linux-zen-server/drivers/phy/rockchip/phy-rockchip-inno-hdmi.c

1280 lines
37 KiB
C
Raw Permalink Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2017 Rockchip Electronics Co. Ltd.
*
* Author: Zheng Yang <zhengyang@rock-chips.com>
* Heiko Stuebner <heiko@sntech.de>
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/nvmem-consumer.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/phy/phy.h>
#include <linux/slab.h>
#define UPDATE(x, h, l) (((x) << (l)) & GENMASK((h), (l)))
/* REG: 0x00 */
#define RK3228_PRE_PLL_REFCLK_SEL_PCLK BIT(0)
/* REG: 0x01 */
#define RK3228_BYPASS_RXSENSE_EN BIT(2)
#define RK3228_BYPASS_PWRON_EN BIT(1)
#define RK3228_BYPASS_PLLPD_EN BIT(0)
/* REG: 0x02 */
#define RK3228_BYPASS_PDATA_EN BIT(4)
#define RK3228_PDATAEN_DISABLE BIT(0)
/* REG: 0x03 */
#define RK3228_BYPASS_AUTO_TERM_RES_CAL BIT(7)
#define RK3228_AUTO_TERM_RES_CAL_SPEED_14_8(x) UPDATE(x, 6, 0)
/* REG: 0x04 */
#define RK3228_AUTO_TERM_RES_CAL_SPEED_7_0(x) UPDATE(x, 7, 0)
/* REG: 0xaa */
#define RK3228_POST_PLL_CTRL_MANUAL BIT(0)
/* REG: 0xe0 */
#define RK3228_POST_PLL_POWER_DOWN BIT(5)
#define RK3228_PRE_PLL_POWER_DOWN BIT(4)
#define RK3228_RXSENSE_CLK_CH_ENABLE BIT(3)
#define RK3228_RXSENSE_DATA_CH2_ENABLE BIT(2)
#define RK3228_RXSENSE_DATA_CH1_ENABLE BIT(1)
#define RK3228_RXSENSE_DATA_CH0_ENABLE BIT(0)
/* REG: 0xe1 */
#define RK3228_BANDGAP_ENABLE BIT(4)
#define RK3228_TMDS_DRIVER_ENABLE GENMASK(3, 0)
/* REG: 0xe2 */
#define RK3228_PRE_PLL_FB_DIV_8_MASK BIT(7)
#define RK3228_PRE_PLL_FB_DIV_8(x) UPDATE((x) >> 8, 7, 7)
#define RK3228_PCLK_VCO_DIV_5_MASK BIT(5)
#define RK3228_PCLK_VCO_DIV_5(x) UPDATE(x, 5, 5)
#define RK3228_PRE_PLL_PRE_DIV_MASK GENMASK(4, 0)
#define RK3228_PRE_PLL_PRE_DIV(x) UPDATE(x, 4, 0)
/* REG: 0xe3 */
#define RK3228_PRE_PLL_FB_DIV_7_0(x) UPDATE(x, 7, 0)
/* REG: 0xe4 */
#define RK3228_PRE_PLL_PCLK_DIV_B_MASK GENMASK(6, 5)
#define RK3228_PRE_PLL_PCLK_DIV_B_SHIFT 5
#define RK3228_PRE_PLL_PCLK_DIV_B(x) UPDATE(x, 6, 5)
#define RK3228_PRE_PLL_PCLK_DIV_A_MASK GENMASK(4, 0)
#define RK3228_PRE_PLL_PCLK_DIV_A(x) UPDATE(x, 4, 0)
/* REG: 0xe5 */
#define RK3228_PRE_PLL_PCLK_DIV_C_MASK GENMASK(6, 5)
#define RK3228_PRE_PLL_PCLK_DIV_C(x) UPDATE(x, 6, 5)
#define RK3228_PRE_PLL_PCLK_DIV_D_MASK GENMASK(4, 0)
#define RK3228_PRE_PLL_PCLK_DIV_D(x) UPDATE(x, 4, 0)
/* REG: 0xe6 */
#define RK3228_PRE_PLL_TMDSCLK_DIV_C_MASK GENMASK(5, 4)
#define RK3228_PRE_PLL_TMDSCLK_DIV_C(x) UPDATE(x, 5, 4)
#define RK3228_PRE_PLL_TMDSCLK_DIV_A_MASK GENMASK(3, 2)
#define RK3228_PRE_PLL_TMDSCLK_DIV_A(x) UPDATE(x, 3, 2)
#define RK3228_PRE_PLL_TMDSCLK_DIV_B_MASK GENMASK(1, 0)
#define RK3228_PRE_PLL_TMDSCLK_DIV_B(x) UPDATE(x, 1, 0)
/* REG: 0xe8 */
#define RK3228_PRE_PLL_LOCK_STATUS BIT(0)
/* REG: 0xe9 */
#define RK3228_POST_PLL_POST_DIV_ENABLE UPDATE(3, 7, 6)
#define RK3228_POST_PLL_PRE_DIV_MASK GENMASK(4, 0)
#define RK3228_POST_PLL_PRE_DIV(x) UPDATE(x, 4, 0)
/* REG: 0xea */
#define RK3228_POST_PLL_FB_DIV_7_0(x) UPDATE(x, 7, 0)
/* REG: 0xeb */
#define RK3228_POST_PLL_FB_DIV_8_MASK BIT(7)
#define RK3228_POST_PLL_FB_DIV_8(x) UPDATE((x) >> 8, 7, 7)
#define RK3228_POST_PLL_POST_DIV_MASK GENMASK(5, 4)
#define RK3228_POST_PLL_POST_DIV(x) UPDATE(x, 5, 4)
#define RK3228_POST_PLL_LOCK_STATUS BIT(0)
/* REG: 0xee */
#define RK3228_TMDS_CH_TA_ENABLE GENMASK(7, 4)
/* REG: 0xef */
#define RK3228_TMDS_CLK_CH_TA(x) UPDATE(x, 7, 6)
#define RK3228_TMDS_DATA_CH2_TA(x) UPDATE(x, 5, 4)
#define RK3228_TMDS_DATA_CH1_TA(x) UPDATE(x, 3, 2)
#define RK3228_TMDS_DATA_CH0_TA(x) UPDATE(x, 1, 0)
/* REG: 0xf0 */
#define RK3228_TMDS_DATA_CH2_PRE_EMPHASIS_MASK GENMASK(5, 4)
#define RK3228_TMDS_DATA_CH2_PRE_EMPHASIS(x) UPDATE(x, 5, 4)
#define RK3228_TMDS_DATA_CH1_PRE_EMPHASIS_MASK GENMASK(3, 2)
#define RK3228_TMDS_DATA_CH1_PRE_EMPHASIS(x) UPDATE(x, 3, 2)
#define RK3228_TMDS_DATA_CH0_PRE_EMPHASIS_MASK GENMASK(1, 0)
#define RK3228_TMDS_DATA_CH0_PRE_EMPHASIS(x) UPDATE(x, 1, 0)
/* REG: 0xf1 */
#define RK3228_TMDS_CLK_CH_OUTPUT_SWING(x) UPDATE(x, 7, 4)
#define RK3228_TMDS_DATA_CH2_OUTPUT_SWING(x) UPDATE(x, 3, 0)
/* REG: 0xf2 */
#define RK3228_TMDS_DATA_CH1_OUTPUT_SWING(x) UPDATE(x, 7, 4)
#define RK3228_TMDS_DATA_CH0_OUTPUT_SWING(x) UPDATE(x, 3, 0)
/* REG: 0x01 */
#define RK3328_BYPASS_RXSENSE_EN BIT(2)
#define RK3328_BYPASS_POWERON_EN BIT(1)
#define RK3328_BYPASS_PLLPD_EN BIT(0)
