linux-zen-server/drivers/thunderbolt/nvm.c

631 lines
15 KiB
C
Raw Permalink Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0
/*
* NVM helpers
*
* Copyright (C) 2020, Intel Corporation
* Author: Mika Westerberg <mika.westerberg@linux.intel.com>
*/
#include <linux/idr.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include "tb.h"
/* Intel specific NVM offsets */
#define INTEL_NVM_DEVID 0x05
#define INTEL_NVM_VERSION 0x08
#define INTEL_NVM_CSS 0x10
#define INTEL_NVM_FLASH_SIZE 0x45
/* ASMedia specific NVM offsets */
#define ASMEDIA_NVM_DATE 0x1c
#define ASMEDIA_NVM_VERSION 0x28
static DEFINE_IDA(nvm_ida);
/**
* struct tb_nvm_vendor_ops - Vendor specific NVM operations
* @read_version: Reads out NVM version from the flash
* @validate: Validates the NVM image before update (optional)
* @write_headers: Writes headers before the rest of the image (optional)
*/
struct tb_nvm_vendor_ops {
int (*read_version)(struct tb_nvm *nvm);
int (*validate)(struct tb_nvm *nvm);
int (*write_headers)(struct tb_nvm *nvm);
};
/**
* struct tb_nvm_vendor - Vendor to &struct tb_nvm_vendor_ops mapping
* @vendor: Vendor ID
* @vops: Vendor specific NVM operations
*
* Maps vendor ID to NVM vendor operations. If there is no mapping then
* NVM firmware upgrade is disabled for the device.
*/
struct tb_nvm_vendor {
u16 vendor;
const struct tb_nvm_vendor_ops *vops;
};
static int intel_switch_nvm_version(struct tb_nvm *nvm)
{
struct tb_switch *sw = tb_to_switch(nvm->dev);
u32 val, nvm_size, hdr_size;
int ret;
/*
* If the switch is in safe-mode the only accessible portion of
* the NVM is the non-active one where userspace is expected to
* write new functional NVM.
*/
if (sw->safe_mode)
return 0;
ret = tb_switch_nvm_read(sw, INTEL_NVM_FLASH_SIZE, &val, sizeof(val));
if (ret)
return ret;
hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
nvm_size = (SZ_1M << (val & 7)) / 8;
nvm_size = (nvm_size - hdr_size) / 2;
ret = tb_switch_nvm_read(sw, INTEL_NVM_VERSION, &val, sizeof(val));
if (ret)
return ret;
nvm->major = (val >> 16) & 0xff;
nvm->minor = (val >> 8) & 0xff;
nvm->active_size = nvm_size;
return 0;
}
static int intel_switch_nvm_validate(struct tb_nvm *nvm)
{
struct tb_switch *sw = tb_to_switch(nvm->dev);
unsigned int image_size, hdr_size;
u16 ds_size, device_id;
u8 *buf = nvm->buf;
image_size = nvm->buf_data_size;
/*
* FARB pointer must point inside the image and must at least
* contain parts of the digital section we will be reading here.
*/
hdr_size = (*(u32 *)buf) & 0xffffff;
if (hdr_size + INTEL_NVM_DEVID + 2 >= image_size)
return -EINVAL;
/* Digital section start should be aligned to 4k page */
if (!IS_ALIGNED(hdr_size, SZ_4K))
return -EINVAL;
/*
* Read digital section size and check that it also fits inside
* the image.
*/
ds_size = *(u16 *)(buf + hdr_size);
if (ds_size >= image_size)
return -EINVAL;
if (sw->safe_mode)
return 0;
/*
* Make sure the device ID in the image matches the one
* we read from the switch config space.
