1049 lines
26 KiB
C
1049 lines
26 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* Test driver to test endpoint functionality
|
||
|
*
|
||
|
* Copyright (C) 2017 Texas Instruments
|
||
|
* Author: Kishon Vijay Abraham I <kishon@ti.com>
|
||
|
*/
|
||
|
|
||
|
#include <linux/crc32.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/dmaengine.h>
|
||
|
#include <linux/io.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/pci_ids.h>
|
||
|
#include <linux/random.h>
|
||
|
|
||
|
#include <linux/pci-epc.h>
|
||
|
#include <linux/pci-epf.h>
|
||
|
#include <linux/pci_regs.h>
|
||
|
|
||
|
#define IRQ_TYPE_LEGACY 0
|
||
|
#define IRQ_TYPE_MSI 1
|
||
|
#define IRQ_TYPE_MSIX 2
|
||
|
|
||
|
#define COMMAND_RAISE_LEGACY_IRQ BIT(0)
|
||
|
#define COMMAND_RAISE_MSI_IRQ BIT(1)
|
||
|
#define COMMAND_RAISE_MSIX_IRQ BIT(2)
|
||
|
#define COMMAND_READ BIT(3)
|
||
|
#define COMMAND_WRITE BIT(4)
|
||
|
#define COMMAND_COPY BIT(5)
|
||
|
|
||
|
#define STATUS_READ_SUCCESS BIT(0)
|
||
|
#define STATUS_READ_FAIL BIT(1)
|
||
|
#define STATUS_WRITE_SUCCESS BIT(2)
|
||
|
#define STATUS_WRITE_FAIL BIT(3)
|
||
|
#define STATUS_COPY_SUCCESS BIT(4)
|
||
|
#define STATUS_COPY_FAIL BIT(5)
|
||
|
#define STATUS_IRQ_RAISED BIT(6)
|
||
|
#define STATUS_SRC_ADDR_INVALID BIT(7)
|
||
|
#define STATUS_DST_ADDR_INVALID BIT(8)
|
||
|
|
||
|
#define FLAG_USE_DMA BIT(0)
|
||
|
|
||
|
#define TIMER_RESOLUTION 1
|
||
|
|
||
|
static struct workqueue_struct *kpcitest_workqueue;
|
||
|
|
||
|
struct pci_epf_test {
|
||
|
void *reg[PCI_STD_NUM_BARS];
|
||
|
struct pci_epf *epf;
|
||
|
enum pci_barno test_reg_bar;
|
||
|
size_t msix_table_offset;
|
||
|
struct delayed_work cmd_handler;
|
||
|
struct dma_chan *dma_chan_tx;
|
||
|
struct dma_chan *dma_chan_rx;
|
||
|
struct completion transfer_complete;
|
||
|
bool dma_supported;
|
||
|
bool dma_private;
|
||
|
const struct pci_epc_features *epc_features;
|
||
|
};
|
||
|
|
||
|
struct pci_epf_test_reg {
|
||
|
u32 magic;
|
||
|
u32 command;
|
||
|
u32 status;
|
||
|
u64 src_addr;
|
||
|
u64 dst_addr;
|
||
|
u32 size;
|
||
|
u32 checksum;
|
||
|
u32 irq_type;
|
||
|
u32 irq_number;
|
||
|
u32 flags;
|
||
|
} __packed;
|
||
|
|
||
|
static struct pci_epf_header test_header = {
|
||
|
.vendorid = PCI_ANY_ID,
|
||
|
.deviceid = PCI_ANY_ID,
|
||
|
.baseclass_code = PCI_CLASS_OTHERS,
|
||
|
.interrupt_pin = PCI_INTERRUPT_INTA,
|
||
|
};
|
||
|
|
||
|
static size_t bar_size[] = { 512, 512, 1024, 16384, 131072, 1048576 };
|
||
|
|
||
|
static void pci_epf_test_dma_callback(void *param)
|
||
|
{
|
||
|
struct pci_epf_test *epf_test = param;
|
||
|
|
||
|
complete(&epf_test->transfer_complete);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pci_epf_test_data_transfer() - Function that uses dmaengine API to transfer
|
||
|
* data between PCIe EP and remote PCIe RC
|
||
|
* @epf_test: the EPF test device that performs the data transfer operation
|
||
|
* @dma_dst: The destination address of the data transfer. It can be a physical
|
||
|
* address given by pci_epc_mem_alloc_addr or DMA mapping APIs.
|
||
|
* @dma_src: The source address of the data transfer. It can be a physical
|
||
|
* address given by pci_epc_mem_alloc_addr or DMA mapping APIs.
|
||
|
* @len: The size of the data transfer
|
||
|
* @dma_remote: remote RC physical address
|
||
|
* @dir: DMA transfer direction
|
||
|
*
|
||
|
* Function that uses dmaengine API to transfer data between PCIe EP and remote
|
||
|
* PCIe RC. The source and destination address can be a physical address given
|
||
|
* by pci_epc_mem_alloc_addr or the one obtained using DMA mapping APIs.
|
||
|
*
|
||
|
* The function returns '0' on success and negative value on failure.
|
||
|
*/
|
||
|
static int pci_epf_test_data_transfer(struct pci_epf_test *epf_test,
|
||
|
dma_addr_t dma_dst, dma_addr_t dma_src,
|
||
|
size_t len, dma_addr_t dma_remote,
|
||
|
enum dma_transfer_direction dir)
|
||
|
{
|
||
|
struct dma_chan *chan = (dir == DMA_DEV_TO_MEM) ?
