linux-zen-server/drivers/pci/controller/pcie-microchip-host.c

1140 lines
32 KiB
C
Raw Permalink Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0
/*
* Microchip AXI PCIe Bridge host controller driver
*
* Copyright (c) 2018 - 2020 Microchip Corporation. All rights reserved.
*
* Author: Daire McNamara <daire.mcnamara@microchip.com>
*/
#include <linux/clk.h>
#include <linux/irqchip/chained_irq.h>
#include <linux/irqdomain.h>
#include <linux/module.h>
#include <linux/msi.h>
#include <linux/of_address.h>
#include <linux/of_pci.h>
#include <linux/pci-ecam.h>
#include <linux/platform_device.h>
#include "../pci.h"
/* Number of MSI IRQs */
#define MC_NUM_MSI_IRQS 32
#define MC_NUM_MSI_IRQS_CODED 5
/* PCIe Bridge Phy and Controller Phy offsets */
#define MC_PCIE1_BRIDGE_ADDR 0x00008000u
#define MC_PCIE1_CTRL_ADDR 0x0000a000u
#define MC_PCIE_BRIDGE_ADDR (MC_PCIE1_BRIDGE_ADDR)
#define MC_PCIE_CTRL_ADDR (MC_PCIE1_CTRL_ADDR)
/* PCIe Controller Phy Regs */
#define SEC_ERROR_CNT 0x20
#define DED_ERROR_CNT 0x24
#define SEC_ERROR_INT 0x28
#define SEC_ERROR_INT_TX_RAM_SEC_ERR_INT GENMASK(3, 0)
#define SEC_ERROR_INT_RX_RAM_SEC_ERR_INT GENMASK(7, 4)
#define SEC_ERROR_INT_PCIE2AXI_RAM_SEC_ERR_INT GENMASK(11, 8)
#define SEC_ERROR_INT_AXI2PCIE_RAM_SEC_ERR_INT GENMASK(15, 12)
#define NUM_SEC_ERROR_INTS (4)
#define SEC_ERROR_INT_MASK 0x2c
#define DED_ERROR_INT 0x30
#define DED_ERROR_INT_TX_RAM_DED_ERR_INT GENMASK(3, 0)
#define DED_ERROR_INT_RX_RAM_DED_ERR_INT GENMASK(7, 4)
#define DED_ERROR_INT_PCIE2AXI_RAM_DED_ERR_INT GENMASK(11, 8)
#define DED_ERROR_INT_AXI2PCIE_RAM_DED_ERR_INT GENMASK(15, 12)
#define NUM_DED_ERROR_INTS (4)
#define DED_ERROR_INT_MASK 0x34
#define ECC_CONTROL 0x38
#define ECC_CONTROL_TX_RAM_INJ_ERROR_0 BIT(0)
#define ECC_CONTROL_TX_RAM_INJ_ERROR_1 BIT(1)
#define ECC_CONTROL_TX_RAM_INJ_ERROR_2 BIT(2)
#define ECC_CONTROL_TX_RAM_INJ_ERROR_3 BIT(3)
#define ECC_CONTROL_RX_RAM_INJ_ERROR_0 BIT(4)
#define ECC_CONTROL_RX_RAM_INJ_ERROR_1 BIT(5)
#define ECC_CONTROL_RX_RAM_INJ_ERROR_2 BIT(6)
#define ECC_CONTROL_RX_RAM_INJ_ERROR_3 BIT(7)
#define ECC_CONTROL_PCIE2AXI_RAM_INJ_ERROR_0 BIT(8)
#define ECC_CONTROL_PCIE2AXI_RAM_INJ_ERROR_1 BIT(9)
#define ECC_CONTROL_PCIE2AXI_RAM_INJ_ERROR_2 BIT(10)
#define ECC_CONTROL_PCIE2AXI_RAM_INJ_ERROR_3 BIT(11)
#define ECC_CONTROL_AXI2PCIE_RAM_INJ_ERROR_0 BIT(12)
#define ECC_CONTROL_AXI2PCIE_RAM_INJ_ERROR_1 BIT(13)
#define ECC_CONTROL_AXI2PCIE_RAM_INJ_ERROR_2 BIT(14)
#define ECC_CONTROL_AXI2PCIE_RAM_INJ_ERROR_3 BIT(15)
#define ECC_CONTROL_TX_RAM_ECC_BYPASS BIT(24)
#define ECC_CONTROL_RX_RAM_ECC_BYPASS BIT(25)
#define ECC_CONTROL_PCIE2AXI_RAM_ECC_BYPASS BIT(26)
#define ECC_CONTROL_AXI2PCIE_RAM_ECC_BYPASS BIT(27)
#define LTSSM_STATE 0x5c
#define LTSSM_L0_STATE 0x10
#define PCIE_EVENT_INT 0x14c
#define PCIE_EVENT_INT_L2_EXIT_INT BIT(0)
#define PCIE_EVENT_INT_HOTRST_EXIT_INT BIT(1)
#define PCIE_EVENT_INT_DLUP_EXIT_INT BIT(2)
#define PCIE_EVENT_INT_MASK GENMASK(2, 0)
#define PCIE_EVENT_INT_L2_EXIT_INT_MASK BIT(16)
#define PCIE_EVENT_INT_HOTRST_EXIT_INT_MASK BIT(17)
#define PCIE_EVENT_INT_DLUP_EXIT_INT_MASK BIT(18)
#define PCIE_EVENT_INT_ENB_MASK GENMASK(18, 16)
#define PCIE_EVENT_INT_ENB_SHIFT 16
#define NUM_PCIE_EVENTS (3)
/* PCIe Bridge Phy Regs */
#define PCIE_PCI_IDS_DW1 0x9c
/* PCIe Config space MSI capability structure */
#define MC_MSI_CAP_CTRL_OFFSET 0xe0u
#define MC_MSI_MAX_Q_AVAIL (MC_NUM_MSI_IRQS_CODED << 1)
#define MC_MSI_Q_SIZE (MC_NUM_MSI_IRQS_CODED << 4)
#define IMASK_LOCAL 0x180
#define DMA_END_ENGINE_0_MASK 0x00000000u
#define DMA_END_ENGINE_0_SHIFT 0
#define DMA_END_ENGINE_1_MASK 0x00000000u
#define DMA_END_ENGINE_1_SHIFT 1
#define DMA_ERROR_ENGINE_0_MASK 0x00000100u
#define DMA_ERROR_ENGINE_0_SHIFT 8
#define DMA_ERROR_ENGINE_1_MASK 0x00000200u
#define DMA_ERROR_ENGINE_1_SHIFT 9
#define A_ATR_EVT_POST_ERR_MASK 0x00010000u
#define A_ATR_EVT_POST_ERR_SHIFT 16
#define A_ATR_EVT_FETCH_ERR_MASK 0x00020000u
#define A_ATR_EVT_FETCH_ERR_SHIFT 17
#define A_ATR_EVT_DISCARD_ERR_MASK 0x00040000u