*/
device_id = *(u16 *)(buf + hdr_size + INTEL_NVM_DEVID);
if (device_id != sw->config.device_id)
return -EINVAL;
/* Skip headers in the image */
nvm->buf_data_start = buf + hdr_size;
nvm->buf_data_size = image_size - hdr_size;
return 0;
}
static int intel_switch_nvm_write_headers(struct tb_nvm *nvm)
{
struct tb_switch *sw = tb_to_switch(nvm->dev);
if (sw->generation < 3) {
int ret;
/* Write CSS headers first */
ret = dma_port_flash_write(sw->dma_port,
DMA_PORT_CSS_ADDRESS, nvm->buf + INTEL_NVM_CSS,
DMA_PORT_CSS_MAX_SIZE);
if (ret)
return ret;
}
return 0;
}
static const struct tb_nvm_vendor_ops intel_switch_nvm_ops = {
.read_version = intel_switch_nvm_version,
.validate = intel_switch_nvm_validate,
.write_headers = intel_switch_nvm_write_headers,
};
static int asmedia_switch_nvm_version(struct tb_nvm *nvm)
{
struct tb_switch *sw = tb_to_switch(nvm->dev);
u32 val;
int ret;
ret = tb_switch_nvm_read(sw, ASMEDIA_NVM_VERSION, &val, sizeof(val));
if (ret)
return ret;
nvm->major = (val << 16) & 0xff0000;
nvm->major |= val & 0x00ff00;
nvm->major |= (val >> 16) & 0x0000ff;
ret = tb_switch_nvm_read(sw, ASMEDIA_NVM_DATE, &val, sizeof(val));
if (ret)
return ret;
nvm->minor = (val << 16) & 0xff0000;
nvm->minor |= val & 0x00ff00;
nvm->minor |= (val >> 16) & 0x0000ff;
/* ASMedia NVM size is fixed to 512k */
nvm->active_size = SZ_512K;
return 0;
}
static const struct tb_nvm_vendor_ops asmedia_switch_nvm_ops = {
.read_version = asmedia_switch_nvm_version,
};
/* Router vendor NVM support table */
static const struct tb_nvm_vendor switch_nvm_vendors[] = {
{ 0x174c, &asmedia_switch_nvm_ops },
{ PCI_VENDOR_ID_INTEL, &intel_switch_nvm_ops },
{ 0x8087, &intel_switch_nvm_ops },
};
static int intel_retimer_nvm_version(struct tb_nvm *nvm)
{
struct tb_retimer *rt = tb_to_retimer(nvm->dev);
u32 val, nvm_size;
int ret;
ret = tb_retimer_nvm_read(rt, INTEL_NVM_VERSION, &val, sizeof(val));
if (ret)
return ret;
nvm->major = (val >> 16) & 0xff;
nvm->minor = (val >> 8) & 0xff;
ret = tb_retimer_nvm_read(rt, INTEL_NVM_FLASH_SIZE, &val, sizeof(val));
if (ret)
return ret;
nvm_size = (SZ_1M << (val & 7)) / 8;
nvm_size = (nvm_size - SZ_16K) / 2;
nvm->active_size = nvm_size;
return 0;
}
static int intel_retimer_nvm_validate(struct tb_nvm *nvm)
{
struct tb_retimer *rt = tb_to_retimer(nvm->dev);
unsigned int image_size, hdr_size;
u8 *buf = nvm->buf;
u16 ds_size, device;
image_size = nvm->buf_data_size;
/*
* FARB pointer must point inside the image and must at least
* contain parts of the digital section we will be reading here.
*/
hdr_size = (*(u32 *)buf) & 0xffffff;
if (hdr_size + INTEL_NVM_DEVID + 2 >= image_size)
return -EINVAL;
/* Digital section start should be aligned to 4k page */
if (!IS_ALIGNED(hdr_size, SZ_4K))
return -EINVAL;
/*
* Read digital section size and check that it also fits inside
* the image.
*/
ds_size = *(u16 *)(buf + hdr_size);
if (ds_size >= image_size)
return -EINVAL;
/*
* Make sure the device ID in the image matches the retimer
* hardware.
*/
device = *(u16 *)(buf + hdr_size + INTEL_NVM_DEVID);
if (device != rt->device)
return -EINVAL;
/* Skip headers in the image */
nvm->buf_data_start = buf + hdr_size;
nvm->buf_data_size = image_size - hdr_size;
return 0;
}
static const struct tb_nvm_vendor_ops intel_retimer_nvm_ops = {
.read_version = intel_retimer_nvm_version,
.validate = intel_retimer_nvm_validate,
};
/* Retimer vendor NVM support table */
static const struct tb_nvm_vendor retimer_nvm_vendors[] = {
{ 0x8087, &intel_retimer_nvm_ops },
};
/**
* tb_nvm_alloc() - Allocate new NVM structure
* @dev: Device owning the NVM
*
* Allocates new NVM structure with unique @id and returns it. In case
* of error returns ERR_PTR(). Specifically returns %-EOPNOTSUPP if the
* NVM format of the @dev is not known by the kernel.