/* REG: 0x02 */
#define RK3328_INT_POL_HIGH BIT(7)
#define RK3328_BYPASS_PDATA_EN BIT(4)
#define RK3328_PDATA_EN BIT(0)
/* REG:0x05 */
#define RK3328_INT_TMDS_CLK(x) UPDATE(x, 7, 4)
#define RK3328_INT_TMDS_D2(x) UPDATE(x, 3, 0)
/* REG:0x07 */
#define RK3328_INT_TMDS_D1(x) UPDATE(x, 7, 4)
#define RK3328_INT_TMDS_D0(x) UPDATE(x, 3, 0)
/* for all RK3328_INT_TMDS_*, ESD_DET as defined in 0xc8-0xcb */
#define RK3328_INT_AGND_LOW_PULSE_LOCKED BIT(3)
#define RK3328_INT_RXSENSE_LOW_PULSE_LOCKED BIT(2)
#define RK3328_INT_VSS_AGND_ESD_DET BIT(1)
#define RK3328_INT_AGND_VSS_ESD_DET BIT(0)
/* REG: 0xa0 */
#define RK3328_PCLK_VCO_DIV_5_MASK BIT(1)
#define RK3328_PCLK_VCO_DIV_5(x) UPDATE(x, 1, 1)
#define RK3328_PRE_PLL_POWER_DOWN BIT(0)
/* REG: 0xa1 */
#define RK3328_PRE_PLL_PRE_DIV_MASK GENMASK(5, 0)
#define RK3328_PRE_PLL_PRE_DIV(x) UPDATE(x, 5, 0)
/* REG: 0xa2 */
/* unset means center spread */
#define RK3328_SPREAD_SPECTRUM_MOD_DOWN BIT(7)
#define RK3328_SPREAD_SPECTRUM_MOD_DISABLE BIT(6)
#define RK3328_PRE_PLL_FRAC_DIV_DISABLE UPDATE(3, 5, 4)
#define RK3328_PRE_PLL_FB_DIV_11_8_MASK GENMASK(3, 0)
#define RK3328_PRE_PLL_FB_DIV_11_8(x) UPDATE((x) >> 8, 3, 0)
/* REG: 0xa3 */
#define RK3328_PRE_PLL_FB_DIV_7_0(x) UPDATE(x, 7, 0)
/* REG: 0xa4*/
#define RK3328_PRE_PLL_TMDSCLK_DIV_C_MASK GENMASK(1, 0)
#define RK3328_PRE_PLL_TMDSCLK_DIV_C(x) UPDATE(x, 1, 0)
#define RK3328_PRE_PLL_TMDSCLK_DIV_B_MASK GENMASK(3, 2)
#define RK3328_PRE_PLL_TMDSCLK_DIV_B(x) UPDATE(x, 3, 2)
#define RK3328_PRE_PLL_TMDSCLK_DIV_A_MASK GENMASK(5, 4)
#define RK3328_PRE_PLL_TMDSCLK_DIV_A(x) UPDATE(x, 5, 4)
/* REG: 0xa5 */
#define RK3328_PRE_PLL_PCLK_DIV_B_SHIFT 5
#define RK3328_PRE_PLL_PCLK_DIV_B_MASK GENMASK(6, 5)
#define RK3328_PRE_PLL_PCLK_DIV_B(x) UPDATE(x, 6, 5)
#define RK3328_PRE_PLL_PCLK_DIV_A_MASK GENMASK(4, 0)
#define RK3328_PRE_PLL_PCLK_DIV_A(x) UPDATE(x, 4, 0)
/* REG: 0xa6 */
#define RK3328_PRE_PLL_PCLK_DIV_C_SHIFT 5
#define RK3328_PRE_PLL_PCLK_DIV_C_MASK GENMASK(6, 5)
#define RK3328_PRE_PLL_PCLK_DIV_C(x) UPDATE(x, 6, 5)
#define RK3328_PRE_PLL_PCLK_DIV_D_MASK GENMASK(4, 0)
#define RK3328_PRE_PLL_PCLK_DIV_D(x) UPDATE(x, 4, 0)
/* REG: 0xa9 */
#define RK3328_PRE_PLL_LOCK_STATUS BIT(0)
/* REG: 0xaa */
#define RK3328_POST_PLL_POST_DIV_ENABLE GENMASK(3, 2)
#define RK3328_POST_PLL_REFCLK_SEL_TMDS BIT(1)
#define RK3328_POST_PLL_POWER_DOWN BIT(0)
/* REG:0xab */
#define RK3328_POST_PLL_FB_DIV_8(x) UPDATE((x) >> 8, 7, 7)
#define RK3328_POST_PLL_PRE_DIV(x) UPDATE(x, 4, 0)
/* REG: 0xac */
#define RK3328_POST_PLL_FB_DIV_7_0(x) UPDATE(x, 7, 0)
/* REG: 0xad */
#define RK3328_POST_PLL_POST_DIV_MASK GENMASK(1, 0)
#define RK3328_POST_PLL_POST_DIV_2 0x0
#define RK3328_POST_PLL_POST_DIV_4 0x1
#define RK3328_POST_PLL_POST_DIV_8 0x3
/* REG: 0xaf */
#define RK3328_POST_PLL_LOCK_STATUS BIT(0)
/* REG: 0xb0 */
#define RK3328_BANDGAP_ENABLE BIT(2)
/* REG: 0xb2 */
#define RK3328_TMDS_CLK_DRIVER_EN BIT(3)
#define RK3328_TMDS_D2_DRIVER_EN BIT(2)
#define RK3328_TMDS_D1_DRIVER_EN BIT(1)
#define RK3328_TMDS_D0_DRIVER_EN BIT(0)
#define RK3328_TMDS_DRIVER_ENABLE (RK3328_TMDS_CLK_DRIVER_EN | \
RK3328_TMDS_D2_DRIVER_EN | \
RK3328_TMDS_D1_DRIVER_EN | \
RK3328_TMDS_D0_DRIVER_EN)
/* REG:0xc5 */
#define RK3328_BYPASS_TERM_RESISTOR_CALIB BIT(7)
#define RK3328_TERM_RESISTOR_CALIB_SPEED_14_8(x) UPDATE((x) >> 8, 6, 0)
/* REG:0xc6 */
#define RK3328_TERM_RESISTOR_CALIB_SPEED_7_0(x) UPDATE(x, 7, 0)
/* REG:0xc7 */
#define RK3328_TERM_RESISTOR_50 UPDATE(0, 2, 1)
#define RK3328_TERM_RESISTOR_62_5 UPDATE(1, 2, 1)
#define RK3328_TERM_RESISTOR_75 UPDATE(2, 2, 1)
#define RK3328_TERM_RESISTOR_100 UPDATE(3, 2, 1)
/* REG 0xc8 - 0xcb */
#define RK3328_ESD_DETECT_MASK GENMASK(7, 6)
#define RK3328_ESD_DETECT_340MV (0x0 << 6)
#define RK3328_ESD_DETECT_280MV (0x1 << 6)
#define RK3328_ESD_DETECT_260MV (0x2 << 6)
#define RK3328_ESD_DETECT_240MV (0x3 << 6)
/* resistors can be used in parallel */
#define RK3328_TMDS_TERM_RESIST_MASK GENMASK(5, 0)
#define RK3328_TMDS_TERM_RESIST_75 BIT(5)
#define RK3328_TMDS_TERM_RESIST_150 BIT(4)
#define RK3328_TMDS_TERM_RESIST_300 BIT(3)
#define RK3328_TMDS_TERM_RESIST_600 BIT(2)
#define RK3328_TMDS_TERM_RESIST_1000 BIT(1)
#define RK3328_TMDS_TERM_RESIST_2000 BIT(0)
/* REG: 0xd1 */
#define RK3328_PRE_PLL_FRAC_DIV_23_16(x) UPDATE((x) >> 16, 7, 0)
/* REG: 0xd2 */