|
||
|
epf_test->dma_chan_tx : epf_test->dma_chan_rx;
|
||
|
dma_addr_t dma_local = (dir == DMA_MEM_TO_DEV) ? dma_src : dma_dst;
|
||
|
enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
|
||
|
struct pci_epf *epf = epf_test->epf;
|
||
|
struct dma_async_tx_descriptor *tx;
|
||
|
struct dma_slave_config sconf = {};
|
||
|
struct device *dev = &epf->dev;
|
||
|
dma_cookie_t cookie;
|
||
|
int ret;
|
||
|
|
||
|
if (IS_ERR_OR_NULL(chan)) {
|
||
|
dev_err(dev, "Invalid DMA memcpy channel\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (epf_test->dma_private) {
|
||
|
sconf.direction = dir;
|
||
|
if (dir == DMA_MEM_TO_DEV)
|
||
|
sconf.dst_addr = dma_remote;
|
||
|
else
|
||
|
sconf.src_addr = dma_remote;
|
||
|
|
||
|
if (dmaengine_slave_config(chan, &sconf)) {
|
||
|
dev_err(dev, "DMA slave config fail\n");
|
||
|
return -EIO;
|
||
|
}
|
||
|
tx = dmaengine_prep_slave_single(chan, dma_local, len, dir,
|
||
|
flags);
|
||
|
} else {
|
||
|
tx = dmaengine_prep_dma_memcpy(chan, dma_dst, dma_src, len,
|
||
|
flags);
|
||
|
}
|
||
|
|
||
|
if (!tx) {
|
||
|
dev_err(dev, "Failed to prepare DMA memcpy\n");
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
tx->callback = pci_epf_test_dma_callback;
|
||
|
tx->callback_param = epf_test;
|
||
|
cookie = tx->tx_submit(tx);
|
||
|
reinit_completion(&epf_test->transfer_complete);
|
||
|
|
||
|
ret = dma_submit_error(cookie);
|
||
|
if (ret) {
|
||
|
dev_err(dev, "Failed to do DMA tx_submit %d\n", cookie);
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
dma_async_issue_pending(chan);
|
||
|
ret = wait_for_completion_interruptible(&epf_test->transfer_complete);
|
||
|
if (ret < 0) {
|
||
|
dmaengine_terminate_sync(chan);
|
||
|
dev_err(dev, "DMA wait_for_completion_timeout\n");
|
||
|
return -ETIMEDOUT;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
struct epf_dma_filter {
|
||
|
struct device *dev;
|
||
|
u32 dma_mask;
|
||
|
};
|
||
|
|
||
|
static bool epf_dma_filter_fn(struct dma_chan *chan, void *node)
|
||
|
{
|
||
|
struct epf_dma_filter *filter = node;
|
||
|
struct dma_slave_caps caps;
|
||
|
|
||
|
memset(&caps, 0, sizeof(caps));
|
||
|
dma_get_slave_caps(chan, &caps);
|
||
|
|
||
|
return chan->device->dev == filter->dev
|
||
|
&& (filter->dma_mask & caps.directions);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pci_epf_test_init_dma_chan() - Function to initialize EPF test DMA channel
|
||
|
* @epf_test: the EPF test device that performs data transfer operation
|
||
|
*
|
||
|
* Function to initialize EPF test DMA channel.
|
||
|
*/
|
||
|
static int pci_epf_test_init_dma_chan(struct pci_epf_test *epf_test)
|
||
|
{
|
||
|
struct pci_epf *epf = epf_test->epf;
|
||
|
struct device *dev = &epf->dev;
|
||
|
struct epf_dma_filter filter;
|
||
|
struct dma_chan *dma_chan;
|
||
|
dma_cap_mask_t mask;
|
||
|
int ret;
|
||
|
|
||
|
filter.dev = epf->epc->dev.parent;
|
||
|
filter.dma_mask = BIT(DMA_DEV_TO_MEM);
|
||
|
|
||
|
dma_cap_zero(mask);
|
||
|
dma_cap_set(DMA_SLAVE, mask);
|
||
|
dma_chan = dma_request_channel(mask, epf_dma_filter_fn, &filter);
|
||
|
if (!dma_chan) {
|
||
|
dev_info(dev, "Failed to get private DMA rx channel. Falling back to generic one\n");
|
||
|
goto fail_back_tx;
|
||
|
}
|
||
|
|
||
|
epf_test->dma_chan_rx = dma_chan;
|
||
|
|
||
|
filter.dma_mask = BIT(DMA_MEM_TO_DEV);
|
||
|
dma_chan = dma_request_channel(mask, epf_dma_filter_fn, &filter);
|
||
|
|
||
|
if (!dma_chan) {
|
||
|
dev_info(dev, "Failed to get private DMA tx channel. Falling back to generic one\n");
|
||
|
goto fail_back_rx;
|
||
|
}
|
||
|
|
||
|
epf_test->dma_chan_tx = dma_chan;
|
||
|
epf_test->dma_private = true;
|
||
|
|
||
|
init_completion(&epf_test->transfer_complete);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
fail_back_rx:
|
||
|
dma_release_channel(epf_test->dma_chan_rx);
|
||
|
epf_test->dma_chan_tx = NULL;
|
||
|
|
||
|
fail_back_tx:
|
||
|
dma_cap_zero(mask);
|
||
|
dma_cap_set(DMA_MEMCPY, mask);
|
||
|
|
||
|
dma_chan = dma_request_chan_by_mask(&mask);
|
||
|
if (IS_ERR(dma_chan)) {
|
||
|
ret = PTR_ERR(dma_chan);
|
||
|
if (ret != -EPROBE_DEFER)
|
||
|
dev_err(dev, "Failed to get DMA channel\n");
|
||
|
return ret;
|
||
|
}
|
||
|
init_completion(&epf_test->transfer_complete);
|
||
|
|
||
|
epf_test->dma_chan_tx = epf_test->dma_chan_rx = dma_chan;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pci_epf_test_clean_dma_chan() - Function to cleanup EPF test DMA channel
|
||
|
* @epf_test: the EPF test device that performs data transfer operation
|
||
|
*
|
||
|
* Helper to cleanup EPF test DMA channel.