*/
struct tb_nvm *tb_nvm_alloc(struct device *dev)
{
const struct tb_nvm_vendor_ops *vops = NULL;
struct tb_nvm *nvm;
int ret, i;
if (tb_is_switch(dev)) {
const struct tb_switch *sw = tb_to_switch(dev);
for (i = 0; i < ARRAY_SIZE(switch_nvm_vendors); i++) {
const struct tb_nvm_vendor *v = &switch_nvm_vendors[i];
if (v->vendor == sw->config.vendor_id) {
vops = v->vops;
break;
}
}
if (!vops) {
tb_sw_dbg(sw, "router NVM format of vendor %#x unknown\n",
sw->config.vendor_id);
return ERR_PTR(-EOPNOTSUPP);
}
} else if (tb_is_retimer(dev)) {
const struct tb_retimer *rt = tb_to_retimer(dev);
for (i = 0; i < ARRAY_SIZE(retimer_nvm_vendors); i++) {
const struct tb_nvm_vendor *v = &retimer_nvm_vendors[i];
if (v->vendor == rt->vendor) {
vops = v->vops;
break;
}
}
if (!vops) {
dev_dbg(dev, "retimer NVM format of vendor %#x unknown\n",
rt->vendor);
return ERR_PTR(-EOPNOTSUPP);
}
} else {
return ERR_PTR(-EOPNOTSUPP);
}
nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
if (!nvm)
return ERR_PTR(-ENOMEM);
ret = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);
if (ret < 0) {
kfree(nvm);
return ERR_PTR(ret);
}
nvm->id = ret;
nvm->dev = dev;
nvm->vops = vops;
return nvm;
}
/**
* tb_nvm_read_version() - Read and populate NVM version
* @nvm: NVM structure
*
* Uses vendor specific means to read out and fill in the existing
* active NVM version. Returns %0 in case of success and negative errno
* otherwise.
*/
int tb_nvm_read_version(struct tb_nvm *nvm)
{
const struct tb_nvm_vendor_ops *vops = nvm->vops;
if (vops && vops->read_version)
return vops->read_version(nvm);
return -EOPNOTSUPP;
}
/**
* tb_nvm_validate() - Validate new NVM image
* @nvm: NVM structure
*
* Runs vendor specific validation over the new NVM image and if all
* checks pass returns %0. As side effect updates @nvm->buf_data_start
* and @nvm->buf_data_size fields to match the actual data to be written
* to the NVM.
*
* If the validation does not pass then returns negative errno.
*/
int tb_nvm_validate(struct tb_nvm *nvm)
{
const struct tb_nvm_vendor_ops *vops = nvm->vops;
unsigned int image_size;
u8 *buf = nvm->buf;
if (!buf)
return -EINVAL;
if (!vops)
return -EOPNOTSUPP;
/* Just do basic image size checks */
image_size = nvm->buf_data_size;
if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
return -EINVAL;
/*
* Set the default data start in the buffer. The validate method
* below can change this if needed.
*/
nvm->buf_data_start = buf;
return vops->validate ? vops->validate(nvm) : 0;
}
/**
* tb_nvm_write_headers() - Write headers before the rest of the image
* @nvm: NVM structure
*
* If the vendor NVM format requires writing headers before the rest of
* the image, this function does that. Can be called even if the device
* does not need this.
*
* Returns %0 in case of success and negative errno otherwise.
*/
int tb_nvm_write_headers(struct tb_nvm *nvm)
{
const struct tb_nvm_vendor_ops *vops = nvm->vops;
return vops->write_headers ? vops->write_headers(nvm) : 0;
}
/**
* tb_nvm_add_active() - Adds active NVMem device to NVM
* @nvm: NVM structure
* @reg_read: Pointer to the function to read the NVM (passed directly to the
* NVMem device)
*
* Registers new active NVmem device for @nvm. The @reg_read is called
* directly from NVMem so it must handle possible concurrent access if
* needed. The first parameter passed to @reg_read is @nvm structure.
* Returns %0 in success and negative errno otherwise.
*/
int tb_nvm_add_active(struct tb_nvm *nvm, nvmem_reg_read_t reg_read)
{
struct nvmem_config config;
struct nvmem_device *nvmem;
memset(&config, 0, sizeof(config));
config.name = "nvm_active";
config.reg_read = reg_read;
config.read_only = true;
config.id = nvm->id;
config.stride = 4;
config.word_size = 4;
config.size = nvm->active_size;
config.dev = nvm->dev;
config.owner = THIS_MODULE;
config.priv = nvm;
nvmem = nvmem_register(&config);
if (IS_ERR(nvmem))
return PTR_ERR(nvmem);
nvm->active = nvmem;
return 0;
}
/**
* tb_nvm_write_buf() - Write data to @nvm buffer
* @nvm: NVM structure
* @offset: Offset where to write the data
* @val: Data buffer to write
* @bytes: Number of bytes to write
*
* Helper function to cache the new NVM image before it is actually
* written to the flash. Copies @bytes from @val to @nvm->buf starting
* from @offset.
