947 lines
23 KiB
C
947 lines
23 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
||
|
/* Maintain an RxRPC server socket to do AFS communications through
|
||
|
*
|
||
|
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
|
||
|
* Written by David Howells (dhowells@redhat.com)
|
||
|
*/
|
||
|
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/sched/signal.h>
|
||
|
|
||
|
#include <net/sock.h>
|
||
|
#include <net/af_rxrpc.h>
|
||
|
#include "internal.h"
|
||
|
#include "afs_cm.h"
|
||
|
#include "protocol_yfs.h"
|
||
|
#define RXRPC_TRACE_ONLY_DEFINE_ENUMS
|
||
|
#include <trace/events/rxrpc.h>
|
||
|
|
||
|
struct workqueue_struct *afs_async_calls;
|
||
|
|
||
|
static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
|
||
|
static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
|
||
|
static void afs_process_async_call(struct work_struct *);
|
||
|
static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
|
||
|
static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
|
||
|
static int afs_deliver_cm_op_id(struct afs_call *);
|
||
|
|
||
|
/* asynchronous incoming call initial processing */
|
||
|
static const struct afs_call_type afs_RXCMxxxx = {
|
||
|
.name = "CB.xxxx",
|
||
|
.deliver = afs_deliver_cm_op_id,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* open an RxRPC socket and bind it to be a server for callback notifications
|
||
|
* - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
|
||
|
*/
|
||
|
int afs_open_socket(struct afs_net *net)
|
||
|
{
|
||
|
struct sockaddr_rxrpc srx;
|
||
|
struct socket *socket;
|
||
|
int ret;
|
||
|
|
||
|
_enter("");
|
||
|
|
||
|
ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
|
||
|
if (ret < 0)
|
||
|
goto error_1;
|
||
|
|
||
|
socket->sk->sk_allocation = GFP_NOFS;
|
||
|
|
||
|
/* bind the callback manager's address to make this a server socket */
|
||
|
memset(&srx, 0, sizeof(srx));
|
||
|
srx.srx_family = AF_RXRPC;
|
||
|
srx.srx_service = CM_SERVICE;
|
||
|
srx.transport_type = SOCK_DGRAM;
|
||
|
srx.transport_len = sizeof(srx.transport.sin6);
|
||
|
srx.transport.sin6.sin6_family = AF_INET6;
|
||
|
srx.transport.sin6.sin6_port = htons(AFS_CM_PORT);
|
||
|
|
||
|
ret = rxrpc_sock_set_min_security_level(socket->sk,
|
||
|
RXRPC_SECURITY_ENCRYPT);
|
||
|
if (ret < 0)
|
||
|
goto error_2;
|
||
|
|
||
|
ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
|
||
|
if (ret == -EADDRINUSE) {
|
||
|
srx.transport.sin6.sin6_port = 0;
|
||
|
ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
|
||
|
}
|
||
|
if (ret < 0)
|
||
|
goto error_2;
|
||
|
|
||
|
srx.srx_service = YFS_CM_SERVICE;
|
||
|
ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
|
||
|
if (ret < 0)
|
||
|
goto error_2;
|
||
|
|
||
|
/* Ideally, we'd turn on service upgrade here, but we can't because
|
||
|
* OpenAFS is buggy and leaks the userStatus field from packet to
|
||
|
* packet and between FS packets and CB packets - so if we try to do an
|
||
|
* upgrade on an FS packet, OpenAFS will leak that into the CB packet
|
||
|
* it sends back to us.
|
||
|
*/
|
||
|
|
||
|
rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
|
||
|
afs_rx_discard_new_call);
|
||
|
|
||
|
ret = kernel_listen(socket, INT_MAX);
|
||
|
if (ret < 0)
|
||
|
goto error_2;
|
||
|
|
||
|
net->socket = socket;
|
||
|
afs_charge_preallocation(&net->charge_preallocation_work);
|
||
|
_leave(" = 0");
|
||
|
return 0;
|
||
|
|
||
|
error_2:
|
||
|
sock_release(socket);
|
||
|
error_1:
|
||
|
_leave(" = %d", ret);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* close the RxRPC socket AFS was using
|
||
|
*/
|
||
|
void afs_close_socket(struct afs_net *net)
|
||
|
{
|
||
|
_enter("");
|
||
|
|
||
|
kernel_listen(net->socket, 0);
|
||
|
flush_workqueue(afs_async_calls);
|
||
|
|
||
|
if (net->spare_incoming_call) {
|
||
|
afs_put_call(net->spare_incoming_call);
|
||
|
net->spare_incoming_call = NULL;
|
||
|
}
|
||
|
|
||
|
_debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
|
||
|
wait_var_event(&net->nr_outstanding_calls,
|
||
|
!atomic_read(&net->nr_outstanding_calls));
|
||
|
_debug("no outstanding calls");
|
||
|
|
||
|
kernel_sock_shutdown(net->socket, SHUT_RDWR);
|
||
|
flush_workqueue(afs_async_calls);
|
||
|
sock_release(net->socket);
|
||
|
|
||
|
_debug("dework");
|
||
|
_leave("");
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Allocate a call.