#define RK3328_PRE_PLL_FRAC_DIV_15_8(x) UPDATE((x) >> 8, 7, 0)
/* REG: 0xd3 */
#define RK3328_PRE_PLL_FRAC_DIV_7_0(x) UPDATE(x, 7, 0)
struct inno_hdmi_phy_drv_data;
struct inno_hdmi_phy {
struct device *dev;
struct regmap *regmap;
int irq;
struct phy *phy;
struct clk *sysclk;
struct clk *refoclk;
struct clk *refpclk;
/* platform data */
const struct inno_hdmi_phy_drv_data *plat_data;
int chip_version;
/* clk provider */
struct clk_hw hw;
struct clk *phyclk;
unsigned long pixclock;
};
struct pre_pll_config {
unsigned long pixclock;
unsigned long tmdsclock;
u8 prediv;
u16 fbdiv;
u8 tmds_div_a;
u8 tmds_div_b;
u8 tmds_div_c;
u8 pclk_div_a;
u8 pclk_div_b;
u8 pclk_div_c;
u8 pclk_div_d;
u8 vco_div_5_en;
u32 fracdiv;
};
struct post_pll_config {
unsigned long tmdsclock;
u8 prediv;
u16 fbdiv;
u8 postdiv;
u8 version;
};
struct phy_config {
unsigned long tmdsclock;
u8 regs[14];
};
struct inno_hdmi_phy_ops {
int (*init)(struct inno_hdmi_phy *inno);
int (*power_on)(struct inno_hdmi_phy *inno,
const struct post_pll_config *cfg,
const struct phy_config *phy_cfg);
void (*power_off)(struct inno_hdmi_phy *inno);
};
struct inno_hdmi_phy_drv_data {
const struct inno_hdmi_phy_ops *ops;
const struct clk_ops *clk_ops;
const struct phy_config *phy_cfg_table;
};
static const struct pre_pll_config pre_pll_cfg_table[] = {
{ 27000000, 27000000, 1, 90, 3, 2, 2, 10, 3, 3, 4, 0, 0},
{ 27000000, 33750000, 1, 90, 1, 3, 3, 10, 3, 3, 4, 0, 0},
{ 40000000, 40000000, 1, 80, 2, 2, 2, 12, 2, 2, 2, 0, 0},
{ 59341000, 59341000, 1, 98, 3, 1, 2, 1, 3, 3, 4, 0, 0xE6AE6B},
{ 59400000, 59400000, 1, 99, 3, 1, 1, 1, 3, 3, 4, 0, 0},
{ 59341000, 74176250, 1, 98, 0, 3, 3, 1, 3, 3, 4, 0, 0xE6AE6B},
{ 59400000, 74250000, 1, 99, 1, 2, 2, 1, 3, 3, 4, 0, 0},
{ 74176000, 74176000, 1, 98, 1, 2, 2, 1, 2, 3, 4, 0, 0xE6AE6B},
{ 74250000, 74250000, 1, 99, 1, 2, 2, 1, 2, 3, 4, 0, 0},
{ 74176000, 92720000, 4, 494, 1, 2, 2, 1, 3, 3, 4, 0, 0x816817},
{ 74250000, 92812500, 4, 495, 1, 2, 2, 1, 3, 3, 4, 0, 0},
{148352000, 148352000, 1, 98, 1, 1, 1, 1, 2, 2, 2, 0, 0xE6AE6B},
{148500000, 148500000, 1, 99, 1, 1, 1, 1, 2, 2, 2, 0, 0},
{148352000, 185440000, 4, 494, 0, 2, 2, 1, 3, 2, 2, 0, 0x816817},
{148500000, 185625000, 4, 495, 0, 2, 2, 1, 3, 2, 2, 0, 0},
{296703000, 296703000, 1, 98, 0, 1, 1, 1, 0, 2, 2, 0, 0xE6AE6B},
{297000000, 297000000, 1, 99, 0, 1, 1, 1, 0, 2, 2, 0, 0},
{296703000, 370878750, 4, 494, 1, 2, 0, 1, 3, 1, 1, 0, 0x816817},
{297000000, 371250000, 4, 495, 1, 2, 0, 1, 3, 1, 1, 0, 0},
{593407000, 296703500, 1, 98, 0, 1, 1, 1, 0, 2, 1, 0, 0xE6AE6B},
{594000000, 297000000, 1, 99, 0, 1, 1, 1, 0, 2, 1, 0, 0},
{593407000, 370879375, 4, 494, 1, 2, 0, 1, 3, 1, 1, 1, 0x816817},
{594000000, 371250000, 4, 495, 1, 2, 0, 1, 3, 1, 1, 1, 0},
{593407000, 593407000, 1, 98, 0, 2, 0, 1, 0, 1, 1, 0, 0xE6AE6B},
{594000000, 594000000, 1, 99, 0, 2, 0, 1, 0, 1, 1, 0, 0},
{ /* sentinel */ }
};
static const struct post_pll_config post_pll_cfg_table[] = {
{33750000, 1, 40, 8, 1},
{33750000, 1, 80, 8, 2},
{74250000, 1, 40, 8, 1},
{74250000, 18, 80, 8, 2},
{148500000, 2, 40, 4, 3},
{297000000, 4, 40, 2, 3},
{594000000, 8, 40, 1, 3},
{ /* sentinel */ }
};
/* phy tuning values for an undocumented set of registers */
static const struct phy_config rk3228_phy_cfg[] = {
{ 165000000, {
0xaa, 0x00, 0x44, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00,
},
}, {
340000000, {
0xaa, 0x15, 0x6a, 0xaa, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00,
},
}, {
594000000, {
0xaa, 0x15, 0x7a, 0xaa, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00,
},
}, { /* sentinel */ },
};
/* phy tuning values for an undocumented set of registers */
static const struct phy_config rk3328_phy_cfg[] = {
{ 165000000, {
0x07, 0x0a, 0x0a, 0x0a, 0x00, 0x00, 0x08, 0x08, 0x08,
0x00, 0xac, 0xcc, 0xcc, 0xcc,
},
}, {
340000000, {
0x0b, 0x0d, 0x0d, 0x0d, 0x07, 0x15, 0x08, 0x08, 0x08,
0x3f, 0xac, 0xcc, 0xcd, 0xdd,
},
}, {
594000000, {
0x10, 0x1a, 0x1a, 0x1a, 0x07, 0x15, 0x08, 0x08, 0x08,
0x00, 0xac, 0xcc, 0xcc, 0xcc,
},
}, { /* sentinel */ },
};
static inline struct inno_hdmi_phy *to_inno_hdmi_phy(struct clk_hw *hw)
{
return container_of(hw, struct inno_hdmi_phy, hw);
}
/*
* The register description of the IP block does not use any distinct names
* but instead the databook simply numbers the registers in one-increments.