|
||
|
*/
|
||
|
static void pci_epf_test_clean_dma_chan(struct pci_epf_test *epf_test)
|
||
|
{
|
||
|
if (!epf_test->dma_supported)
|
||
|
return;
|
||
|
|
||
|
dma_release_channel(epf_test->dma_chan_tx);
|
||
|
if (epf_test->dma_chan_tx == epf_test->dma_chan_rx) {
|
||
|
epf_test->dma_chan_tx = NULL;
|
||
|
epf_test->dma_chan_rx = NULL;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
dma_release_channel(epf_test->dma_chan_rx);
|
||
|
epf_test->dma_chan_rx = NULL;
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static void pci_epf_test_print_rate(const char *ops, u64 size,
|
||
|
struct timespec64 *start,
|
||
|
struct timespec64 *end, bool dma)
|
||
|
{
|
||
|
struct timespec64 ts;
|
||
|
u64 rate, ns;
|
||
|
|
||
|
ts = timespec64_sub(*end, *start);
|
||
|
|
||
|
/* convert both size (stored in 'rate') and time in terms of 'ns' */
|
||
|
ns = timespec64_to_ns(&ts);
|
||
|
rate = size * NSEC_PER_SEC;
|
||
|
|
||
|
/* Divide both size (stored in 'rate') and ns by a common factor */
|
||
|
while (ns > UINT_MAX) {
|
||
|
rate >>= 1;
|
||
|
ns >>= 1;
|
||
|
}
|
||
|
|
||
|
if (!ns)
|
||
|
return;
|
||
|
|
||
|
/* calculate the rate */
|
||
|
do_div(rate, (uint32_t)ns);
|
||
|
|
||
|
pr_info("\n%s => Size: %llu bytes\t DMA: %s\t Time: %llu.%09u seconds\t"
|
||
|
"Rate: %llu KB/s\n", ops, size, dma ? "YES" : "NO",
|
||
|
(u64)ts.tv_sec, (u32)ts.tv_nsec, rate / 1024);
|
||
|
}
|
||
|
|
||
|
static int pci_epf_test_copy(struct pci_epf_test *epf_test)
|
||
|
{
|
||
|
int ret;
|
||
|
bool use_dma;
|
||
|
void __iomem *src_addr;
|
||
|
void __iomem *dst_addr;
|
||
|
phys_addr_t src_phys_addr;
|
||
|
phys_addr_t dst_phys_addr;
|
||
|
struct timespec64 start, end;
|
||
|
struct pci_epf *epf = epf_test->epf;
|
||
|
struct device *dev = &epf->dev;
|
||
|
struct pci_epc *epc = epf->epc;
|
||
|
enum pci_barno test_reg_bar = epf_test->test_reg_bar;
|
||
|
struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];
|
||
|
|
||
|
src_addr = pci_epc_mem_alloc_addr(epc, &src_phys_addr, reg->size);
|
||
|
if (!src_addr) {
|
||
|
dev_err(dev, "Failed to allocate source address\n");
|
||
|
reg->status = STATUS_SRC_ADDR_INVALID;
|
||
|
ret = -ENOMEM;
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, src_phys_addr,
|
||
|
reg->src_addr, reg->size);
|
||
|
if (ret) {
|
||
|
dev_err(dev, "Failed to map source address\n");
|
||
|
reg->status = STATUS_SRC_ADDR_INVALID;
|
||
|
goto err_src_addr;
|
||
|
}
|
||
|
|
||
|
dst_addr = pci_epc_mem_alloc_addr(epc, &dst_phys_addr, reg->size);
|
||
|
if (!dst_addr) {
|
||
|
dev_err(dev, "Failed to allocate destination address\n");
|
||
|
reg->status = STATUS_DST_ADDR_INVALID;
|
||
|
ret = -ENOMEM;
|
||
|
goto err_src_map_addr;
|
||
|
}
|
||
|
|
||
|
ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, dst_phys_addr,
|
||
|
reg->dst_addr, reg->size);
|
||
|
if (ret) {
|
||
|
dev_err(dev, "Failed to map destination address\n");
|
||
|
reg->status = STATUS_DST_ADDR_INVALID;
|
||
|
goto err_dst_addr;
|
||
|
}
|
||
|
|
||
|
ktime_get_ts64(&start);
|
||
|
use_dma = !!(reg->flags & FLAG_USE_DMA);
|
||
|
if (use_dma) {
|
||
|
if (!epf_test->dma_supported) {
|
||
|
dev_err(dev, "Cannot transfer data using DMA\n");
|
||
|
ret = -EINVAL;
|
||
|
goto err_map_addr;
|
||
|
}
|
||
|
|
||
|
if (epf_test->dma_private) {
|
||
|
dev_err(dev, "Cannot transfer data using DMA\n");
|
||
|
ret = -EINVAL;
|
||
|
goto err_map_addr;
|
||
|
}
|
||
|
|
||
|
ret = pci_epf_test_data_transfer(epf_test, dst_phys_addr,
|
||
|
src_phys_addr, reg->size, 0,
|
||
|
DMA_MEM_TO_MEM);
|
||
|
if (ret)
|
||
|
dev_err(dev, "Data transfer failed\n");
|
||
|
} else {
|
||
|
void *buf;
|
||
|
|
||
|
buf = kzalloc(reg->size, GFP_KERNEL);
|
||
|
if (!buf) {
|
||
|
ret = -ENOMEM;
|
||
|
goto err_map_addr;
|
||
|
}
|
||
|
|
||
|