|
||
|
*/
|
||
|
static struct afs_call *afs_alloc_call(struct afs_net *net,
|
||
|
const struct afs_call_type *type,
|
||
|
gfp_t gfp)
|
||
|
{
|
||
|
struct afs_call *call;
|
||
|
int o;
|
||
|
|
||
|
call = kzalloc(sizeof(*call), gfp);
|
||
|
if (!call)
|
||
|
return NULL;
|
||
|
|
||
|
call->type = type;
|
||
|
call->net = net;
|
||
|
call->debug_id = atomic_inc_return(&rxrpc_debug_id);
|
||
|
refcount_set(&call->ref, 1);
|
||
|
INIT_WORK(&call->async_work, afs_process_async_call);
|
||
|
init_waitqueue_head(&call->waitq);
|
||
|
spin_lock_init(&call->state_lock);
|
||
|
call->iter = &call->def_iter;
|
||
|
|
||
|
o = atomic_inc_return(&net->nr_outstanding_calls);
|
||
|
trace_afs_call(call->debug_id, afs_call_trace_alloc, 1, o,
|
||
|
__builtin_return_address(0));
|
||
|
return call;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Dispose of a reference on a call.
|
||
|
*/
|
||
|
void afs_put_call(struct afs_call *call)
|
||
|
{
|
||
|
struct afs_net *net = call->net;
|
||
|
unsigned int debug_id = call->debug_id;
|
||
|
bool zero;
|
||
|
int r, o;
|
||
|
|
||
|
zero = __refcount_dec_and_test(&call->ref, &r);
|
||
|
o = atomic_read(&net->nr_outstanding_calls);
|
||
|
trace_afs_call(debug_id, afs_call_trace_put, r - 1, o,
|
||
|
__builtin_return_address(0));
|
||
|
|
||
|
if (zero) {
|
||
|
ASSERT(!work_pending(&call->async_work));
|
||
|
ASSERT(call->type->name != NULL);
|
||
|
|
||
|
if (call->rxcall) {
|
||
|
rxrpc_kernel_end_call(net->socket, call->rxcall);
|
||
|
call->rxcall = NULL;
|
||
|
}
|
||
|
if (call->type->destructor)
|
||
|
call->type->destructor(call);
|
||
|
|
||
|
afs_unuse_server_notime(call->net, call->server, afs_server_trace_put_call);
|
||
|
afs_put_addrlist(call->alist);
|
||
|
kfree(call->request);
|
||
|
|
||
|
trace_afs_call(call->debug_id, afs_call_trace_free, 0, o,
|
||
|
__builtin_return_address(0));
|
||
|
kfree(call);
|
||
|
|
||
|
o = atomic_dec_return(&net->nr_outstanding_calls);
|
||
|
if (o == 0)
|
||
|
wake_up_var(&net->nr_outstanding_calls);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static struct afs_call *afs_get_call(struct afs_call *call,
|
||
|
enum afs_call_trace why)
|
||
|
{
|
||
|
int r;
|
||
|
|
||
|
__refcount_inc(&call->ref, &r);
|
||
|
|
||
|
trace_afs_call(call->debug_id, why, r + 1,
|
||
|
atomic_read(&call->net->nr_outstanding_calls),
|
||
|
__builtin_return_address(0));
|
||
|
return call;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Queue the call for actual work.