* As the registers are obviously 32bit sized, the inno_* functions
* translate the databook register names to the actual registers addresses.
*/
static inline void inno_write(struct inno_hdmi_phy *inno, u32 reg, u8 val)
{
regmap_write(inno->regmap, reg * 4, val);
}
static inline u8 inno_read(struct inno_hdmi_phy *inno, u32 reg)
{
u32 val;
regmap_read(inno->regmap, reg * 4, &val);
return val;
}
static inline void inno_update_bits(struct inno_hdmi_phy *inno, u8 reg,
u8 mask, u8 val)
{
regmap_update_bits(inno->regmap, reg * 4, mask, val);
}
#define inno_poll(inno, reg, val, cond, sleep_us, timeout_us) \
regmap_read_poll_timeout((inno)->regmap, (reg) * 4, val, cond, \
sleep_us, timeout_us)
static unsigned long inno_hdmi_phy_get_tmdsclk(struct inno_hdmi_phy *inno,
unsigned long rate)
{
int bus_width = phy_get_bus_width(inno->phy);
switch (bus_width) {
case 4:
case 5:
case 6:
case 10:
case 12:
case 16:
return (u64)rate * bus_width / 8;
default:
return rate;
}
}
static irqreturn_t inno_hdmi_phy_rk3328_hardirq(int irq, void *dev_id)
{
struct inno_hdmi_phy *inno = dev_id;
int intr_stat1, intr_stat2, intr_stat3;
intr_stat1 = inno_read(inno, 0x04);
intr_stat2 = inno_read(inno, 0x06);
intr_stat3 = inno_read(inno, 0x08);
if (intr_stat1)
inno_write(inno, 0x04, intr_stat1);
if (intr_stat2)
inno_write(inno, 0x06, intr_stat2);
if (intr_stat3)
inno_write(inno, 0x08, intr_stat3);
if (intr_stat1 || intr_stat2 || intr_stat3)
return IRQ_WAKE_THREAD;
return IRQ_HANDLED;
}
static irqreturn_t inno_hdmi_phy_rk3328_irq(int irq, void *dev_id)
{
struct inno_hdmi_phy *inno = dev_id;
inno_update_bits(inno, 0x02, RK3328_PDATA_EN, 0);
usleep_range(10, 20);
inno_update_bits(inno, 0x02, RK3328_PDATA_EN, RK3328_PDATA_EN);
return IRQ_HANDLED;
}
static int inno_hdmi_phy_power_on(struct phy *phy)
{
struct inno_hdmi_phy *inno = phy_get_drvdata(phy);
const struct post_pll_config *cfg = post_pll_cfg_table;
const struct phy_config *phy_cfg = inno->plat_data->phy_cfg_table;
unsigned long tmdsclock = inno_hdmi_phy_get_tmdsclk(inno,
inno->pixclock);
int ret;
if (!tmdsclock) {
dev_err(inno->dev, "TMDS clock is zero!\n");
return -EINVAL;
}
if (!inno->plat_data->ops->power_on)
return -EINVAL;
for (; cfg->tmdsclock != 0; cfg++)
if (tmdsclock <= cfg->tmdsclock &&
cfg->version & inno->chip_version)
break;
for (; phy_cfg->tmdsclock != 0; phy_cfg++)
if (tmdsclock <= phy_cfg->tmdsclock)
break;
if (cfg->tmdsclock == 0 || phy_cfg->tmdsclock == 0)
return -EINVAL;
dev_dbg(inno->dev, "Inno HDMI PHY Power On\n");
ret = clk_prepare_enable(inno->phyclk);
if (ret)
return ret;
ret = inno->plat_data->ops->power_on(inno, cfg, phy_cfg);
if (ret) {
clk_disable_unprepare(inno->phyclk);
return ret;
}
return 0;
}
static int inno_hdmi_phy_power_off(struct phy *phy)
{
struct inno_hdmi_phy *inno = phy_get_drvdata(phy);
if (!inno->plat_data->ops->power_off)
return -EINVAL;
inno->plat_data->ops->power_off(inno);
clk_disable_unprepare(inno->phyclk);
dev_dbg(inno->dev, "Inno HDMI PHY Power Off\n");
return 0;
}
static const struct phy_ops inno_hdmi_phy_ops = {
.owner = THIS_MODULE,
.power_on = inno_hdmi_phy_power_on,
.power_off = inno_hdmi_phy_power_off,
};
static const
struct pre_pll_config *inno_hdmi_phy_get_pre_pll_cfg(struct inno_hdmi_phy *inno,
unsigned long rate)
{
const struct pre_pll_config *cfg = pre_pll_cfg_table;
unsigned long tmdsclock = inno_hdmi_phy_get_tmdsclk(inno, rate);
for (; cfg->pixclock != 0; cfg++)
if (cfg->pixclock == rate && cfg->tmdsclock == tmdsclock)
break;
if (cfg->pixclock == 0)
return ERR_PTR(-EINVAL);
return cfg;
}
static int inno_hdmi_phy_rk3228_clk_is_prepared(struct clk_hw *hw)
{
struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw);
u8 status;
status = inno_read(inno, 0xe0) & RK3228_PRE_PLL_POWER_DOWN;
return status ? 0 : 1;
}
static int inno_hdmi_phy_rk3228_clk_prepare(struct clk_hw *hw)
{
struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw);
inno_update_bits(inno, 0xe0, RK3228_PRE_PLL_POWER_DOWN, 0);
return 0;
}
static void inno_hdmi_phy_rk3228_clk_unprepare(struct clk_hw *hw)
{
struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw);
inno_update_bits(inno, 0xe0, RK3228_PRE_PLL_POWER_DOWN,
RK3228_PRE_PLL_POWER_DOWN);
}
static
unsigned long inno_hdmi_phy_rk3228_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw);
u8 nd, no_a, no_b, no_d;