#define A_ATR_EVT_DISCARD_ERR_SHIFT 18
#define A_ATR_EVT_DOORBELL_MASK 0x00000000u
#define A_ATR_EVT_DOORBELL_SHIFT 19
#define P_ATR_EVT_POST_ERR_MASK 0x00100000u
#define P_ATR_EVT_POST_ERR_SHIFT 20
#define P_ATR_EVT_FETCH_ERR_MASK 0x00200000u
#define P_ATR_EVT_FETCH_ERR_SHIFT 21
#define P_ATR_EVT_DISCARD_ERR_MASK 0x00400000u
#define P_ATR_EVT_DISCARD_ERR_SHIFT 22
#define P_ATR_EVT_DOORBELL_MASK 0x00000000u
#define P_ATR_EVT_DOORBELL_SHIFT 23
#define PM_MSI_INT_INTA_MASK 0x01000000u
#define PM_MSI_INT_INTA_SHIFT 24
#define PM_MSI_INT_INTB_MASK 0x02000000u
#define PM_MSI_INT_INTB_SHIFT 25
#define PM_MSI_INT_INTC_MASK 0x04000000u
#define PM_MSI_INT_INTC_SHIFT 26
#define PM_MSI_INT_INTD_MASK 0x08000000u
#define PM_MSI_INT_INTD_SHIFT 27
#define PM_MSI_INT_INTX_MASK 0x0f000000u
#define PM_MSI_INT_INTX_SHIFT 24
#define PM_MSI_INT_MSI_MASK 0x10000000u
#define PM_MSI_INT_MSI_SHIFT 28
#define PM_MSI_INT_AER_EVT_MASK 0x20000000u
#define PM_MSI_INT_AER_EVT_SHIFT 29
#define PM_MSI_INT_EVENTS_MASK 0x40000000u
#define PM_MSI_INT_EVENTS_SHIFT 30
#define PM_MSI_INT_SYS_ERR_MASK 0x80000000u
#define PM_MSI_INT_SYS_ERR_SHIFT 31
#define NUM_LOCAL_EVENTS 15
#define ISTATUS_LOCAL 0x184
#define IMASK_HOST 0x188
#define ISTATUS_HOST 0x18c
#define MSI_ADDR 0x190
#define ISTATUS_MSI 0x194
/* PCIe Master table init defines */
#define ATR0_PCIE_WIN0_SRCADDR_PARAM 0x600u
#define ATR0_PCIE_ATR_SIZE 0x25
#define ATR0_PCIE_ATR_SIZE_SHIFT 1
#define ATR0_PCIE_WIN0_SRC_ADDR 0x604u
#define ATR0_PCIE_WIN0_TRSL_ADDR_LSB 0x608u
#define ATR0_PCIE_WIN0_TRSL_ADDR_UDW 0x60cu
#define ATR0_PCIE_WIN0_TRSL_PARAM 0x610u
/* PCIe AXI slave table init defines */
#define ATR0_AXI4_SLV0_SRCADDR_PARAM 0x800u
#define ATR_SIZE_SHIFT 1
#define ATR_IMPL_ENABLE 1
#define ATR0_AXI4_SLV0_SRC_ADDR 0x804u
#define ATR0_AXI4_SLV0_TRSL_ADDR_LSB 0x808u
#define ATR0_AXI4_SLV0_TRSL_ADDR_UDW 0x80cu
#define ATR0_AXI4_SLV0_TRSL_PARAM 0x810u
#define PCIE_TX_RX_INTERFACE 0x00000000u
#define PCIE_CONFIG_INTERFACE 0x00000001u
#define ATR_ENTRY_SIZE 32
#define EVENT_PCIE_L2_EXIT 0
#define EVENT_PCIE_HOTRST_EXIT 1
#define EVENT_PCIE_DLUP_EXIT 2
#define EVENT_SEC_TX_RAM_SEC_ERR 3
#define EVENT_SEC_RX_RAM_SEC_ERR 4
#define EVENT_SEC_AXI2PCIE_RAM_SEC_ERR 5
#define EVENT_SEC_PCIE2AXI_RAM_SEC_ERR 6
#define EVENT_DED_TX_RAM_DED_ERR 7
#define EVENT_DED_RX_RAM_DED_ERR 8
#define EVENT_DED_AXI2PCIE_RAM_DED_ERR 9
#define EVENT_DED_PCIE2AXI_RAM_DED_ERR 10
#define EVENT_LOCAL_DMA_END_ENGINE_0 11
#define EVENT_LOCAL_DMA_END_ENGINE_1 12
#define EVENT_LOCAL_DMA_ERROR_ENGINE_0 13
#define EVENT_LOCAL_DMA_ERROR_ENGINE_1 14
#define EVENT_LOCAL_A_ATR_EVT_POST_ERR 15
#define EVENT_LOCAL_A_ATR_EVT_FETCH_ERR 16
#define EVENT_LOCAL_A_ATR_EVT_DISCARD_ERR 17
#define EVENT_LOCAL_A_ATR_EVT_DOORBELL 18
#define EVENT_LOCAL_P_ATR_EVT_POST_ERR 19
#define EVENT_LOCAL_P_ATR_EVT_FETCH_ERR 20
#define EVENT_LOCAL_P_ATR_EVT_DISCARD_ERR 21
#define EVENT_LOCAL_P_ATR_EVT_DOORBELL 22
#define EVENT_LOCAL_PM_MSI_INT_INTX 23
#define EVENT_LOCAL_PM_MSI_INT_MSI 24
#define EVENT_LOCAL_PM_MSI_INT_AER_EVT 25
#define EVENT_LOCAL_PM_MSI_INT_EVENTS 26
#define EVENT_LOCAL_PM_MSI_INT_SYS_ERR 27
#define NUM_EVENTS 28
#define PCIE_EVENT_CAUSE(x, s) \
[EVENT_PCIE_ ## x] = { __stringify(x), s }
#define SEC_ERROR_CAUSE(x, s) \
[EVENT_SEC_ ## x] = { __stringify(x), s }
#define DED_ERROR_CAUSE(x, s) \
[EVENT_DED_ ## x] = { __stringify(x), s }
#define LOCAL_EVENT_CAUSE(x, s) \
[EVENT_LOCAL_ ## x] = { __stringify(x), s }
#define PCIE_EVENT(x) \
.base = MC_PCIE_CTRL_ADDR, \
.offset = PCIE_EVENT_INT, \
.mask_offset = PCIE_EVENT_INT, \
.mask_high = 1, \
.mask = PCIE_EVENT_INT_ ## x ## _INT, \
.enb_mask = PCIE_EVENT_INT_ENB_MASK
#define SEC_EVENT(x) \
.base = MC_PCIE_CTRL_ADDR, \
.offset = SEC_ERROR_INT, \
.mask_offset = SEC_ERROR_INT_MASK, \
.mask = SEC_ERROR_INT_ ## x ## _INT, \
.mask_high = 1, \
.enb_mask = 0
#define DED_EVENT(x) \
.base = MC_PCIE_CTRL_ADDR, \
.offset = DED_ERROR_INT, \
.mask_offset = DED_ERROR_INT_MASK, \
.mask_high = 1, \