|
||
|
*/
|
||
|
static void afs_queue_call_work(struct afs_call *call)
|
||
|
{
|
||
|
if (call->type->work) {
|
||
|
INIT_WORK(&call->work, call->type->work);
|
||
|
|
||
|
afs_get_call(call, afs_call_trace_work);
|
||
|
if (!queue_work(afs_wq, &call->work))
|
||
|
afs_put_call(call);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* allocate a call with flat request and reply buffers
|
||
|
*/
|
||
|
struct afs_call *afs_alloc_flat_call(struct afs_net *net,
|
||
|
const struct afs_call_type *type,
|
||
|
size_t request_size, size_t reply_max)
|
||
|
{
|
||
|
struct afs_call *call;
|
||
|
|
||
|
call = afs_alloc_call(net, type, GFP_NOFS);
|
||
|
if (!call)
|
||
|
goto nomem_call;
|
||
|
|
||
|
if (request_size) {
|
||
|
call->request_size = request_size;
|
||
|
call->request = kmalloc(request_size, GFP_NOFS);
|
||
|
if (!call->request)
|
||
|
goto nomem_free;
|
||
|
}
|
||
|
|
||
|
if (reply_max) {
|
||
|
call->reply_max = reply_max;
|
||
|
call->buffer = kmalloc(reply_max, GFP_NOFS);
|
||
|
if (!call->buffer)
|
||
|
goto nomem_free;
|
||
|
}
|
||
|
|
||
|
afs_extract_to_buf(call, call->reply_max);
|
||
|
call->operation_ID = type->op;
|
||
|
init_waitqueue_head(&call->waitq);
|
||
|
return call;
|
||
|
|
||
|
nomem_free:
|
||
|
afs_put_call(call);
|
||
|
nomem_call:
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* clean up a call with flat buffer
|
||
|
*/
|
||
|
void afs_flat_call_destructor(struct afs_call *call)
|
||
|
{
|
||
|
_enter("");
|
||
|
|
||
|
kfree(call->request);
|
||
|
call->request = NULL;
|
||
|
kfree(call->buffer);
|
||
|
call->buffer = NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Advance the AFS call state when the RxRPC call ends the transmit phase.
|
||
|
*/
|
||
|
static void afs_notify_end_request_tx(struct sock *sock,
|
||
|
struct rxrpc_call *rxcall,
|
||
|
unsigned long call_user_ID)
|
||
|
{
|
||
|
struct afs_call *call = (struct afs_call *)call_user_ID;
|
||
|
|
||
|
afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Initiate a call and synchronously queue up the parameters for dispatch. Any
|
||
|
* error is stored into the call struct, which the caller must check for.
|
||
|
*/
|
||
|
void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp)
|
||
|
{
|
||
|
struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index];
|
||
|
struct rxrpc_call *rxcall;
|
||
|
struct msghdr msg;
|
||
|
struct kvec iov[1];
|
||
|
size_t len;
|
||
|
s64 tx_total_len;
|
||
|
int ret;
|
||
|
|
||
|
_enter(",{%pISp},", &srx->transport);
|
||
|
|
||
|
ASSERT(call->type != NULL);
|
||
|
ASSERT(call->type->name != NULL);
|
||
|
|
||
|
_debug("____MAKE %p{%s,%x} [%d]____",
|
||
|
call, call->type->name, key_serial(call->key),
|
||
|
atomic_read(&call->net->nr_outstanding_calls));
|
||
|
|
||
|
call->addr_ix = ac->index;
|
||
|
call->alist = afs_get_addrlist(ac->alist);
|
||
|
|
||
|
/* Work out the length we're going to transmit. This is awkward for
|
||
|
* calls such as FS.StoreData where there's an extra injection of data
|
||
|
* after the initial fixed part.
|
||
|
*/
|
||
|
tx_total_len = call->request_size;
|
||
|
if (call->write_iter)
|
||
|
tx_total_len += iov_iter_count(call->write_iter);
|
||
|
|
||
|
/* If the call is going to be asynchronous, we need an extra ref for
|
||
|
* the call to hold itself so the caller need not hang on to its ref.
|
||
|
*/
|
||
|
if (call->async) {
|
||
|
afs_get_call(call, afs_call_trace_get);
|
||
|
call->drop_ref = true;
|
||
|
}
|
||
|
|
||
|
/* create a call */
|
||
|
rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
|
||
|
(unsigned long)call,
|
||
|
tx_total_len,
|
||
|
call->max_lifespan,
|
||
|
gfp,
|
||
|
(call->async ?