memcpy_fromio(buf, src_addr, reg->size);
|
||
|
memcpy_toio(dst_addr, buf, reg->size);
|
||
|
kfree(buf);
|
||
|
}
|
||
|
ktime_get_ts64(&end);
|
||
|
pci_epf_test_print_rate("COPY", reg->size, &start, &end, use_dma);
|
||
|
|
||
|
err_map_addr:
|
||
|
pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, dst_phys_addr);
|
||
|
|
||
|
err_dst_addr:
|
||
|
pci_epc_mem_free_addr(epc, dst_phys_addr, dst_addr, reg->size);
|
||
|
|
||
|
err_src_map_addr:
|
||
|
pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, src_phys_addr);
|
||
|
|
||
|
err_src_addr:
|
||
|
pci_epc_mem_free_addr(epc, src_phys_addr, src_addr, reg->size);
|
||
|
|
||
|
err:
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int pci_epf_test_read(struct pci_epf_test *epf_test)
|
||
|
{
|
||
|
int ret;
|
||
|
void __iomem *src_addr;
|
||
|
void *buf;
|
||
|
u32 crc32;
|
||
|
bool use_dma;
|
||
|
phys_addr_t phys_addr;
|
||
|
phys_addr_t dst_phys_addr;
|
||
|
struct timespec64 start, end;
|
||
|
struct pci_epf *epf = epf_test->epf;
|
||
|
struct device *dev = &epf->dev;
|
||
|
struct pci_epc *epc = epf->epc;
|
||
|
struct device *dma_dev = epf->epc->dev.parent;
|
||
|
enum pci_barno test_reg_bar = epf_test->test_reg_bar;
|
||
|
struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];
|
||
|
|
||
|
src_addr = pci_epc_mem_alloc_addr(epc, &phys_addr, reg->size);
|
||
|
if (!src_addr) {
|
||
|
dev_err(dev, "Failed to allocate address\n");
|
||
|
reg->status = STATUS_SRC_ADDR_INVALID;
|
||
|
ret = -ENOMEM;
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, phys_addr,
|
||
|
reg->src_addr, reg->size);
|
||
|
if (ret) {
|
||
|
dev_err(dev, "Failed to map address\n");
|
||
|
reg->status = STATUS_SRC_ADDR_INVALID;
|
||
|
goto err_addr;
|
||
|
}
|
||
|
|
||
|
buf = kzalloc(reg->size, GFP_KERNEL);
|
||
|
if (!buf) {
|
||
|
ret = -ENOMEM;
|
||
|
goto err_map_addr;
|
||
|
}
|
||
|
|
||
|
use_dma = !!(reg->flags & FLAG_USE_DMA);
|
||
|
if (use_dma) {
|
||
|
if (!epf_test->dma_supported) {
|
||
|
dev_err(dev, "Cannot transfer data using DMA\n");
|
||
|
ret = -EINVAL;
|
||
|
goto err_dma_map;
|
||
|
}
|
||
|
|
||
|
dst_phys_addr = dma_map_single(dma_dev, buf, reg->size,
|
||
|
DMA_FROM_DEVICE);
|
||
|
if (dma_mapping_error(dma_dev, dst_phys_addr)) {
|
||
|
dev_err(dev, "Failed to map destination buffer addr\n");
|
||
|
ret = -ENOMEM;
|
||
|
goto err_dma_map;
|
||
|
}
|
||
|
|
||
|
ktime_get_ts64(&start);
|
||
|
ret = pci_epf_test_data_transfer(epf_test, dst_phys_addr,
|
||
|
phys_addr, reg->size,
|
||
|
reg->src_addr, DMA_DEV_TO_MEM);
|
||
|
if (ret)
|
||
|
dev_err(dev, "Data transfer failed\n");
|
||
|
ktime_get_ts64(&end);
|
||
|
|
||
|
dma_unmap_single(dma_dev, dst_phys_addr, reg->size,
|
||
|
DMA_FROM_DEVICE);
|
||
|
} else {
|
||
|
ktime_get_ts64(&start);
|
||
|
memcpy_fromio(buf, src_addr, reg->size);
|
||
|
ktime_get_ts64(&end);
|
||
|
}
|
||
|
|
||
|
pci_epf_test_print_rate("READ", reg->size, &start, &end, use_dma);
|
||
|
|
||
|
crc32 = crc32_le(~0, buf, reg->size);
|
||
|
if (crc32 != reg->checksum)
|
||
|
ret = -EIO;
|
||
|
|
||
|
err_dma_map:
|
||
|
kfree(buf);
|
||
|
|
||
|
err_map_addr:
|
||
|
pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, phys_addr);
|
||
|
|
||
|
err_addr:
|
||
|
pci_epc_mem_free_addr(epc, phys_addr, src_addr, reg->size);
|
||
|
|
||
|
err:
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int pci_epf_test_write(struct pci_epf_test *epf_test)
|
||
|
{
|
||
|
int ret;
|
||
|
void __iomem *dst_addr;
|
||
|
void *buf;
|
||
|
bool use_dma;
|
||
|
phys_addr_t phys_addr;
|
||
|
phys_addr_t src_phys_addr;
|
||
|
struct timespec64 start, end;
|
||
|
struct pci_epf *epf = epf_test->epf;
|
||
|
struct device *dev = &epf->dev;
|
||
|
struct pci_epc *epc = epf->epc;
|
||
|
struct device *dma_dev = epf->epc->dev.parent;
|
||
|