.mask = DED_ERROR_INT_ ## x ## _INT, \
.enb_mask = 0
#define LOCAL_EVENT(x) \
.base = MC_PCIE_BRIDGE_ADDR, \
.offset = ISTATUS_LOCAL, \
.mask_offset = IMASK_LOCAL, \
.mask_high = 0, \
.mask = x ## _MASK, \
.enb_mask = 0
#define PCIE_EVENT_TO_EVENT_MAP(x) \
{ PCIE_EVENT_INT_ ## x ## _INT, EVENT_PCIE_ ## x }
#define SEC_ERROR_TO_EVENT_MAP(x) \
{ SEC_ERROR_INT_ ## x ## _INT, EVENT_SEC_ ## x }
#define DED_ERROR_TO_EVENT_MAP(x) \
{ DED_ERROR_INT_ ## x ## _INT, EVENT_DED_ ## x }
#define LOCAL_STATUS_TO_EVENT_MAP(x) \
{ x ## _MASK, EVENT_LOCAL_ ## x }
struct event_map {
u32 reg_mask;
u32 event_bit;
};
struct mc_msi {
struct mutex lock; /* Protect used bitmap */
struct irq_domain *msi_domain;
struct irq_domain *dev_domain;
u32 num_vectors;
u64 vector_phy;
DECLARE_BITMAP(used, MC_NUM_MSI_IRQS);
};
struct mc_pcie {
void __iomem *axi_base_addr;
struct device *dev;
struct irq_domain *intx_domain;
struct irq_domain *event_domain;
raw_spinlock_t lock;
struct mc_msi msi;
};
struct cause {
const char *sym;
const char *str;
};
static const struct cause event_cause[NUM_EVENTS] = {
PCIE_EVENT_CAUSE(L2_EXIT, "L2 exit event"),
PCIE_EVENT_CAUSE(HOTRST_EXIT, "Hot reset exit event"),
PCIE_EVENT_CAUSE(DLUP_EXIT, "DLUP exit event"),
SEC_ERROR_CAUSE(TX_RAM_SEC_ERR, "sec error in tx buffer"),
SEC_ERROR_CAUSE(RX_RAM_SEC_ERR, "sec error in rx buffer"),
SEC_ERROR_CAUSE(PCIE2AXI_RAM_SEC_ERR, "sec error in pcie2axi buffer"),
SEC_ERROR_CAUSE(AXI2PCIE_RAM_SEC_ERR, "sec error in axi2pcie buffer"),
DED_ERROR_CAUSE(TX_RAM_DED_ERR, "ded error in tx buffer"),
DED_ERROR_CAUSE(RX_RAM_DED_ERR, "ded error in rx buffer"),
DED_ERROR_CAUSE(PCIE2AXI_RAM_DED_ERR, "ded error in pcie2axi buffer"),
DED_ERROR_CAUSE(AXI2PCIE_RAM_DED_ERR, "ded error in axi2pcie buffer"),
LOCAL_EVENT_CAUSE(DMA_ERROR_ENGINE_0, "dma engine 0 error"),
LOCAL_EVENT_CAUSE(DMA_ERROR_ENGINE_1, "dma engine 1 error"),
LOCAL_EVENT_CAUSE(A_ATR_EVT_POST_ERR, "axi write request error"),
LOCAL_EVENT_CAUSE(A_ATR_EVT_FETCH_ERR, "axi read request error"),
LOCAL_EVENT_CAUSE(A_ATR_EVT_DISCARD_ERR, "axi read timeout"),
LOCAL_EVENT_CAUSE(P_ATR_EVT_POST_ERR, "pcie write request error"),
LOCAL_EVENT_CAUSE(P_ATR_EVT_FETCH_ERR, "pcie read request error"),
LOCAL_EVENT_CAUSE(P_ATR_EVT_DISCARD_ERR, "pcie read timeout"),
LOCAL_EVENT_CAUSE(PM_MSI_INT_AER_EVT, "aer event"),
LOCAL_EVENT_CAUSE(PM_MSI_INT_EVENTS, "pm/ltr/hotplug event"),
LOCAL_EVENT_CAUSE(PM_MSI_INT_SYS_ERR, "system error"),
};
static struct event_map pcie_event_to_event[] = {
PCIE_EVENT_TO_EVENT_MAP(L2_EXIT),
PCIE_EVENT_TO_EVENT_MAP(HOTRST_EXIT),
PCIE_EVENT_TO_EVENT_MAP(DLUP_EXIT),
};
static struct event_map sec_error_to_event[] = {
SEC_ERROR_TO_EVENT_MAP(TX_RAM_SEC_ERR),
SEC_ERROR_TO_EVENT_MAP(RX_RAM_SEC_ERR),
SEC_ERROR_TO_EVENT_MAP(PCIE2AXI_RAM_SEC_ERR),
SEC_ERROR_TO_EVENT_MAP(AXI2PCIE_RAM_SEC_ERR),
};
static struct event_map ded_error_to_event[] = {
DED_ERROR_TO_EVENT_MAP(TX_RAM_DED_ERR),
DED_ERROR_TO_EVENT_MAP(RX_RAM_DED_ERR),
DED_ERROR_TO_EVENT_MAP(PCIE2AXI_RAM_DED_ERR),
DED_ERROR_TO_EVENT_MAP(AXI2PCIE_RAM_DED_ERR),
};
static struct event_map local_status_to_event[] = {
LOCAL_STATUS_TO_EVENT_MAP(DMA_END_ENGINE_0),
LOCAL_STATUS_TO_EVENT_MAP(DMA_END_ENGINE_1),
LOCAL_STATUS_TO_EVENT_MAP(DMA_ERROR_ENGINE_0),
LOCAL_STATUS_TO_EVENT_MAP(DMA_ERROR_ENGINE_1),
LOCAL_STATUS_TO_EVENT_MAP(A_ATR_EVT_POST_ERR),
LOCAL_STATUS_TO_EVENT_MAP(A_ATR_EVT_FETCH_ERR),
LOCAL_STATUS_TO_EVENT_MAP(A_ATR_EVT_DISCARD_ERR),
LOCAL_STATUS_TO_EVENT_MAP(A_ATR_EVT_DOORBELL),
LOCAL_STATUS_TO_EVENT_MAP(P_ATR_EVT_POST_ERR),
LOCAL_STATUS_TO_EVENT_MAP(P_ATR_EVT_FETCH_ERR),
LOCAL_STATUS_TO_EVENT_MAP(P_ATR_EVT_DISCARD_ERR),
LOCAL_STATUS_TO_EVENT_MAP(P_ATR_EVT_DOORBELL),
LOCAL_STATUS_TO_EVENT_MAP(PM_MSI_INT_INTX),
LOCAL_STATUS_TO_EVENT_MAP(PM_MSI_INT_MSI),
LOCAL_STATUS_TO_EVENT_MAP(PM_MSI_INT_AER_EVT),
LOCAL_STATUS_TO_EVENT_MAP(PM_MSI_INT_EVENTS),
LOCAL_STATUS_TO_EVENT_MAP(PM_MSI_INT_SYS_ERR),
};
static struct {
u32 base;
u32 offset;
u32 mask;
u32 shift;
u32 enb_mask;
u32 mask_high;
u32 mask_offset;