|
||
|
afs_wake_up_async_call :
|
||
|
afs_wake_up_call_waiter),
|
||
|
call->upgrade,
|
||
|
(call->intr ? RXRPC_PREINTERRUPTIBLE :
|
||
|
RXRPC_UNINTERRUPTIBLE),
|
||
|
call->debug_id);
|
||
|
if (IS_ERR(rxcall)) {
|
||
|
ret = PTR_ERR(rxcall);
|
||
|
call->error = ret;
|
||
|
goto error_kill_call;
|
||
|
}
|
||
|
|
||
|
call->rxcall = rxcall;
|
||
|
call->issue_time = ktime_get_real();
|
||
|
|
||
|
/* send the request */
|
||
|
iov[0].iov_base = call->request;
|
||
|
iov[0].iov_len = call->request_size;
|
||
|
|
||
|
msg.msg_name = NULL;
|
||
|
msg.msg_namelen = 0;
|
||
|
iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, iov, 1, call->request_size);
|
||
|
msg.msg_control = NULL;
|
||
|
msg.msg_controllen = 0;
|
||
|
msg.msg_flags = MSG_WAITALL | (call->write_iter ? MSG_MORE : 0);
|
||
|
|
||
|
ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
|
||
|
&msg, call->request_size,
|
||
|
afs_notify_end_request_tx);
|
||
|
if (ret < 0)
|
||
|
goto error_do_abort;
|
||
|
|
||
|
if (call->write_iter) {
|
||
|
msg.msg_iter = *call->write_iter;
|
||
|
msg.msg_flags &= ~MSG_MORE;
|
||
|
trace_afs_send_data(call, &msg);
|
||
|
|
||
|
ret = rxrpc_kernel_send_data(call->net->socket,
|
||
|
call->rxcall, &msg,
|
||
|
iov_iter_count(&msg.msg_iter),
|
||
|
afs_notify_end_request_tx);
|
||
|
*call->write_iter = msg.msg_iter;
|
||
|
|
||
|
trace_afs_sent_data(call, &msg, ret);
|
||
|
if (ret < 0)
|
||
|
goto error_do_abort;
|
||
|
}
|
||
|
|
||
|
/* Note that at this point, we may have received the reply or an abort
|
||
|
* - and an asynchronous call may already have completed.
|
||
|
*
|
||
|
* afs_wait_for_call_to_complete(call, ac)
|
||
|
* must be called to synchronously clean up.
|
||
|
*/
|
||
|
return;
|
||
|
|
||
|
error_do_abort:
|
||
|
if (ret != -ECONNABORTED) {
|
||
|
rxrpc_kernel_abort_call(call->net->socket, rxcall,
|
||
|
RX_USER_ABORT, ret,
|
||
|
afs_abort_send_data_error);
|
||
|
} else {
|
||
|
len = 0;
|
||
|
iov_iter_kvec(&msg.msg_iter, ITER_DEST, NULL, 0, 0);
|
||
|
rxrpc_kernel_recv_data(call->net->socket, rxcall,
|
||
|
&msg.msg_iter, &len, false,
|
||
|
&call->abort_code, &call->service_id);
|
||
|
ac->abort_code = call->abort_code;
|
||
|
ac->responded = true;
|
||
|
}
|
||
|
call->error = ret;
|
||
|
trace_afs_call_done(call);
|
||
|
error_kill_call:
|
||
|
if (call->type->done)
|
||
|
call->type->done(call);
|
||
|
|
||
|
/* We need to dispose of the extra ref we grabbed for an async call.
|
||
|
* The call, however, might be queued on afs_async_calls and we need to
|
||
|
* make sure we don't get any more notifications that might requeue it.
|
||
|
*/
|
||
|
if (call->rxcall) {
|
||
|
rxrpc_kernel_end_call(call->net->socket, call->rxcall);
|
||
|
call->rxcall = NULL;
|
||
|
}
|
||
|
if (call->async) {
|
||
|
if (cancel_work_sync(&call->async_work))
|
||
|
afs_put_call(call);
|
||
|
afs_put_call(call);
|
||
|
}
|
||
|
|
||
|
ac->error = ret;
|
||
|
call->state = AFS_CALL_COMPLETE;
|
||
|
_leave(" = %d", ret);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Log remote abort codes that indicate that we have a protocol disagreement
|
||
|
* with the server.