enum pci_barno test_reg_bar = epf_test->test_reg_bar;
|
||
|
struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];
|
||
|
|
||
|
dst_addr = pci_epc_mem_alloc_addr(epc, &phys_addr, reg->size);
|
||
|
if (!dst_addr) {
|
||
|
dev_err(dev, "Failed to allocate address\n");
|
||
|
reg->status = STATUS_DST_ADDR_INVALID;
|
||
|
ret = -ENOMEM;
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, phys_addr,
|
||
|
reg->dst_addr, reg->size);
|
||
|
if (ret) {
|
||
|
dev_err(dev, "Failed to map address\n");
|
||
|
reg->status = STATUS_DST_ADDR_INVALID;
|
||
|
goto err_addr;
|
||
|
}
|
||
|
|
||
|
buf = kzalloc(reg->size, GFP_KERNEL);
|
||
|
if (!buf) {
|
||
|
ret = -ENOMEM;
|
||
|
goto err_map_addr;
|
||
|
}
|
||
|
|
||
|
get_random_bytes(buf, reg->size);
|
||
|
reg->checksum = crc32_le(~0, buf, reg->size);
|
||
|
|
||
|
use_dma = !!(reg->flags & FLAG_USE_DMA);
|
||
|
if (use_dma) {
|
||
|
if (!epf_test->dma_supported) {
|
||
|
dev_err(dev, "Cannot transfer data using DMA\n");
|
||
|
ret = -EINVAL;
|
||
|
goto err_dma_map;
|
||
|
}
|
||
|
|
||
|
src_phys_addr = dma_map_single(dma_dev, buf, reg->size,
|
||
|
DMA_TO_DEVICE);
|
||
|
if (dma_mapping_error(dma_dev, src_phys_addr)) {
|
||
|
dev_err(dev, "Failed to map source buffer addr\n");
|
||
|
ret = -ENOMEM;
|
||
|
goto err_dma_map;
|
||
|
}
|
||
|
|
||
|
ktime_get_ts64(&start);
|
||
|
|
||
|
ret = pci_epf_test_data_transfer(epf_test, phys_addr,
|
||
|
src_phys_addr, reg->size,
|
||
|
reg->dst_addr,
|
||
|
DMA_MEM_TO_DEV);
|
||
|
if (ret)
|
||
|
dev_err(dev, "Data transfer failed\n");
|
||
|
ktime_get_ts64(&end);
|
||
|
|
||
|
dma_unmap_single(dma_dev, src_phys_addr, reg->size,
|
||
|
DMA_TO_DEVICE);
|
||
|
} else {
|
||
|
ktime_get_ts64(&start);
|
||
|
memcpy_toio(dst_addr, buf, reg->size);
|
||
|
ktime_get_ts64(&end);
|
||
|
}
|
||
|
|
||
|
pci_epf_test_print_rate("WRITE", reg->size, &start, &end, use_dma);
|
||
|
|
||
|
/*
|
||
|
* wait 1ms inorder for the write to complete. Without this delay L3
|
||
|
* error in observed in the host system.
|
||
|
*/
|
||
|
usleep_range(1000, 2000);
|
||
|
|
||
|
err_dma_map:
|
||
|
kfree(buf);
|
||
|
|
||
|
err_map_addr:
|
||
|
pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, phys_addr);
|
||
|
|
||
|
err_addr:
|
||
|
pci_epc_mem_free_addr(epc, phys_addr, dst_addr, reg->size);
|
||
|
|
||
|
err:
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void pci_epf_test_raise_irq(struct pci_epf_test *epf_test, u8 irq_type,
|
||
|
u16 irq)
|
||
|
{
|
||
|
struct pci_epf *epf = epf_test->epf;
|
||
|
struct device *dev = &epf->dev;
|
||
|
struct pci_epc *epc = epf->epc;
|
||
|
enum pci_barno test_reg_bar = epf_test->test_reg_bar;
|
||
|
struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];
|
||
|
|
||
|
reg->status |= STATUS_IRQ_RAISED;
|
||
|
|
||
|
switch (irq_type) {
|
||
|
case IRQ_TYPE_LEGACY:
|
||
|
pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no,
|
||
|
PCI_EPC_IRQ_LEGACY, 0);
|
||
|
break;
|
||
|
case IRQ_TYPE_MSI:
|
||
|
pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no,
|
||
|
PCI_EPC_IRQ_MSI, irq);
|
||
|
break;
|
||
|
case IRQ_TYPE_MSIX:
|
||
|
pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no,
|
||
|
PCI_EPC_IRQ_MSIX, irq);
|
||
|
break;
|
||
|
default:
|
||
|
dev_err(dev, "Failed to raise IRQ, unknown type\n");
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void pci_epf_test_cmd_handler(struct work_struct *work)
|
||
|
{
|
||
|
int ret;
|
||
|
int count;
|
||
|
u32 command;
|
||
|
struct pci_epf_test *epf_test = container_of(work, struct pci_epf_test,
|
||
|
cmd_handler.work);
|
||
|
struct pci_epf *epf = epf_test->epf;
|
||
|
struct device *dev = &epf->dev;
|
||
|
struct pci_epc *epc = epf->epc;
|
||
|
enum pci_barno test_reg_bar = epf_test->test_reg_bar;
|
||
|
struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];
|
||
|
|
||
|
command = reg->command;
|
||
|
if (!command)
|
||
|
goto reset_handler;
|
||
|
|
||
|
reg->command = 0;
|
||
|
reg->status = 0;
|
||
|
|
||
|
if (reg->irq_type > IRQ_TYPE_MSIX) {
|
||
|
dev_err(dev, "Failed to detect IRQ type\n");
|
||
|
goto reset_handler;
|
||
|
}
|
||
|
|
||
|
if (command & COMMAND_RAISE_LEGACY_IRQ) {
|
||
|
reg->status = STATUS_IRQ_RAISED;
|
||
|
pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no,
|
||
|
PCI_EPC_IRQ_LEGACY, 0);
|
||
|
goto reset_handler;
|
||
|
}
|
||
|
|
||
|
if (command & COMMAND_WRITE) {
|
||
|
ret = pci_epf_test_write(epf_test);
|
||
|
if (ret)
|
||
|
reg->status |= STATUS_WRITE_FAIL;
|
||
|
else
|
||
|
reg->status |= STATUS_WRITE_SUCCESS;
|
||
|
pci_epf_test_raise_irq(epf_test, reg->irq_type,
|
||
|
reg->irq_number);
|
||
|
goto reset_handler;
|
||
|
}
|
||
|
|
||
|
if (command & COMMAND_READ) {
|
||
|
ret = pci_epf_test_read(epf_test);
|
||
|
if (!ret)
|
||
|
reg->status |= STATUS_READ_SUCCESS;
|
||
|
else
|
||
|
reg->status |= STATUS_READ_FAIL;
|
||
|
pci_epf_test_raise_irq(epf_test, reg->irq_type,
|
||
|
reg->irq_number);
|
||
|
goto reset_handler;
|
||
|
}
|
||
|
|
||
|
if (command & COMMAND_COPY) {
|
||
|
ret = pci_epf_test_copy(epf_test);
|
||
|
if (!ret)
|
||
|
reg->status |= STATUS_COPY_SUCCESS;
|
||
|
else
|
||
|
reg->status |= STATUS_COPY_FAIL;
|
||
|
pci_epf_test_raise_irq(epf_test, reg->irq_type,
|
||
|
reg->irq_number);
|
||
|
goto reset_handler;
|
||
|
}
|
||
|
|
||
|
if (command & COMMAND_RAISE_MSI_IRQ) {
|
||
|
count = pci_epc_get_msi(epc, epf->func_no, epf->vfunc_no);
|
||
|
if (reg->irq_number > count || count <= 0)
|
||
|
goto reset_handler;
|
||
|
reg->status = STATUS_IRQ_RAISED;
|
||
|
pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no,
|
||
|
PCI_EPC_IRQ_MSI, reg->irq_number);
|
||
|
goto reset_handler;
|
||
|
}
|
||
|
|
||
|
if (command & COMMAND_RAISE_MSIX_IRQ) {
|
||
|
count = pci_epc_get_msix(epc, epf->func_no, epf->vfunc_no);
|
||
|
if (reg->irq_number > count || count <= 0)
|
||
|
goto reset_handler;
|
||
|
reg->status = STATUS_IRQ_RAISED;
|
||
|
pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no,
|
||
|
PCI_EPC_IRQ_MSIX, reg->irq_number);
|
||
|
goto reset_handler;
|
||
|
}
|
||
|
|
||
|
reset_handler:
|
||
|
queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler,
|
||
|
msecs_to_jiffies(1));
|
||
|
}
|
||
|
|
||
|
static void pci_epf_test_unbind(struct pci_epf *epf)
|
||
|
{
|
||
|
struct pci_epf_test *epf_test = epf_get_drvdata(epf);
|
||
|
struct pci_epc *epc = epf->epc;
|
||
|
struct pci_epf_bar *epf_bar;
|
||
|
int bar;
|
||
|
|
||
|
cancel_delayed_work(&epf_test->cmd_handler);
|
||
|
pci_epf_test_clean_dma_chan(epf_test);
|
||
|
for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
|
||
|
epf_bar = &epf->bar[bar];
|
||
|
|
||
|
if (epf_test->reg[bar]) {
|
||
|
pci_epc_clear_bar(epc, epf->func_no, epf->vfunc_no,
|
||
|
epf_bar);
|
||
|
pci_epf_free_space(epf, epf_test->reg[bar], bar,
|
||
|
PRIMARY_INTERFACE);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int pci_epf_test_set_bar(struct pci_epf *epf)
|
||
|
{
|
||
|
int bar, add;
|
||
|
int ret;
|
||
|
struct pci_epf_bar *epf_bar;
|
||
|
struct pci_epc *epc = epf->epc;
|
||
|
struct device *dev = &epf->dev;
|
||
|
struct pci_epf_test *epf_test = epf_get_drvdata(epf);
|
||
|
enum pci_barno test_reg_bar = epf_test->test_reg_bar;
|
||
|
const struct pci_epc_features *epc_features;
|
||
|
|
||
|
epc_features = epf_test->epc_features;
|
||
|
|
||
|
for (bar = 0; bar < PCI_STD_NUM_BARS; bar += add) {
|
||
|
epf_bar = &epf->bar[bar];
|
||
|
/*
|
||
|
* pci_epc_set_bar() sets PCI_BASE_ADDRESS_MEM_TYPE_64
|
||
|
* if the specific implementation required a 64-bit BAR,
|
||
|
* even if we only requested a 32-bit BAR.