} event_descs[] = {
{ PCIE_EVENT(L2_EXIT) },
{ PCIE_EVENT(HOTRST_EXIT) },
{ PCIE_EVENT(DLUP_EXIT) },
{ SEC_EVENT(TX_RAM_SEC_ERR) },
{ SEC_EVENT(RX_RAM_SEC_ERR) },
{ SEC_EVENT(PCIE2AXI_RAM_SEC_ERR) },
{ SEC_EVENT(AXI2PCIE_RAM_SEC_ERR) },
{ DED_EVENT(TX_RAM_DED_ERR) },
{ DED_EVENT(RX_RAM_DED_ERR) },
{ DED_EVENT(PCIE2AXI_RAM_DED_ERR) },
{ DED_EVENT(AXI2PCIE_RAM_DED_ERR) },
{ LOCAL_EVENT(DMA_END_ENGINE_0) },
{ LOCAL_EVENT(DMA_END_ENGINE_1) },
{ LOCAL_EVENT(DMA_ERROR_ENGINE_0) },
{ LOCAL_EVENT(DMA_ERROR_ENGINE_1) },
{ LOCAL_EVENT(A_ATR_EVT_POST_ERR) },
{ LOCAL_EVENT(A_ATR_EVT_FETCH_ERR) },
{ LOCAL_EVENT(A_ATR_EVT_DISCARD_ERR) },
{ LOCAL_EVENT(A_ATR_EVT_DOORBELL) },
{ LOCAL_EVENT(P_ATR_EVT_POST_ERR) },
{ LOCAL_EVENT(P_ATR_EVT_FETCH_ERR) },
{ LOCAL_EVENT(P_ATR_EVT_DISCARD_ERR) },
{ LOCAL_EVENT(P_ATR_EVT_DOORBELL) },
{ LOCAL_EVENT(PM_MSI_INT_INTX) },
{ LOCAL_EVENT(PM_MSI_INT_MSI) },
{ LOCAL_EVENT(PM_MSI_INT_AER_EVT) },
{ LOCAL_EVENT(PM_MSI_INT_EVENTS) },
{ LOCAL_EVENT(PM_MSI_INT_SYS_ERR) },
};
static char poss_clks[][5] = { "fic0", "fic1", "fic2", "fic3" };
static void mc_pcie_enable_msi(struct mc_pcie *port, void __iomem *base)
{
struct mc_msi *msi = &port->msi;
u32 cap_offset = MC_MSI_CAP_CTRL_OFFSET;
u16 msg_ctrl = readw_relaxed(base + cap_offset + PCI_MSI_FLAGS);
msg_ctrl |= PCI_MSI_FLAGS_ENABLE;
msg_ctrl &= ~PCI_MSI_FLAGS_QMASK;
msg_ctrl |= MC_MSI_MAX_Q_AVAIL;
msg_ctrl &= ~PCI_MSI_FLAGS_QSIZE;
msg_ctrl |= MC_MSI_Q_SIZE;
msg_ctrl |= PCI_MSI_FLAGS_64BIT;
writew_relaxed(msg_ctrl, base + cap_offset + PCI_MSI_FLAGS);
writel_relaxed(lower_32_bits(msi->vector_phy),
base + cap_offset + PCI_MSI_ADDRESS_LO);
writel_relaxed(upper_32_bits(msi->vector_phy),
base + cap_offset + PCI_MSI_ADDRESS_HI);
}
static void mc_handle_msi(struct irq_desc *desc)
{
struct mc_pcie *port = irq_desc_get_handler_data(desc);
struct irq_chip *chip = irq_desc_get_chip(desc);
struct device *dev = port->dev;
struct mc_msi *msi = &port->msi;
void __iomem *bridge_base_addr =
port->axi_base_addr + MC_PCIE_BRIDGE_ADDR;
unsigned long status;
u32 bit;
int ret;
chained_irq_enter(chip, desc);
status = readl_relaxed(bridge_base_addr + ISTATUS_LOCAL);
if (status & PM_MSI_INT_MSI_MASK) {
writel_relaxed(status & PM_MSI_INT_MSI_MASK, bridge_base_addr + ISTATUS_LOCAL);
status = readl_relaxed(bridge_base_addr + ISTATUS_MSI);
for_each_set_bit(bit, &status, msi->num_vectors) {
ret = generic_handle_domain_irq(msi->dev_domain, bit);
if (ret)
dev_err_ratelimited(dev, "bad MSI IRQ %d\n",
bit);
}
}
chained_irq_exit(chip, desc);
}
static void mc_msi_bottom_irq_ack(struct irq_data *data)
{
struct mc_pcie *port = irq_data_get_irq_chip_data(data);
void __iomem *bridge_base_addr =
port->axi_base_addr + MC_PCIE_BRIDGE_ADDR;
u32 bitpos = data->hwirq;
writel_relaxed(BIT(bitpos), bridge_base_addr + ISTATUS_MSI);
}
static void mc_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
{
struct mc_pcie *port = irq_data_get_irq_chip_data(data);
phys_addr_t addr = port->msi.vector_phy;
msg->address_lo = lower_32_bits(addr);
msg->address_hi = upper_32_bits(addr);
msg->data = data->hwirq;
dev_dbg(port->dev, "msi#%x address_hi %#x address_lo %#x\n",
(int)data->hwirq, msg->address_hi, msg->address_lo);
}
static int mc_msi_set_affinity(struct irq_data *irq_data,
const struct cpumask *mask, bool force)
{
return -EINVAL;
}
static struct irq_chip mc_msi_bottom_irq_chip = {
.name = "Microchip MSI",
.irq_ack = mc_msi_bottom_irq_ack,
.irq_compose_msi_msg = mc_compose_msi_msg,
.irq_set_affinity = mc_msi_set_affinity,
};
static int mc_irq_msi_domain_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *args)
{
struct mc_pcie *port = domain->host_data;
struct mc_msi *msi = &port->msi;
void __iomem *bridge_base_addr =
port->axi_base_addr + MC_PCIE_BRIDGE_ADDR;
unsigned long bit;
u32 val;
mutex_lock(&msi->lock);
bit = find_first_zero_bit(msi->used, msi->num_vectors);
if (bit >= msi->num_vectors) {
mutex_unlock(&msi->lock);
return -ENOSPC;
}
set_bit(bit, msi->used);
irq_domain_set_info(domain, virq, bit, &mc_msi_bottom_irq_chip,
