SYMBOL(rtw_phy_pwrtrack_need_lck);
bool rtw_phy_pwrtrack_need_iqk(struct rtw_dev *rtwdev)
{
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
u8 delta_iqk;
delta_iqk = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_k);
if (delta_iqk >= rtwdev->chip->iqk_threshold) {
dm_info->thermal_meter_k = dm_info->thermal_avg[0];
return true;
}
return false;
}
EXPORT_SYMBOL(rtw_phy_pwrtrack_need_iqk);
static void rtw_phy_set_tx_path_by_reg(struct rtw_dev *rtwdev,
enum rtw_bb_path tx_path_sel_1ss)
{
struct rtw_path_div *path_div = &rtwdev->dm_path_div;
enum rtw_bb_path tx_path_sel_cck = tx_path_sel_1ss;
const struct rtw_chip_info *chip = rtwdev->chip;
if (tx_path_sel_1ss == path_div->current_tx_path)
return;
path_div->current_tx_path = tx_path_sel_1ss;
rtw_dbg(rtwdev, RTW_DBG_PATH_DIV, "Switch TX path=%s\n",
tx_path_sel_1ss == BB_PATH_A ? "A" : "B");
chip->ops->config_tx_path(rtwdev, rtwdev->hal.antenna_tx,
tx_path_sel_1ss, tx_path_sel_cck, false);
}
static void rtw_phy_tx_path_div_select(struct rtw_dev *rtwdev)
{
struct rtw_path_div *path_div = &rtwdev->dm_path_div;
enum rtw_bb_path path = path_div->current_tx_path;
s32 rssi_a = 0, rssi_b = 0;
if (path_div->path_a_cnt)
rssi_a = path_div->path_a_sum / path_div->path_a_cnt;
else
rssi_a = 0;
if (path_div->path_b_cnt)
rssi_b = path_div->path_b_sum / path_div->path_b_cnt;
else
rssi_b = 0;
if (rssi_a != rssi_b)
path = (rssi_a > rssi_b) ? BB_PATH_A : BB_PATH_B;
path_div->path_a_cnt = 0;
path_div->path_a_sum = 0;
path_div->path_b_cnt = 0;
path_div->path_b_sum = 0;
rtw_phy_set_tx_path_by_reg(rtwdev, path);
}
static void rtw_phy_tx_path_diversity_2ss(struct rtw_dev *rtwdev)
{
if (rtwdev->hal.antenna_rx != BB_PATH_AB) {
rtw_dbg(rtwdev, RTW_DBG_PATH_DIV,
"[Return] tx_Path_en=%d, rx_Path_en=%d\n",
rtwdev->hal.antenna_tx, rtwdev->hal.antenna_rx);
return;
}
if (rtwdev->sta_cnt == 0) {
rtw_dbg(rtwdev, RTW_DBG_PATH_DIV, "No Link\n");
return;
}
rtw_phy_tx_path_div_select(rtwdev);
}
void rtw_phy_tx_path_diversity(struct rtw_dev *rtwdev)
{
const struct rtw_chip_info *chip = rtwdev->chip;
if (!chip->path_div_supported)
return;
rtw_phy_tx_path_diversity_2ss(rtwdev);
}