u64 vco;
u16 nf;
nd = inno_read(inno, 0xe2) & RK3228_PRE_PLL_PRE_DIV_MASK;
nf = (inno_read(inno, 0xe2) & RK3228_PRE_PLL_FB_DIV_8_MASK) << 1;
nf |= inno_read(inno, 0xe3);
vco = parent_rate * nf;
if (inno_read(inno, 0xe2) & RK3228_PCLK_VCO_DIV_5_MASK) {
do_div(vco, nd * 5);
} else {
no_a = inno_read(inno, 0xe4) & RK3228_PRE_PLL_PCLK_DIV_A_MASK;
if (!no_a)
no_a = 1;
no_b = inno_read(inno, 0xe4) & RK3228_PRE_PLL_PCLK_DIV_B_MASK;
no_b >>= RK3228_PRE_PLL_PCLK_DIV_B_SHIFT;
no_b += 2;
no_d = inno_read(inno, 0xe5) & RK3228_PRE_PLL_PCLK_DIV_D_MASK;
do_div(vco, (nd * (no_a == 1 ? no_b : no_a) * no_d * 2));
}
inno->pixclock = vco;
dev_dbg(inno->dev, "%s rate %lu\n", __func__, inno->pixclock);
return vco;
}
static long inno_hdmi_phy_rk3228_clk_round_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long *parent_rate)
{
const struct pre_pll_config *cfg = pre_pll_cfg_table;
rate = (rate / 1000) * 1000;
for (; cfg->pixclock != 0; cfg++)
if (cfg->pixclock == rate && !cfg->fracdiv)
break;
if (cfg->pixclock == 0)
return -EINVAL;
return cfg->pixclock;
}
static int inno_hdmi_phy_rk3228_clk_set_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long parent_rate)
{
struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw);
const struct pre_pll_config *cfg;
unsigned long tmdsclock = inno_hdmi_phy_get_tmdsclk(inno, rate);
u32 v;
int ret;
dev_dbg(inno->dev, "%s rate %lu tmdsclk %lu\n",
__func__, rate, tmdsclock);
cfg = inno_hdmi_phy_get_pre_pll_cfg(inno, rate);
if (IS_ERR(cfg))
return PTR_ERR(cfg);
/* Power down PRE-PLL */
inno_update_bits(inno, 0xe0, RK3228_PRE_PLL_POWER_DOWN,
RK3228_PRE_PLL_POWER_DOWN);
inno_update_bits(inno, 0xe2, RK3228_PRE_PLL_FB_DIV_8_MASK |
RK3228_PCLK_VCO_DIV_5_MASK |
RK3228_PRE_PLL_PRE_DIV_MASK,
RK3228_PRE_PLL_FB_DIV_8(cfg->fbdiv) |
RK3228_PCLK_VCO_DIV_5(cfg->vco_div_5_en) |
RK3228_PRE_PLL_PRE_DIV(cfg->prediv));
inno_write(inno, 0xe3, RK3228_PRE_PLL_FB_DIV_7_0(cfg->fbdiv));
inno_update_bits(inno, 0xe4, RK3228_PRE_PLL_PCLK_DIV_B_MASK |
RK3228_PRE_PLL_PCLK_DIV_A_MASK,
RK3228_PRE_PLL_PCLK_DIV_B(cfg->pclk_div_b) |
RK3228_PRE_PLL_PCLK_DIV_A(cfg->pclk_div_a));
inno_update_bits(inno, 0xe5, RK3228_PRE_PLL_PCLK_DIV_C_MASK |
RK3228_PRE_PLL_PCLK_DIV_D_MASK,
RK3228_PRE_PLL_PCLK_DIV_C(cfg->pclk_div_c) |
RK3228_PRE_PLL_PCLK_DIV_D(cfg->pclk_div_d));
inno_update_bits(inno, 0xe6, RK3228_PRE_PLL_TMDSCLK_DIV_C_MASK |
RK3228_PRE_PLL_TMDSCLK_DIV_A_MASK |
RK3228_PRE_PLL_TMDSCLK_DIV_B_MASK,
RK3228_PRE_PLL_TMDSCLK_DIV_C(cfg->tmds_div_c) |
RK3228_PRE_PLL_TMDSCLK_DIV_A(cfg->tmds_div_a) |
RK3228_PRE_PLL_TMDSCLK_DIV_B(cfg->tmds_div_b));
/* Power up PRE-PLL */
inno_update_bits(inno, 0xe0, RK3228_PRE_PLL_POWER_DOWN, 0);
/* Wait for Pre-PLL lock */
ret = inno_poll(inno, 0xe8, v, v & RK3228_PRE_PLL_LOCK_STATUS,
100, 100000);
if (ret) {
dev_err(inno->dev, "Pre-PLL locking failed\n");
return ret;
}
inno->pixclock = rate;
return 0;
}
static const struct clk_ops inno_hdmi_phy_rk3228_clk_ops = {
.prepare = inno_hdmi_phy_rk3228_clk_prepare,
.unprepare = inno_hdmi_phy_rk3228_clk_unprepare,
.is_prepared = inno_hdmi_phy_rk3228_clk_is_prepared,
.recalc_rate = inno_hdmi_phy_rk3228_clk_recalc_rate,
.round_rate = inno_hdmi_phy_rk3228_clk_round_rate,
.set_rate = inno_hdmi_phy_rk3228_clk_set_rate,
};
static int inno_hdmi_phy_rk3328_clk_is_prepared(struct clk_hw *hw)
{
struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw);
u8 status;
status = inno_read(inno, 0xa0) & RK3328_PRE_PLL_POWER_DOWN;
return status ? 0 : 1;
}
static int inno_hdmi_phy_rk3328_clk_prepare(struct clk_hw *hw)
{
struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw);
inno_update_bits(inno, 0xa0, RK3328_PRE_PLL_POWER_DOWN, 0);
return 0;
}
static void inno_hdmi_phy_rk3328_clk_unprepare(struct clk_hw *hw)
{
struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw);
inno_update_bits(inno, 0xa0, RK3328_PRE_PLL_POWER_DOWN,
RK3328_PRE_PLL_POWER_DOWN);
}
static
unsigned long inno_hdmi_phy_rk3328_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw);
unsigned long frac;
u8 nd, no_a, no_b, no_c, no_d;
u64 vco;
u16 nf;
nd = inno_read(inno, 0xa1) & RK3328_PRE_PLL_PRE_DIV_MASK;
nf = ((inno_read(inno, 0xa2) & RK3328_PRE_PLL_FB_DIV_11_8_MASK) << 8);
nf |= inno_read(inno, 0xa3);
vco = parent_rate * nf;
if (!(inno_read(inno, 0xa2) & RK3328_PRE_PLL_FRAC_DIV_DISABLE)) {