domain->host_data, handle_edge_irq, NULL, NULL);
/* Enable MSI interrupts */
val = readl_relaxed(bridge_base_addr + IMASK_LOCAL);
val |= PM_MSI_INT_MSI_MASK;
writel_relaxed(val, bridge_base_addr + IMASK_LOCAL);
mutex_unlock(&msi->lock);
return 0;
}
static void mc_irq_msi_domain_free(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs)
{
struct irq_data *d = irq_domain_get_irq_data(domain, virq);
struct mc_pcie *port = irq_data_get_irq_chip_data(d);
struct mc_msi *msi = &port->msi;
mutex_lock(&msi->lock);
if (test_bit(d->hwirq, msi->used))
__clear_bit(d->hwirq, msi->used);
else
dev_err(port->dev, "trying to free unused MSI%lu\n", d->hwirq);
mutex_unlock(&msi->lock);
}
static const struct irq_domain_ops msi_domain_ops = {
.alloc = mc_irq_msi_domain_alloc,
.free = mc_irq_msi_domain_free,
};
static struct irq_chip mc_msi_irq_chip = {
.name = "Microchip PCIe MSI",
.irq_ack = irq_chip_ack_parent,
.irq_mask = pci_msi_mask_irq,
.irq_unmask = pci_msi_unmask_irq,
};
static struct msi_domain_info mc_msi_domain_info = {
.flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
MSI_FLAG_PCI_MSIX),
.chip = &mc_msi_irq_chip,
};
static int mc_allocate_msi_domains(struct mc_pcie *port)
{
struct device *dev = port->dev;
struct fwnode_handle *fwnode = of_node_to_fwnode(dev->of_node);
struct mc_msi *msi = &port->msi;
mutex_init(&port->msi.lock);
msi->dev_domain = irq_domain_add_linear(NULL, msi->num_vectors,
&msi_domain_ops, port);
if (!msi->dev_domain) {
dev_err(dev, "failed to create IRQ domain\n");
return -ENOMEM;
}
msi->msi_domain = pci_msi_create_irq_domain(fwnode, &mc_msi_domain_info,
msi->dev_domain);
if (!msi->msi_domain) {
dev_err(dev, "failed to create MSI domain\n");
irq_domain_remove(msi->dev_domain);
return -ENOMEM;
}
return 0;
}
static void mc_handle_intx(struct irq_desc *desc)
{
struct mc_pcie *port = irq_desc_get_handler_data(desc);
struct irq_chip *chip = irq_desc_get_chip(desc);
struct device *dev = port->dev;
void __iomem *bridge_base_addr =
port->axi_base_addr + MC_PCIE_BRIDGE_ADDR;
unsigned long status;
u32 bit;
int ret;
chained_irq_enter(chip, desc);
status = readl_relaxed(bridge_base_addr + ISTATUS_LOCAL);
if (status & PM_MSI_INT_INTX_MASK) {
status &= PM_MSI_INT_INTX_MASK;
status >>= PM_MSI_INT_INTX_SHIFT;
for_each_set_bit(bit, &status, PCI_NUM_INTX) {
ret = generic_handle_domain_irq(port->intx_domain, bit);
if (ret)
dev_err_ratelimited(dev, "bad INTx IRQ %d\n",
bit);
}
}
chained_irq_exit(chip, desc);
}
static void mc_ack_intx_irq(struct irq_data *data)
{
struct mc_pcie *port = irq_data_get_irq_chip_data(data);
void __iomem *bridge_base_addr =
port->axi_base_addr + MC_PCIE_BRIDGE_ADDR;
u32 mask = BIT(data->hwirq + PM_MSI_INT_INTX_SHIFT);
writel_relaxed(mask, bridge_base_addr + ISTATUS_LOCAL);
}
static void mc_mask_intx_irq(struct irq_data *data)
{
struct mc_pcie *port = irq_data_get_irq_chip_data(data);
void __iomem *bridge_base_addr =
port->axi_base_addr + MC_PCIE_BRIDGE_ADDR;
unsigned long flags;
u32 mask = BIT(data->hwirq + PM_MSI_INT_INTX_SHIFT);
u32 val;
raw_spin_lock_irqsave(&port->lock, flags);
val = readl_relaxed(bridge_base_addr + IMASK_LOCAL);
val &= ~mask;
writel_relaxed(val, bridge_base_addr + IMASK_LOCAL);
raw_spin_unlock_irqrestore(&port->lock, flags);
}
static void mc_unmask_intx_irq(struct irq_data *data)
{
struct mc_pcie *port = irq_data_get_irq_chip_data(data);
void __iomem *bridge_base_addr =
port->axi_base_addr + MC_PCIE_BRIDGE_ADDR;
unsigned long flags;
u32 mask = BIT(data->hwirq + PM_MSI_INT_INTX_SHIFT);
u32 val;
raw_spin_lock_irqsave(&port->lock, flags);
val = readl_relaxed(bridge_base_addr + IMASK_LOCAL);
val |= mask;
writel_relaxed(val, bridge_base_addr + IMASK_LOCAL);
raw_spin_unlock_irqrestore(&port->lock, flags);
}
static struct irq_chip mc_intx_irq_chip = {
.name = "Microchip PCIe INTx",
.irq_ack = mc_ack_intx_irq,
.irq_mask = mc_mask_intx_irq,
.irq_unmask = mc_unmask_intx_irq,
};
static int mc_pcie_intx_map(struct irq_domain *domain, unsigned int irq,