|
||
|
*/
|
||
|
add = (epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ? 2 : 1;
|
||
|
|
||
|
if (!!(epc_features->reserved_bar & (1 << bar)))
|
||
|
continue;
|
||
|
|
||
|
ret = pci_epc_set_bar(epc, epf->func_no, epf->vfunc_no,
|
||
|
epf_bar);
|
||
|
if (ret) {
|
||
|
pci_epf_free_space(epf, epf_test->reg[bar], bar,
|
||
|
PRIMARY_INTERFACE);
|
||
|
dev_err(dev, "Failed to set BAR%d\n", bar);
|
||
|
if (bar == test_reg_bar)
|
||
|
return ret;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pci_epf_test_core_init(struct pci_epf *epf)
|
||
|
{
|
||
|
struct pci_epf_test *epf_test = epf_get_drvdata(epf);
|
||
|
struct pci_epf_header *header = epf->header;
|
||
|
const struct pci_epc_features *epc_features;
|
||
|
struct pci_epc *epc = epf->epc;
|
||
|
struct device *dev = &epf->dev;
|
||
|
bool msix_capable = false;
|
||
|
bool msi_capable = true;
|
||
|
int ret;
|
||
|
|
||
|
epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no);
|
||
|
if (epc_features) {
|
||
|
msix_capable = epc_features->msix_capable;
|
||
|
msi_capable = epc_features->msi_capable;
|
||
|
}
|
||
|
|
||
|
if (epf->vfunc_no <= 1) {
|
||
|
ret = pci_epc_write_header(epc, epf->func_no, epf->vfunc_no, header);
|
||
|
if (ret) {
|
||
|
dev_err(dev, "Configuration header write failed\n");
|
||
|
return ret;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ret = pci_epf_test_set_bar(epf);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
if (msi_capable) {
|
||
|
ret = pci_epc_set_msi(epc, epf->func_no, epf->vfunc_no,
|
||
|
epf->msi_interrupts);
|
||
|
if (ret) {
|
||
|
dev_err(dev, "MSI configuration failed\n");
|
||
|
return ret;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (msix_capable) {
|
||
|
ret = pci_epc_set_msix(epc, epf->func_no, epf->vfunc_no,
|
||
|
epf->msix_interrupts,
|
||
|
epf_test->test_reg_bar,
|
||
|
epf_test->msix_table_offset);
|
||
|
if (ret) {
|
||
|
dev_err(dev, "MSI-X configuration failed\n");
|
||
|
return ret;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pci_epf_test_link_up(struct pci_epf *epf)
|
||
|
{
|
||
|
struct pci_epf_test *epf_test = epf_get_drvdata(epf);
|
||
|
|
||
|
queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler,
|
||
|
msecs_to_jiffies(1));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct pci_epc_event_ops pci_epf_test_event_ops = {
|
||
|
.core_init = pci_epf_test_core_init,
|
||
|
.link_up = pci_epf_test_link_up,
|
||
|
};
|
||
|
|
||
|
static int pci_epf_test_alloc_space(struct pci_epf *epf)
|
||
|
{
|
||
|
struct pci_epf_test *epf_test = epf_get_drvdata(epf);
|
||
|
struct device *dev = &epf->dev;
|
||
|
struct pci_epf_bar *epf_bar;
|
||
|
size_t msix_table_size = 0;
|
||
|
size_t test_reg_bar_size;
|
||
|
size_t pba_size = 0;
|
||
|
bool msix_capable;
|
||
|
void *base;
|
||
|
int bar, add;
|
||
|
enum pci_barno test_reg_bar = epf_test->test_reg_bar;
|
||
|
const struct pci_epc_features *epc_features;
|
||
|
size_t test_reg_size;
|
||
|
|
||
|
epc_features = epf_test->epc_features;
|
||
|
|
||
|
test_reg_bar_size = ALIGN(sizeof(struct pci_epf_test_reg), 128);
|
||
|
|
||
|
msix_capable = epc_features->msix_capable;
|
||
|
if (msix_capable) {
|
||
|
msix_table_size = PCI_MSIX_ENTRY_SIZE * epf->msix_interrupts;
|
||
|
epf_test->msix_table_offset = test_reg_bar_size;
|
||
|
/* Align to QWORD or 8 Bytes */
|
||
|
pba_size = ALIGN(DIV_ROUND_UP(epf->msix_interrupts, 8), 8);
|
||
|
}
|
||
|
test_reg_size = test_reg_bar_size + msix_table_size + pba_size;
|
||
|
|
||
|
if (epc_features->bar_fixed_size[test_reg_bar]) {
|
||
|
if (test_reg_size > bar_size[test_reg_bar])
|
||
|
return -ENOMEM;
|
||
|
test_reg_size = bar_size[test_reg_bar];
|
||
|
}
|
||
|
|
||
|
base = pci_epf_alloc_space(epf, test_reg_size, test_reg_bar,
|
||
|
epc_features->align, PRIMARY_INTERFACE);
|
||
|
if (!base) {
|
||
|
dev_err(dev, "Failed to allocated register space\n");
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
epf_test->reg[test_reg_bar] = base;
|
||
|
|
||
|
for (bar = 0; bar < PCI_STD_NUM_BARS; bar += add) {
|
||
|
epf_bar = &epf->bar[bar];
|
||
|
add = (epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ? 2 : 1;
|
||
|
|
||
|
if (bar == test_reg_bar)
|
||
|
continue;
|
||
|
|
||
|
if (!!(epc_features->reserved_bar & (1 << bar)))
|
||
|
continue;
|
||
|
|
||
|
base = pci_epf_alloc_space(epf, bar_size[bar], bar,
|
||
|
epc_features->align,
|
||
|