*/
int tb_nvm_write_buf(struct tb_nvm *nvm, unsigned int offset, void *val,
size_t bytes)
{
if (!nvm->buf) {
nvm->buf = vmalloc(NVM_MAX_SIZE);
if (!nvm->buf)
return -ENOMEM;
}
nvm->flushed = false;
nvm->buf_data_size = offset + bytes;
memcpy(nvm->buf + offset, val, bytes);
return 0;
}
/**
* tb_nvm_add_non_active() - Adds non-active NVMem device to NVM
* @nvm: NVM structure
* @reg_write: Pointer to the function to write the NVM (passed directly
* to the NVMem device)
*
* Registers new non-active NVmem device for @nvm. The @reg_write is called
* directly from NVMem so it must handle possible concurrent access if
* needed. The first parameter passed to @reg_write is @nvm structure.
* The size of the NVMem device is set to %NVM_MAX_SIZE.
*
* Returns %0 in success and negative errno otherwise.
*/
int tb_nvm_add_non_active(struct tb_nvm *nvm, nvmem_reg_write_t reg_write)
{
struct nvmem_config config;
struct nvmem_device *nvmem;
memset(&config, 0, sizeof(config));
config.name = "nvm_non_active";
config.reg_write = reg_write;
config.root_only = true;
config.id = nvm->id;
config.stride = 4;
config.word_size = 4;
config.size = NVM_MAX_SIZE;
config.dev = nvm->dev;
config.owner = THIS_MODULE;
config.priv = nvm;
nvmem = nvmem_register(&config);
if (IS_ERR(nvmem))
return PTR_ERR(nvmem);
nvm->non_active = nvmem;
return 0;
}
/**
* tb_nvm_free() - Release NVM and its resources
* @nvm: NVM structure to release
*
* Releases NVM and the NVMem devices if they were registered.
*/
void tb_nvm_free(struct tb_nvm *nvm)
{
if (nvm) {
nvmem_unregister(nvm->non_active);
nvmem_unregister(nvm->active);
vfree(nvm->buf);
ida_simple_remove(&nvm_ida, nvm->id);
}
kfree(nvm);
}
/**
* tb_nvm_read_data() - Read data from NVM
* @address: Start address on the flash
* @buf: Buffer where the read data is copied
* @size: Size of the buffer in bytes
* @retries: Number of retries if block read fails
* @read_block: Function that reads block from the flash
* @read_block_data: Data passsed to @read_block
*
* This is a generic function that reads data from NVM or NVM like
* device.
*
* Returns %0 on success and negative errno otherwise.
*/
int tb_nvm_read_data(unsigned int address, void *buf, size_t size,
unsigned int retries, read_block_fn read_block,
void *read_block_data)
{
do {
unsigned int dwaddress, dwords, offset;
u8 data[NVM_DATA_DWORDS * 4];
size_t nbytes;
int ret;
offset = address & 3;
nbytes = min_t(size_t, size + offset, NVM_DATA_DWORDS * 4);
dwaddress = address / 4;
dwords = ALIGN(nbytes, 4) / 4;
ret = read_block(read_block_data, dwaddress, data, dwords);
if (ret) {
if (ret != -ENODEV && retries--)
continue;
return ret;
}
nbytes -= offset;
memcpy(buf, data + offset, nbytes);
size -= nbytes;
address += nbytes;
buf += nbytes;
} while (size > 0);
return 0;
}
/**
* tb_nvm_write_data() - Write data to NVM
* @address: Start address on the flash
* @buf: Buffer where the data is copied from
* @size: Size of the buffer in bytes
* @retries: Number of retries if the block write fails
* @write_block: Function that writes block to the flash
* @write_block_data: Data passwd to @write_block
*
* This is generic function that writes data to NVM or NVM like device.
*
* Returns %0 on success and negative errno otherwise.
*/
int tb_nvm_write_data(unsigned int address, const void *buf, size_t size,
unsigned int retries, write_block_fn write_block,
void *write_block_data)
{
do {
unsigned int offset, dwaddress;
u8 data[NVM_DATA_DWORDS * 4];
size_t nbytes;
int ret;
offset = address & 3;
nbytes = min_t(u32, size + offset, NVM_DATA_DWORDS * 4);
memcpy(data + offset, buf, nbytes);
dwaddress = address / 4;
ret = write_block(write_block_data, dwaddress, data, nbytes / 4);
if (ret) {
if (ret == -ETIMEDOUT) {
if (retries--)
continue;
ret = -EIO;
}
return ret;
}
size -= nbytes;
address += nbytes;
buf += nbytes;
} while (size > 0);
return 0;
}
void tb_nvm_exit(void)
{
ida_destroy(&nvm_ida);
}