irq_hw_number_t hwirq)
{
irq_set_chip_and_handler(irq, &mc_intx_irq_chip, handle_level_irq);
irq_set_chip_data(irq, domain->host_data);
return 0;
}
static const struct irq_domain_ops intx_domain_ops = {
.map = mc_pcie_intx_map,
};
static inline u32 reg_to_event(u32 reg, struct event_map field)
{
return (reg & field.reg_mask) ? BIT(field.event_bit) : 0;
}
static u32 pcie_events(void __iomem *addr)
{
u32 reg = readl_relaxed(addr);
u32 val = 0;
int i;
for (i = 0; i < ARRAY_SIZE(pcie_event_to_event); i++)
val |= reg_to_event(reg, pcie_event_to_event[i]);
return val;
}
static u32 sec_errors(void __iomem *addr)
{
u32 reg = readl_relaxed(addr);
u32 val = 0;
int i;
for (i = 0; i < ARRAY_SIZE(sec_error_to_event); i++)
val |= reg_to_event(reg, sec_error_to_event[i]);
return val;
}
static u32 ded_errors(void __iomem *addr)
{
u32 reg = readl_relaxed(addr);
u32 val = 0;
int i;
for (i = 0; i < ARRAY_SIZE(ded_error_to_event); i++)
val |= reg_to_event(reg, ded_error_to_event[i]);
return val;
}
static u32 local_events(void __iomem *addr)
{
u32 reg = readl_relaxed(addr);
u32 val = 0;
int i;
for (i = 0; i < ARRAY_SIZE(local_status_to_event); i++)
val |= reg_to_event(reg, local_status_to_event[i]);
return val;
}
static u32 get_events(struct mc_pcie *port)
{
void __iomem *bridge_base_addr =
port->axi_base_addr + MC_PCIE_BRIDGE_ADDR;
void __iomem *ctrl_base_addr = port->axi_base_addr + MC_PCIE_CTRL_ADDR;
u32 events = 0;
events |= pcie_events(ctrl_base_addr + PCIE_EVENT_INT);
events |= sec_errors(ctrl_base_addr + SEC_ERROR_INT);
events |= ded_errors(ctrl_base_addr + DED_ERROR_INT);
events |= local_events(bridge_base_addr + ISTATUS_LOCAL);
return events;
}
static irqreturn_t mc_event_handler(int irq, void *dev_id)
{
struct mc_pcie *port = dev_id;
struct device *dev = port->dev;
struct irq_data *data;
data = irq_domain_get_irq_data(port->event_domain, irq);
if (event_cause[data->hwirq].str)
dev_err_ratelimited(dev, "%s\n", event_cause[data->hwirq].str);
else
dev_err_ratelimited(dev, "bad event IRQ %ld\n", data->hwirq);
return IRQ_HANDLED;
}
static void mc_handle_event(struct irq_desc *desc)
{
struct mc_pcie *port = irq_desc_get_handler_data(desc);
unsigned long events;
u32 bit;
struct irq_chip *chip = irq_desc_get_chip(desc);
chained_irq_enter(chip, desc);
events = get_events(port);
for_each_set_bit(bit, &events, NUM_EVENTS)
generic_handle_domain_irq(port->event_domain, bit);
chained_irq_exit(chip, desc);
}
static void mc_ack_event_irq(struct irq_data *data)
{
struct mc_pcie *port = irq_data_get_irq_chip_data(data);
u32 event = data->hwirq;
void __iomem *addr;
u32 mask;
addr = port->axi_base_addr + event_descs[event].base +
event_descs[event].offset;
mask = event_descs[event].mask;
mask |= event_descs[event].enb_mask;
writel_relaxed(mask, addr);
}
static void mc_mask_event_irq(struct irq_data *data)
{
struct mc_pcie *port = irq_data_get_irq_chip_data(data);
u32 event = data->hwirq;
void __iomem *addr;
u32 mask;
u32 val;
addr = port->axi_base_addr + event_descs[event].base +
event_descs[event].mask_offset;
mask = event_descs[event].mask;
if (event_descs[event].enb_mask) {
mask <<= PCIE_EVENT_INT_ENB_SHIFT;
mask &= PCIE_EVENT_INT_ENB_MASK;
}
if (!event_descs[event].mask_high)
mask = ~mask;
raw_spin_lock(&port->lock);
val = readl_relaxed(addr);
if (event_descs[event].mask_high)
val |= mask;
else
val &= mask;
writel_relaxed(val, addr);
raw_spin_unlock(&port->lock);
}
static void mc_unmask_event_irq(struct irq_data *data)
{
struct mc_pcie *port = irq_data_get_irq_chip_data(data);
u32 event = data->hwirq;
void __iomem *addr;
u32 mask;
u32 val;
addr = port->axi_base_addr + event_descs[event].base +
event_descs[event].mask_offset;
mask = event_descs[event].mask;
if (event_descs[event].enb_mask)
mask <<= PCIE_EVENT_INT_ENB_SHIFT;
if (event_descs[event].mask_high)
mask = ~mask;
if (event_descs[event].enb_mask)
mask &= PCIE_EVENT_INT_ENB_MASK;
raw_spin_lock(&port->lock);
val = readl_relaxed(addr);
if (event_descs[event].mask_high)
val &= mask;