frac = inno_read(inno, 0xd3) |
(inno_read(inno, 0xd2) << 8) |
(inno_read(inno, 0xd1) << 16);
vco += DIV_ROUND_CLOSEST(parent_rate * frac, (1 << 24));
}
if (inno_read(inno, 0xa0) & RK3328_PCLK_VCO_DIV_5_MASK) {
do_div(vco, nd * 5);
} else {
no_a = inno_read(inno, 0xa5) & RK3328_PRE_PLL_PCLK_DIV_A_MASK;
no_b = inno_read(inno, 0xa5) & RK3328_PRE_PLL_PCLK_DIV_B_MASK;
no_b >>= RK3328_PRE_PLL_PCLK_DIV_B_SHIFT;
no_b += 2;
no_c = inno_read(inno, 0xa6) & RK3328_PRE_PLL_PCLK_DIV_C_MASK;
no_c >>= RK3328_PRE_PLL_PCLK_DIV_C_SHIFT;
no_c = 1 << no_c;
no_d = inno_read(inno, 0xa6) & RK3328_PRE_PLL_PCLK_DIV_D_MASK;
do_div(vco, (nd * (no_a == 1 ? no_b : no_a) * no_d * 2));
}
inno->pixclock = vco;
dev_dbg(inno->dev, "%s rate %lu\n", __func__, inno->pixclock);
return vco;
}
static long inno_hdmi_phy_rk3328_clk_round_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long *parent_rate)
{
const struct pre_pll_config *cfg = pre_pll_cfg_table;
rate = (rate / 1000) * 1000;
for (; cfg->pixclock != 0; cfg++)
if (cfg->pixclock == rate)
break;
if (cfg->pixclock == 0)
return -EINVAL;
return cfg->pixclock;
}
static int inno_hdmi_phy_rk3328_clk_set_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long parent_rate)
{
struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw);
const struct pre_pll_config *cfg;
unsigned long tmdsclock = inno_hdmi_phy_get_tmdsclk(inno, rate);
u32 val;
int ret;
dev_dbg(inno->dev, "%s rate %lu tmdsclk %lu\n",
__func__, rate, tmdsclock);
cfg = inno_hdmi_phy_get_pre_pll_cfg(inno, rate);
if (IS_ERR(cfg))
return PTR_ERR(cfg);
inno_update_bits(inno, 0xa0, RK3328_PRE_PLL_POWER_DOWN,
RK3328_PRE_PLL_POWER_DOWN);
/* Configure pre-pll */
inno_update_bits(inno, 0xa0, RK3228_PCLK_VCO_DIV_5_MASK,
RK3228_PCLK_VCO_DIV_5(cfg->vco_div_5_en));
inno_write(inno, 0xa1, RK3328_PRE_PLL_PRE_DIV(cfg->prediv));
val = RK3328_SPREAD_SPECTRUM_MOD_DISABLE;
if (!cfg->fracdiv)
val |= RK3328_PRE_PLL_FRAC_DIV_DISABLE;
inno_write(inno, 0xa2, RK3328_PRE_PLL_FB_DIV_11_8(cfg->fbdiv) | val);
inno_write(inno, 0xa3, RK3328_PRE_PLL_FB_DIV_7_0(cfg->fbdiv));
inno_write(inno, 0xa5, RK3328_PRE_PLL_PCLK_DIV_A(cfg->pclk_div_a) |
RK3328_PRE_PLL_PCLK_DIV_B(cfg->pclk_div_b));
inno_write(inno, 0xa6, RK3328_PRE_PLL_PCLK_DIV_C(cfg->pclk_div_c) |
RK3328_PRE_PLL_PCLK_DIV_D(cfg->pclk_div_d));
inno_write(inno, 0xa4, RK3328_PRE_PLL_TMDSCLK_DIV_C(cfg->tmds_div_c) |
RK3328_PRE_PLL_TMDSCLK_DIV_A(cfg->tmds_div_a) |
RK3328_PRE_PLL_TMDSCLK_DIV_B(cfg->tmds_div_b));
inno_write(inno, 0xd3, RK3328_PRE_PLL_FRAC_DIV_7_0(cfg->fracdiv));
inno_write(inno, 0xd2, RK3328_PRE_PLL_FRAC_DIV_15_8(cfg->fracdiv));
inno_write(inno, 0xd1, RK3328_PRE_PLL_FRAC_DIV_23_16(cfg->fracdiv));
inno_update_bits(inno, 0xa0, RK3328_PRE_PLL_POWER_DOWN, 0);
/* Wait for Pre-PLL lock */
ret = inno_poll(inno, 0xa9, val, val & RK3328_PRE_PLL_LOCK_STATUS,
1000, 10000);
if (ret) {
dev_err(inno->dev, "Pre-PLL locking failed\n");
return ret;
}
inno->pixclock = rate;
return 0;
}
static const struct clk_ops inno_hdmi_phy_rk3328_clk_ops = {
.prepare = inno_hdmi_phy_rk3328_clk_prepare,
.unprepare = inno_hdmi_phy_rk3328_clk_unprepare,
.is_prepared = inno_hdmi_phy_rk3328_clk_is_prepared,
.recalc_rate = inno_hdmi_phy_rk3328_clk_recalc_rate,
.round_rate = inno_hdmi_phy_rk3328_clk_round_rate,
.set_rate = inno_hdmi_phy_rk3328_clk_set_rate,
};
static int inno_hdmi_phy_clk_register(struct inno_hdmi_phy *inno)
{
struct device *dev = inno->dev;
struct device_node *np = dev->of_node;
struct clk_init_data init;
const char *parent_name;
int ret;
parent_name = __clk_get_name(inno->refoclk);
init.parent_names = &parent_name;
init.num_parents = 1;
init.flags = 0;
init.name = "pin_hd20_pclk";
init.ops = inno->plat_data->clk_ops;
/* optional override of the clock name */
of_property_read_string(np, "clock-output-names", &init.name);
inno->hw.init = &init;
inno->phyclk = devm_clk_register(dev, &inno->hw);
if (IS_ERR(inno->phyclk)) {
ret = PTR_ERR(inno->phyclk);
dev_err(dev, "failed to register clock: %d\n", ret);
return ret;
}
ret = of_clk_add_provider(np, of_clk_src_simple_get, inno->phyclk);
if (ret) {
dev_err(dev, "failed to register clock provider: %d\n", ret);
return ret;
}
return 0;
}
static int inno_hdmi_phy_rk3228_init(struct inno_hdmi_phy *inno)
{
/*
* Use phy internal register control
* rxsense/poweron/pllpd/pdataen signal.