|
||
|
*/
|
||
|
static void afs_log_error(struct afs_call *call, s32 remote_abort)
|
||
|
{
|
||
|
static int max = 0;
|
||
|
const char *msg;
|
||
|
int m;
|
||
|
|
||
|
switch (remote_abort) {
|
||
|
case RX_EOF: msg = "unexpected EOF"; break;
|
||
|
case RXGEN_CC_MARSHAL: msg = "client marshalling"; break;
|
||
|
case RXGEN_CC_UNMARSHAL: msg = "client unmarshalling"; break;
|
||
|
case RXGEN_SS_MARSHAL: msg = "server marshalling"; break;
|
||
|
case RXGEN_SS_UNMARSHAL: msg = "server unmarshalling"; break;
|
||
|
case RXGEN_DECODE: msg = "opcode decode"; break;
|
||
|
case RXGEN_SS_XDRFREE: msg = "server XDR cleanup"; break;
|
||
|
case RXGEN_CC_XDRFREE: msg = "client XDR cleanup"; break;
|
||
|
case -32: msg = "insufficient data"; break;
|
||
|
default:
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
m = max;
|
||
|
if (m < 3) {
|
||
|
max = m + 1;
|
||
|
pr_notice("kAFS: Peer reported %s failure on %s [%pISp]\n",
|
||
|
msg, call->type->name,
|
||
|
&call->alist->addrs[call->addr_ix].transport);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* deliver messages to a call
|
||
|
*/
|
||
|
static void afs_deliver_to_call(struct afs_call *call)
|
||
|
{
|
||
|
enum afs_call_state state;
|
||
|
size_t len;
|
||
|
u32 abort_code, remote_abort = 0;
|
||
|
int ret;
|
||
|
|
||
|
_enter("%s", call->type->name);
|
||
|
|
||
|
while (state = READ_ONCE(call->state),
|
||
|
state == AFS_CALL_CL_AWAIT_REPLY ||
|
||
|
state == AFS_CALL_SV_AWAIT_OP_ID ||
|
||
|
state == AFS_CALL_SV_AWAIT_REQUEST ||
|
||
|
state == AFS_CALL_SV_AWAIT_ACK
|
||
|
) {
|
||
|
if (state == AFS_CALL_SV_AWAIT_ACK) {
|
||
|
len = 0;
|
||
|
iov_iter_kvec(&call->def_iter, ITER_DEST, NULL, 0, 0);
|
||
|
ret = rxrpc_kernel_recv_data(call->net->socket,
|
||
|
call->rxcall, &call->def_iter,
|
||
|
&len, false, &remote_abort,
|
||
|
&call->service_id);
|
||
|
trace_afs_receive_data(call, &call->def_iter, false, ret);
|
||
|
|
||
|
if (ret == -EINPROGRESS || ret == -EAGAIN)
|
||
|
return;
|
||
|
if (ret < 0 || ret == 1) {
|
||
|
if (ret == 1)
|
||
|
ret = 0;
|
||
|
goto call_complete;
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
ret = call->type->deliver(call);
|
||
|
state = READ_ONCE(call->state);
|
||
|
if (ret == 0 && call->unmarshalling_error)
|
||
|
ret = -EBADMSG;
|
||
|
switch (ret) {
|
||
|
case 0:
|
||
|
afs_queue_call_work(call);
|
||
|
if (state == AFS_CALL_CL_PROC_REPLY) {
|
||
|
if (call->op)
|
||
|
set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
|
||
|
&call->op->server->flags);
|
||
|
goto call_complete;
|
||
|
}
|
||
|
ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
|
||
|
goto done;
|
||
|
case -EINPROGRESS:
|
||
|
case -EAGAIN:
|
||
|
goto out;
|
||
|
case -ECONNABORTED:
|
||
|
ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
|
||
|
afs_log_error(call, call->abort_code);
|
||
|
goto done;
|
||
|
case -ENOTSUPP:
|
||
|
abort_code = RXGEN_OPCODE;
|
||
|
rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
|
||
|
abort_code, ret,
|
||
|
afs_abort_op_not_supported);
|
||
|
goto local_abort;
|
||
|
case -EIO:
|
||
|
pr_err("kAFS: Call %u in bad state %u\n",
|
||
|
call->debug_id, state);
|
||
|
fallthrough;
|
||
|
case -ENODATA:
|
||
|
case -EBADMSG:
|
||
|
case -EMSGSIZE:
|
||
|
case -ENOMEM:
|
||
|
case -EFAULT:
|
||
|
abort_code = RXGEN_CC_UNMARSHAL;
|
||
|
if (state != AFS_CALL_CL_AWAIT_REPLY)
|
||
|
abort_code = RXGEN_SS_UNMARSHAL;
|
||
|
rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
|
||
|
abort_code, ret,
|
||
|
afs_abort_unmarshal_error);
|
||
|
goto local_abort;
|
||
|
default:
|
||
|
abort_code = RX_CALL_DEAD;
|
||
|
rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
|
||
|
abort_code, ret,
|
||
|
afs_abort_general_error);
|
||
|
goto local_abort;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
done:
|
||
|
if (call->type->done)
|
||
|
call->type->done(call);
|
||
|
out:
|
||
|
_leave("");
|
||
|
return;
|
||
|
|
||
|
local_abort:
|
||
|
abort_code = 0;
|
||
|
call_complete:
|
||
|
afs_set_call_complete(call, ret, remote_abort);
|
||
|
state = AFS_CALL_COMPLETE;
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Wait synchronously for a call to complete and clean up the call struct.