PRIMARY_INTERFACE);
|
||
|
if (!base)
|
||
|
dev_err(dev, "Failed to allocate space for BAR%d\n",
|
||
|
bar);
|
||
|
epf_test->reg[bar] = base;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void pci_epf_configure_bar(struct pci_epf *epf,
|
||
|
const struct pci_epc_features *epc_features)
|
||
|
{
|
||
|
struct pci_epf_bar *epf_bar;
|
||
|
bool bar_fixed_64bit;
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < PCI_STD_NUM_BARS; i++) {
|
||
|
epf_bar = &epf->bar[i];
|
||
|
bar_fixed_64bit = !!(epc_features->bar_fixed_64bit & (1 << i));
|
||
|
if (bar_fixed_64bit)
|
||
|
epf_bar->flags |= PCI_BASE_ADDRESS_MEM_TYPE_64;
|
||
|
if (epc_features->bar_fixed_size[i])
|
||
|
bar_size[i] = epc_features->bar_fixed_size[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int pci_epf_test_bind(struct pci_epf *epf)
|
||
|
{
|
||
|
int ret;
|
||
|
struct pci_epf_test *epf_test = epf_get_drvdata(epf);
|
||
|
const struct pci_epc_features *epc_features;
|
||
|
enum pci_barno test_reg_bar = BAR_0;
|
||
|
struct pci_epc *epc = epf->epc;
|
||
|
bool linkup_notifier = false;
|
||
|
bool core_init_notifier = false;
|
||
|
|
||
|
if (WARN_ON_ONCE(!epc))
|
||
|
return -EINVAL;
|
||
|
|
||
|
epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no);
|
||
|
if (!epc_features) {
|
||
|
dev_err(&epf->dev, "epc_features not implemented\n");
|
||
|
return -EOPNOTSUPP;
|
||
|
}
|
||
|
|
||
|
linkup_notifier = epc_features->linkup_notifier;
|
||
|
core_init_notifier = epc_features->core_init_notifier;
|
||
|
test_reg_bar = pci_epc_get_first_free_bar(epc_features);
|
||
|
if (test_reg_bar < 0)
|
||
|
return -EINVAL;
|
||
|
pci_epf_configure_bar(epf, epc_features);
|
||
|
|
||
|
epf_test->test_reg_bar = test_reg_bar;
|
||
|
epf_test->epc_features = epc_features;
|
||
|
|
||
|
ret = pci_epf_test_alloc_space(epf);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
if (!core_init_notifier) {
|
||
|
ret = pci_epf_test_core_init(epf);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
epf_test->dma_supported = true;
|
||
|
|
||
|
ret = pci_epf_test_init_dma_chan(epf_test);
|
||
|
if (ret)
|
||
|
epf_test->dma_supported = false;
|
||
|
|
||
|
if (!linkup_notifier && !core_init_notifier)
|
||
|
queue_work(kpcitest_workqueue, &epf_test->cmd_handler.work);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct pci_epf_device_id pci_epf_test_ids[] = {
|
||
|
{
|
||
|
.name = "pci_epf_test",
|
||
|
},
|
||
|
{},
|
||
|
};
|
||
|
|
||
|
static int pci_epf_test_probe(struct pci_epf *epf)
|
||
|
{
|
||
|
struct pci_epf_test *epf_test;
|
||
|
struct device *dev = &epf->dev;
|
||
|
|
||
|
epf_test = devm_kzalloc(dev, sizeof(*epf_test), GFP_KERNEL);
|
||
|
if (!epf_test)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
epf->header = &test_header;
|
||
|
epf_test->epf = epf;
|
||
|
|
||
|
INIT_DELAYED_WORK(&epf_test->cmd_handler, pci_epf_test_cmd_handler);
|
||
|
|
||
|
epf->event_ops = &pci_epf_test_event_ops;
|
||
|
|
||
|
epf_set_drvdata(epf, epf_test);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct pci_epf_ops ops = {
|
||
|
.unbind = pci_epf_test_unbind,
|
||
|
.bind = pci_epf_test_bind,
|
||
|
};
|
||
|
|
||
|
static struct pci_epf_driver test_driver = {
|
||
|
.driver.name = "pci_epf_test",
|
||
|
.probe = pci_epf_test_probe,
|
||
|
.id_table = pci_epf_test_ids,
|
||
|
.ops = &ops,
|
||
|
.owner = THIS_MODULE,
|
||
|
};
|
||
|
|
||
|
static int __init pci_epf_test_init(void)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
kpcitest_workqueue = alloc_workqueue("kpcitest",
|
||
|
WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
|
||
|
if (!kpcitest_workqueue) {
|
||
|
pr_err("Failed to allocate the kpcitest work queue\n");
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
ret = pci_epf_register_driver(&test_driver);
|
||
|
if (ret) {
|
||
|
destroy_workqueue(kpcitest_workqueue);
|
||
|
pr_err("Failed to register pci epf test driver --> %d\n", ret);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
module_init(pci_epf_test_init);
|
||
|
|
||
|
static void __exit pci_epf_test_exit(void)
|
||
|
{
|
||
|
if (kpcitest_workqueue)
|
||
|
destroy_workqueue(kpcitest_workqueue);
|
||
|
pci_epf_unregister_driver(&test_driver);
|
||
|
}
|
||
|
module_exit(pci_epf_test_exit);
|
||
|
|
||
|
MODULE_DESCRIPTION("PCI EPF TEST DRIVER");
|
||
|
MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
|
||
|
MODULE_LICENSE("GPL v2");
|