*/
inno_write(inno, 0x01, RK3228_BYPASS_RXSENSE_EN |
RK3228_BYPASS_PWRON_EN |
RK3228_BYPASS_PLLPD_EN);
inno_update_bits(inno, 0x02, RK3228_BYPASS_PDATA_EN,
RK3228_BYPASS_PDATA_EN);
/* manual power down post-PLL */
inno_update_bits(inno, 0xaa, RK3228_POST_PLL_CTRL_MANUAL,
RK3228_POST_PLL_CTRL_MANUAL);
inno->chip_version = 1;
return 0;
}
static int
inno_hdmi_phy_rk3228_power_on(struct inno_hdmi_phy *inno,
const struct post_pll_config *cfg,
const struct phy_config *phy_cfg)
{
int ret;
u32 v;
inno_update_bits(inno, 0x02, RK3228_PDATAEN_DISABLE,
RK3228_PDATAEN_DISABLE);
inno_update_bits(inno, 0xe0, RK3228_PRE_PLL_POWER_DOWN |
RK3228_POST_PLL_POWER_DOWN,
RK3228_PRE_PLL_POWER_DOWN |
RK3228_POST_PLL_POWER_DOWN);
/* Post-PLL update */
inno_update_bits(inno, 0xe9, RK3228_POST_PLL_PRE_DIV_MASK,
RK3228_POST_PLL_PRE_DIV(cfg->prediv));
inno_update_bits(inno, 0xeb, RK3228_POST_PLL_FB_DIV_8_MASK,
RK3228_POST_PLL_FB_DIV_8(cfg->fbdiv));
inno_write(inno, 0xea, RK3228_POST_PLL_FB_DIV_7_0(cfg->fbdiv));
if (cfg->postdiv == 1) {
inno_update_bits(inno, 0xe9, RK3228_POST_PLL_POST_DIV_ENABLE,
0);
} else {
int div = cfg->postdiv / 2 - 1;
inno_update_bits(inno, 0xe9, RK3228_POST_PLL_POST_DIV_ENABLE,
RK3228_POST_PLL_POST_DIV_ENABLE);
inno_update_bits(inno, 0xeb, RK3228_POST_PLL_POST_DIV_MASK,
RK3228_POST_PLL_POST_DIV(div));
}
for (v = 0; v < 4; v++)
inno_write(inno, 0xef + v, phy_cfg->regs[v]);
inno_update_bits(inno, 0xe0, RK3228_PRE_PLL_POWER_DOWN |
RK3228_POST_PLL_POWER_DOWN, 0);
inno_update_bits(inno, 0xe1, RK3228_BANDGAP_ENABLE,
RK3228_BANDGAP_ENABLE);
inno_update_bits(inno, 0xe1, RK3228_TMDS_DRIVER_ENABLE,
RK3228_TMDS_DRIVER_ENABLE);
/* Wait for post PLL lock */
ret = inno_poll(inno, 0xeb, v, v & RK3228_POST_PLL_LOCK_STATUS,
100, 100000);
if (ret) {
dev_err(inno->dev, "Post-PLL locking failed\n");
return ret;
}
if (cfg->tmdsclock > 340000000)
msleep(100);
inno_update_bits(inno, 0x02, RK3228_PDATAEN_DISABLE, 0);
return 0;
}
static void inno_hdmi_phy_rk3228_power_off(struct inno_hdmi_phy *inno)
{
inno_update_bits(inno, 0xe1, RK3228_TMDS_DRIVER_ENABLE, 0);
inno_update_bits(inno, 0xe1, RK3228_BANDGAP_ENABLE, 0);
inno_update_bits(inno, 0xe0, RK3228_POST_PLL_POWER_DOWN,
RK3228_POST_PLL_POWER_DOWN);
}
static const struct inno_hdmi_phy_ops rk3228_hdmi_phy_ops = {
.init = inno_hdmi_phy_rk3228_init,
.power_on = inno_hdmi_phy_rk3228_power_on,
.power_off = inno_hdmi_phy_rk3228_power_off,
};
static int inno_hdmi_phy_rk3328_init(struct inno_hdmi_phy *inno)
{
struct nvmem_cell *cell;
unsigned char *efuse_buf;
size_t len;
/*
* Use phy internal register control
* rxsense/poweron/pllpd/pdataen signal.
*/
inno_write(inno, 0x01, RK3328_BYPASS_RXSENSE_EN |
RK3328_BYPASS_POWERON_EN |
RK3328_BYPASS_PLLPD_EN);
inno_write(inno, 0x02, RK3328_INT_POL_HIGH | RK3328_BYPASS_PDATA_EN |
RK3328_PDATA_EN);
/* Disable phy irq */
inno_write(inno, 0x05, 0);
inno_write(inno, 0x07, 0);
/* try to read the chip-version */
inno->chip_version = 1;
cell = nvmem_cell_get(inno->dev, "cpu-version");
if (IS_ERR(cell)) {
if (PTR_ERR(cell) == -EPROBE_DEFER)
return -EPROBE_DEFER;
return 0;
}
efuse_buf = nvmem_cell_read(cell, &len);
nvmem_cell_put(cell);
if (IS_ERR(efuse_buf))
return 0;
if (len == 1)
inno->chip_version = efuse_buf[0] + 1;
kfree(efuse_buf);
return 0;
}
static int
inno_hdmi_phy_rk3328_power_on(struct inno_hdmi_phy *inno,
const struct post_pll_config *cfg,
const struct phy_config *phy_cfg)
{
int ret;
u32 v;
inno_update_bits(inno, 0x02, RK3328_PDATA_EN, 0);
inno_update_bits(inno, 0xaa, RK3328_POST_PLL_POWER_DOWN,
RK3328_POST_PLL_POWER_DOWN);
inno_write(inno, 0xac, RK3328_POST_PLL_FB_DIV_7_0(cfg->fbdiv));
if (cfg->postdiv == 1) {
inno_write(inno, 0xaa, RK3328_POST_PLL_REFCLK_SEL_TMDS);
inno_write(inno, 0xab, RK3328_POST_PLL_FB_DIV_8(cfg->fbdiv) |
RK3328_POST_PLL_PRE_DIV(cfg->prediv));
} else {
v = (cfg->postdiv / 2) - 1;
v &= RK3328_POST_PLL_POST_DIV_MASK;
inno_write(inno, 0xad, v);
inno_write(inno, 0xab, RK3328_POST_PLL_FB_DIV_8(cfg->fbdiv) |
RK3328_POST_PLL_PRE_DIV(cfg->prediv));
inno_write(inno, 0xaa, RK3328_POST_PLL_POST_DIV_ENABLE |
RK3328_POST_PLL_REFCLK_SEL_TMDS);
}
for (v = 0; v < 14; v++)
inno_write(inno, 0xb5 + v, phy_cfg->regs[v]);
/* set ESD detection threshold for TMDS CLK, D2, D1 and D0 */
for (v = 0; v < 4; v++)
inno_update_bits(inno, 0xc8 + v, RK3328_ESD_DETECT_MASK,
RK3328_ESD_DETECT_340MV);
if (phy_cfg->tmdsclock > 340000000) {
/* Set termination resistor to 100ohm */
v = clk_get_rate(inno->sysclk) / 100000;
inno_write(inno, 0xc5, RK3328_TERM_RESISTOR_CALIB_SPEED_14_8(v)
| RK3328_BYPASS_TERM_RESISTOR_CALIB);
inno_write(inno, 0xc6, RK3328_TERM_RESISTOR_CALIB_SPEED_7_0(v));
inno_write(inno, 0xc7, RK3328_TERM_RESISTOR_100);
inno_update_bits(inno, 0xc5,
RK3328_BYPASS_TERM_RESISTOR_CALIB, 0);
} else {
inno_write(inno, 0xc5, RK3328_BYPASS_TERM_RESISTOR_CALIB);
/* clk termination resistor is 50ohm (parallel resistors) */
if (phy_cfg->tmdsclock > 165000000)
inno_update_bits(inno, 0xc8,
RK3328_TMDS_TERM_RESIST_MASK,
RK3328_TMDS_TERM_RESIST_75 |
RK3328_TMDS_TERM_RESIST_150);
/* data termination resistor for D2, D1 and D0 is 150ohm */
for (v = 0; v < 3; v++)
inno_update_bits(inno, 0xc9 + v,
RK3328_TMDS_TERM_RESIST_MASK,
RK3328_TMDS_TERM_RESIST_150);
}