else
val |= mask;
writel_relaxed(val, addr);
raw_spin_unlock(&port->lock);
}
static struct irq_chip mc_event_irq_chip = {
.name = "Microchip PCIe EVENT",
.irq_ack = mc_ack_event_irq,
.irq_mask = mc_mask_event_irq,
.irq_unmask = mc_unmask_event_irq,
};
static int mc_pcie_event_map(struct irq_domain *domain, unsigned int irq,
irq_hw_number_t hwirq)
{
irq_set_chip_and_handler(irq, &mc_event_irq_chip, handle_level_irq);
irq_set_chip_data(irq, domain->host_data);
return 0;
}
static const struct irq_domain_ops event_domain_ops = {
.map = mc_pcie_event_map,
};
static inline struct clk *mc_pcie_init_clk(struct device *dev, const char *id)
{
struct clk *clk;
int ret;
clk = devm_clk_get_optional(dev, id);
if (IS_ERR(clk))
return clk;
if (!clk)
return clk;
ret = clk_prepare_enable(clk);
if (ret)
return ERR_PTR(ret);
devm_add_action_or_reset(dev, (void (*) (void *))clk_disable_unprepare,
clk);
return clk;
}
static int mc_pcie_init_clks(struct device *dev)
{
int i;
struct clk *fic;
/*
* PCIe may be clocked via Fabric Interface using between 1 and 4
* clocks. Scan DT for clocks and enable them if present
*/
for (i = 0; i < ARRAY_SIZE(poss_clks); i++) {
fic = mc_pcie_init_clk(dev, poss_clks[i]);
if (IS_ERR(fic))
return PTR_ERR(fic);
}
return 0;
}
static int mc_pcie_init_irq_domains(struct mc_pcie *port)
{
struct device *dev = port->dev;
struct device_node *node = dev->of_node;
struct device_node *pcie_intc_node;
/* Setup INTx */
pcie_intc_node = of_get_next_child(node, NULL);
if (!pcie_intc_node) {
dev_err(dev, "failed to find PCIe Intc node\n");
return -EINVAL;
}
port->event_domain = irq_domain_add_linear(pcie_intc_node, NUM_EVENTS,
&event_domain_ops, port);
if (!port->event_domain) {
dev_err(dev, "failed to get event domain\n");
of_node_put(pcie_intc_node);
return -ENOMEM;
}
irq_domain_update_bus_token(port->event_domain, DOMAIN_BUS_NEXUS);
port->intx_domain = irq_domain_add_linear(pcie_intc_node, PCI_NUM_INTX,
&intx_domain_ops, port);
if (!port->intx_domain) {
dev_err(dev, "failed to get an INTx IRQ domain\n");
of_node_put(pcie_intc_node);
return -ENOMEM;
}
irq_domain_update_bus_token(port->intx_domain, DOMAIN_BUS_WIRED);
of_node_put(pcie_intc_node);
raw_spin_lock_init(&port->lock);
return mc_allocate_msi_domains(port);
}
static void mc_pcie_setup_window(void __iomem *bridge_base_addr, u32 index,
phys_addr_t axi_addr, phys_addr_t pci_addr,
size_t size)
{
u32 atr_sz = ilog2(size) - 1;
u32 val;
if (index == 0)
val = PCIE_CONFIG_INTERFACE;
else
val = PCIE_TX_RX_INTERFACE;
writel(val, bridge_base_addr + (index * ATR_ENTRY_SIZE) +
ATR0_AXI4_SLV0_TRSL_PARAM);
val = lower_32_bits(axi_addr) | (atr_sz << ATR_SIZE_SHIFT) |
ATR_IMPL_ENABLE;
writel(val, bridge_base_addr + (index * ATR_ENTRY_SIZE) +
ATR0_AXI4_SLV0_SRCADDR_PARAM);
val = upper_32_bits(axi_addr);
writel(val, bridge_base_addr + (index * ATR_ENTRY_SIZE) +
ATR0_AXI4_SLV0_SRC_ADDR);
val = lower_32_bits(pci_addr);
writel(val, bridge_base_addr + (index * ATR_ENTRY_SIZE) +
ATR0_AXI4_SLV0_TRSL_ADDR_LSB);
val = upper_32_bits(pci_addr);
writel(val, bridge_base_addr + (index * ATR_ENTRY_SIZE) +
ATR0_AXI4_SLV0_TRSL_ADDR_UDW);
val = readl(bridge_base_addr + ATR0_PCIE_WIN0_SRCADDR_PARAM);
val |= (ATR0_PCIE_ATR_SIZE << ATR0_PCIE_ATR_SIZE_SHIFT);
writel(val, bridge_base_addr + ATR0_PCIE_WIN0_SRCADDR_PARAM);
writel(0, bridge_base_addr + ATR0_PCIE_WIN0_SRC_ADDR);
}
static int mc_pcie_setup_windows(struct platform_device *pdev,
struct mc_pcie *port)
{
void __iomem *bridge_base_addr =
port->axi_base_addr + MC_PCIE_BRIDGE_ADDR;
struct pci_host_bridge *bridge = platform_get_drvdata(pdev);
struct resource_entry *entry;
u64 pci_addr;
u32 index = 1;
resource_list_for_each_entry(entry, &bridge->windows) {
if (resource_type(entry->res) == IORESOURCE_MEM) {
pci_addr = entry->res->start - entry->offset;
mc_pcie_setup_window(bridge_base_addr, index,
entry->res->start, pci_addr,
resource_size(entry->res));
index++;
}
}
return 0;
}
static int mc_platform_init(struct pci_config_window *cfg)
{