|
||
|
*/
|
||
|
long afs_wait_for_call_to_complete(struct afs_call *call,
|
||
|
struct afs_addr_cursor *ac)
|
||
|
{
|
||
|
long ret;
|
||
|
bool rxrpc_complete = false;
|
||
|
|
||
|
DECLARE_WAITQUEUE(myself, current);
|
||
|
|
||
|
_enter("");
|
||
|
|
||
|
ret = call->error;
|
||
|
if (ret < 0)
|
||
|
goto out;
|
||
|
|
||
|
add_wait_queue(&call->waitq, &myself);
|
||
|
for (;;) {
|
||
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
||
|
|
||
|
/* deliver any messages that are in the queue */
|
||
|
if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
|
||
|
call->need_attention) {
|
||
|
call->need_attention = false;
|
||
|
__set_current_state(TASK_RUNNING);
|
||
|
afs_deliver_to_call(call);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (afs_check_call_state(call, AFS_CALL_COMPLETE))
|
||
|
break;
|
||
|
|
||
|
if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall)) {
|
||
|
/* rxrpc terminated the call. */
|
||
|
rxrpc_complete = true;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
schedule();
|
||
|
}
|
||
|
|
||
|
remove_wait_queue(&call->waitq, &myself);
|
||
|
__set_current_state(TASK_RUNNING);
|
||
|
|
||
|
if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
|
||
|
if (rxrpc_complete) {
|
||
|
afs_set_call_complete(call, call->error, call->abort_code);
|
||
|
} else {
|
||
|
/* Kill off the call if it's still live. */
|
||
|
_debug("call interrupted");
|
||
|
if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
|
||
|
RX_USER_ABORT, -EINTR,
|
||
|
afs_abort_interrupted))
|
||
|
afs_set_call_complete(call, -EINTR, 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
spin_lock_bh(&call->state_lock);
|
||
|
ac->abort_code = call->abort_code;
|
||
|
ac->error = call->error;
|
||
|
spin_unlock_bh(&call->state_lock);
|
||
|
|
||
|
ret = ac->error;
|
||
|
switch (ret) {
|
||
|
case 0:
|
||
|
ret = call->ret0;
|
||
|
call->ret0 = 0;
|
||
|
|
||
|
fallthrough;
|
||
|
case -ECONNABORTED:
|
||
|
ac->responded = true;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
_debug("call complete");
|
||
|
afs_put_call(call);
|
||
|
_leave(" = %p", (void *)ret);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* wake up a waiting call
|
||
|
*/
|
||
|
static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
|
||
|
unsigned long call_user_ID)
|
||
|
{
|
||
|
struct afs_call *call = (struct afs_call *)call_user_ID;
|
||
|
|
||
|
call->need_attention = true;
|
||
|
wake_up(&call->waitq);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* wake up an asynchronous call
|
||
|
*/
|
||
|
static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
|
||
|
unsigned long call_user_ID)
|
||
|
{
|
||
|
struct afs_call *call = (struct afs_call *)call_user_ID;
|
||
|
int r;
|
||
|
|
||
|
trace_afs_notify_call(rxcall, call);
|
||
|
call->need_attention = true;
|
||
|
|
||
|
if (__refcount_inc_not_zero(&call->ref, &r)) {
|
||
|
trace_afs_call(call->debug_id, afs_call_trace_wake, r + 1,
|
||
|
atomic_read(&call->net->nr_outstanding_calls),
|
||
|
__builtin_return_address(0));
|
||
|
|
||
|
if (!queue_work(afs_async_calls, &call->async_work))
|
||
|
afs_put_call(call);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Perform I/O processing on an asynchronous call. The work item carries a ref
|
||
|
* to the call struct that we either need to release or to pass on.