inno_update_bits(inno, 0xaa, RK3328_POST_PLL_POWER_DOWN, 0);
inno_update_bits(inno, 0xb0, RK3328_BANDGAP_ENABLE,
RK3328_BANDGAP_ENABLE);
inno_update_bits(inno, 0xb2, RK3328_TMDS_DRIVER_ENABLE,
RK3328_TMDS_DRIVER_ENABLE);
/* Wait for post PLL lock */
ret = inno_poll(inno, 0xaf, v, v & RK3328_POST_PLL_LOCK_STATUS,
1000, 10000);
if (ret) {
dev_err(inno->dev, "Post-PLL locking failed\n");
return ret;
}
if (phy_cfg->tmdsclock > 340000000)
msleep(100);
inno_update_bits(inno, 0x02, RK3328_PDATA_EN, RK3328_PDATA_EN);
/* Enable PHY IRQ */
inno_write(inno, 0x05, RK3328_INT_TMDS_CLK(RK3328_INT_VSS_AGND_ESD_DET)
| RK3328_INT_TMDS_D2(RK3328_INT_VSS_AGND_ESD_DET));
inno_write(inno, 0x07, RK3328_INT_TMDS_D1(RK3328_INT_VSS_AGND_ESD_DET)
| RK3328_INT_TMDS_D0(RK3328_INT_VSS_AGND_ESD_DET));
return 0;
}
static void inno_hdmi_phy_rk3328_power_off(struct inno_hdmi_phy *inno)
{
inno_update_bits(inno, 0xb2, RK3328_TMDS_DRIVER_ENABLE, 0);
inno_update_bits(inno, 0xb0, RK3328_BANDGAP_ENABLE, 0);
inno_update_bits(inno, 0xaa, RK3328_POST_PLL_POWER_DOWN,
RK3328_POST_PLL_POWER_DOWN);
/* Disable PHY IRQ */
inno_write(inno, 0x05, 0);
inno_write(inno, 0x07, 0);
}
static const struct inno_hdmi_phy_ops rk3328_hdmi_phy_ops = {
.init = inno_hdmi_phy_rk3328_init,
.power_on = inno_hdmi_phy_rk3328_power_on,
.power_off = inno_hdmi_phy_rk3328_power_off,
};
static const struct inno_hdmi_phy_drv_data rk3228_hdmi_phy_drv_data = {
.ops = &rk3228_hdmi_phy_ops,
.clk_ops = &inno_hdmi_phy_rk3228_clk_ops,
.phy_cfg_table = rk3228_phy_cfg,
};
static const struct inno_hdmi_phy_drv_data rk3328_hdmi_phy_drv_data = {
.ops = &rk3328_hdmi_phy_ops,
.clk_ops = &inno_hdmi_phy_rk3328_clk_ops,
.phy_cfg_table = rk3328_phy_cfg,
};
static const struct regmap_config inno_hdmi_phy_regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.max_register = 0x400,
};
static void inno_hdmi_phy_action(void *data)
{
struct inno_hdmi_phy *inno = data;
clk_disable_unprepare(inno->refpclk);
clk_disable_unprepare(inno->sysclk);
}
static int inno_hdmi_phy_probe(struct platform_device *pdev)
{
struct inno_hdmi_phy *inno;
struct phy_provider *phy_provider;
void __iomem *regs;
int ret;
inno = devm_kzalloc(&pdev->dev, sizeof(*inno), GFP_KERNEL);
if (!inno)
return -ENOMEM;
inno->dev = &pdev->dev;
inno->plat_data = of_device_get_match_data(inno->dev);
if (!inno->plat_data || !inno->plat_data->ops)
return -EINVAL;
regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(regs))
return PTR_ERR(regs);
inno->sysclk = devm_clk_get(inno->dev, "sysclk");
if (IS_ERR(inno->sysclk)) {
ret = PTR_ERR(inno->sysclk);
dev_err(inno->dev, "failed to get sysclk: %d\n", ret);
return ret;
}
inno->refpclk = devm_clk_get(inno->dev, "refpclk");
if (IS_ERR(inno->refpclk)) {
ret = PTR_ERR(inno->refpclk);
dev_err(inno->dev, "failed to get ref clock: %d\n", ret);
return ret;
}
inno->refoclk = devm_clk_get(inno->dev, "refoclk");
if (IS_ERR(inno->refoclk)) {
ret = PTR_ERR(inno->refoclk);
dev_err(inno->dev, "failed to get oscillator-ref clock: %d\n",
ret);
return ret;
}
ret = clk_prepare_enable(inno->sysclk);
if (ret) {
dev_err(inno->dev, "Cannot enable inno phy sysclk: %d\n", ret);
return ret;
}
/*
* Refpclk needs to be on, on at least the rk3328 for still
* unknown reasons.
*/
ret = clk_prepare_enable(inno->refpclk);
if (ret) {
dev_err(inno->dev, "failed to enable refpclk\n");
clk_disable_unprepare(inno->sysclk);
return ret;
}
ret = devm_add_action_or_reset(inno->dev, inno_hdmi_phy_action,
inno);
if (ret)
return ret;
inno->regmap = devm_regmap_init_mmio(inno->dev, regs,
&inno_hdmi_phy_regmap_config);
if (IS_ERR(inno->regmap))
return PTR_ERR(inno->regmap);
/* only the newer rk3328 hdmiphy has an interrupt */
inno->irq = platform_get_irq(pdev, 0);
if (inno->irq > 0) {
ret = devm_request_threaded_irq(inno->dev, inno->irq,
inno_hdmi_phy_rk3328_hardirq,
inno_hdmi_phy_rk3328_irq,
IRQF_SHARED,
dev_name(inno->dev), inno);
if (ret)
return ret;
}
inno->phy = devm_phy_create(inno->dev, NULL, &inno_hdmi_phy_ops);
if (IS_ERR(inno->phy)) {
dev_err(inno->dev, "failed to create HDMI PHY\n");
return PTR_ERR(inno->phy);
}
phy_set_drvdata(inno->phy, inno);
phy_set_bus_width(inno->phy, 8);
if (inno->plat_data->ops->init) {
ret = inno->plat_data->ops->init(inno);
if (ret)
return ret;
}
ret = inno_hdmi_phy_clk_register(inno);
if (ret)
return ret;
phy_provider = devm_of_phy_provider_register(inno->dev,
of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static int inno_hdmi_phy_remove(struct platform_device *pdev)
{
of_clk_del_provider(pdev->dev.of_node);
return 0;
}
static const struct of_device_id inno_hdmi_phy_of_match[] = {
{
.compatible = "rockchip,rk3228-hdmi-phy",
.data = &rk3228_hdmi_phy_drv_data
}, {
.compatible = "rockchip,rk3328-hdmi-phy",
.data = &rk3328_hdmi_phy_drv_data
}, { /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, inno_hdmi_phy_of_match);
static struct platform_driver inno_hdmi_phy_driver = {
.probe = inno_hdmi_phy_probe,
.remove = inno_hdmi_phy_remove,
.driver = {
.name = "inno-hdmi-phy",
.of_match_table = inno_hdmi_phy_of_match,
},
};
module_platform_driver(inno_hdmi_phy_driver);
MODULE_AUTHOR("Zheng Yang <zhengyang@rock-chips.com>");
MODULE_DESCRIPTION("Innosilion HDMI 2.0 Transmitter PHY Driver");
MODULE_LICENSE("GPL v2");