struct device *dev = cfg->parent;
struct platform_device *pdev = to_platform_device(dev);
struct mc_pcie *port;
void __iomem *bridge_base_addr;
void __iomem *ctrl_base_addr;
int ret;
int irq;
int i, intx_irq, msi_irq, event_irq;
u32 val;
int err;
port = devm_kzalloc(dev, sizeof(*port), GFP_KERNEL);
if (!port)
return -ENOMEM;
port->dev = dev;
ret = mc_pcie_init_clks(dev);
if (ret) {
dev_err(dev, "failed to get clock resources, error %d\n", ret);
return -ENODEV;
}
port->axi_base_addr = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(port->axi_base_addr))
return PTR_ERR(port->axi_base_addr);
bridge_base_addr = port->axi_base_addr + MC_PCIE_BRIDGE_ADDR;
ctrl_base_addr = port->axi_base_addr + MC_PCIE_CTRL_ADDR;
port->msi.vector_phy = MSI_ADDR;
port->msi.num_vectors = MC_NUM_MSI_IRQS;
ret = mc_pcie_init_irq_domains(port);
if (ret) {
dev_err(dev, "failed creating IRQ domains\n");
return ret;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return -ENODEV;
for (i = 0; i < NUM_EVENTS; i++) {
event_irq = irq_create_mapping(port->event_domain, i);
if (!event_irq) {
dev_err(dev, "failed to map hwirq %d\n", i);
return -ENXIO;
}
err = devm_request_irq(dev, event_irq, mc_event_handler,
0, event_cause[i].sym, port);
if (err) {
dev_err(dev, "failed to request IRQ %d\n", event_irq);
return err;
}
}
intx_irq = irq_create_mapping(port->event_domain,
EVENT_LOCAL_PM_MSI_INT_INTX);
if (!intx_irq) {
dev_err(dev, "failed to map INTx interrupt\n");
return -ENXIO;
}
/* Plug the INTx chained handler */
irq_set_chained_handler_and_data(intx_irq, mc_handle_intx, port);
msi_irq = irq_create_mapping(port->event_domain,
EVENT_LOCAL_PM_MSI_INT_MSI);
if (!msi_irq)
return -ENXIO;
/* Plug the MSI chained handler */
irq_set_chained_handler_and_data(msi_irq, mc_handle_msi, port);
/* Plug the main event chained handler */
irq_set_chained_handler_and_data(irq, mc_handle_event, port);
/* Hardware doesn't setup MSI by default */
mc_pcie_enable_msi(port, cfg->win);
val = readl_relaxed(bridge_base_addr + IMASK_LOCAL);
val |= PM_MSI_INT_INTX_MASK;
writel_relaxed(val, bridge_base_addr + IMASK_LOCAL);
writel_relaxed(val, ctrl_base_addr + ECC_CONTROL);
val = PCIE_EVENT_INT_L2_EXIT_INT |
PCIE_EVENT_INT_HOTRST_EXIT_INT |
PCIE_EVENT_INT_DLUP_EXIT_INT;
writel_relaxed(val, ctrl_base_addr + PCIE_EVENT_INT);
val = SEC_ERROR_INT_TX_RAM_SEC_ERR_INT |
SEC_ERROR_INT_RX_RAM_SEC_ERR_INT |
SEC_ERROR_INT_PCIE2AXI_RAM_SEC_ERR_INT |
SEC_ERROR_INT_AXI2PCIE_RAM_SEC_ERR_INT;
writel_relaxed(val, ctrl_base_addr + SEC_ERROR_INT);
writel_relaxed(0, ctrl_base_addr + SEC_ERROR_INT_MASK);
writel_relaxed(0, ctrl_base_addr + SEC_ERROR_CNT);
val = DED_ERROR_INT_TX_RAM_DED_ERR_INT |
DED_ERROR_INT_RX_RAM_DED_ERR_INT |
DED_ERROR_INT_PCIE2AXI_RAM_DED_ERR_INT |
DED_ERROR_INT_AXI2PCIE_RAM_DED_ERR_INT;
writel_relaxed(val, ctrl_base_addr + DED_ERROR_INT);
writel_relaxed(0, ctrl_base_addr + DED_ERROR_INT_MASK);
writel_relaxed(0, ctrl_base_addr + DED_ERROR_CNT);
writel_relaxed(0, bridge_base_addr + IMASK_HOST);
writel_relaxed(GENMASK(31, 0), bridge_base_addr + ISTATUS_HOST);
/* Configure Address Translation Table 0 for PCIe config space */
mc_pcie_setup_window(bridge_base_addr, 0, cfg->res.start & 0xffffffff,
cfg->res.start, resource_size(&cfg->res));
return mc_pcie_setup_windows(pdev, port);
}
static const struct pci_ecam_ops mc_ecam_ops = {
.init = mc_platform_init,
.pci_ops = {
.map_bus = pci_ecam_map_bus,
.read = pci_generic_config_read,
.write = pci_generic_config_write,
}
};
static const struct of_device_id mc_pcie_of_match[] = {
{
.compatible = "microchip,pcie-host-1.0",
.data = &mc_ecam_ops,
},
{},
};
MODULE_DEVICE_TABLE(of, mc_pcie_of_match);
static struct platform_driver mc_pcie_driver = {
.probe = pci_host_common_probe,
.driver = {
.name = "microchip-pcie",
.of_match_table = mc_pcie_of_match,
.suppress_bind_attrs = true,
},
};
builtin_platform_driver(mc_pcie_driver);
MODULE_DESCRIPTION("Microchip PCIe host controller driver");
MODULE_AUTHOR("Daire McNamara <daire.mcnamara@microchip.com>");