|
||
|
*/
|
||
|
static void afs_process_async_call(struct work_struct *work)
|
||
|
{
|
||
|
struct afs_call *call = container_of(work, struct afs_call, async_work);
|
||
|
|
||
|
_enter("");
|
||
|
|
||
|
if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
|
||
|
call->need_attention = false;
|
||
|
afs_deliver_to_call(call);
|
||
|
}
|
||
|
|
||
|
afs_put_call(call);
|
||
|
_leave("");
|
||
|
}
|
||
|
|
||
|
static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
|
||
|
{
|
||
|
struct afs_call *call = (struct afs_call *)user_call_ID;
|
||
|
|
||
|
call->rxcall = rxcall;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Charge the incoming call preallocation.
|
||
|
*/
|
||
|
void afs_charge_preallocation(struct work_struct *work)
|
||
|
{
|
||
|
struct afs_net *net =
|
||
|
container_of(work, struct afs_net, charge_preallocation_work);
|
||
|
struct afs_call *call = net->spare_incoming_call;
|
||
|
|
||
|
for (;;) {
|
||
|
if (!call) {
|
||
|
call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
|
||
|
if (!call)
|
||
|
break;
|
||
|
|
||
|
call->drop_ref = true;
|
||
|
call->async = true;
|
||
|
call->state = AFS_CALL_SV_AWAIT_OP_ID;
|
||
|
init_waitqueue_head(&call->waitq);
|
||
|
afs_extract_to_tmp(call);
|
||
|
}
|
||
|
|
||
|
if (rxrpc_kernel_charge_accept(net->socket,
|
||
|
afs_wake_up_async_call,
|
||
|
afs_rx_attach,
|
||
|
(unsigned long)call,
|
||
|
GFP_KERNEL,
|
||
|
call->debug_id) < 0)
|
||
|
break;
|
||
|
call = NULL;
|
||
|
}
|
||
|
net->spare_incoming_call = call;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Discard a preallocated call when a socket is shut down.
|
||
|
*/
|
||
|
static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
|
||
|
unsigned long user_call_ID)
|
||
|
{
|
||
|
struct afs_call *call = (struct afs_call *)user_call_ID;
|
||
|
|
||
|
call->rxcall = NULL;
|
||
|
afs_put_call(call);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Notification of an incoming call.
|
||
|
*/
|
||
|
static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
|
||
|
unsigned long user_call_ID)
|
||
|
{
|
||
|
struct afs_net *net = afs_sock2net(sk);
|
||
|
|
||
|
queue_work(afs_wq, &net->charge_preallocation_work);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Grab the operation ID from an incoming cache manager call. The socket
|
||
|
* buffer is discarded on error or if we don't yet have sufficient data.
|
||
|
*/
|
||
|
static int afs_deliver_cm_op_id(struct afs_call *call)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
_enter("{%zu}", iov_iter_count(call->iter));
|
||
|
|
||
|
/* the operation ID forms the first four bytes of the request data */
|
||
|
ret = afs_extract_data(call, true);
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
|
||
|
call->operation_ID = ntohl(call->tmp);
|
||
|
afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
|
||
|
|
||
|
/* ask the cache manager to route the call (it'll change the call type
|
||
|
* if successful) */
|
||
|
if (!afs_cm_incoming_call(call))
|
||
|
return -ENOTSUPP;
|
||
|
|
||
|
trace_afs_cb_call(call);
|
||
|
|
||
|
/* pass responsibility for the remainer of this message off to the
|
||
|
* cache manager op */
|
||
|
return call->type->deliver(call);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Advance the AFS call state when an RxRPC service call ends the transmit
|
||
|
* phase.
|
||
|
*/
|
||
|
static void afs_notify_end_reply_tx(struct sock *sock,
|
||
|
struct rxrpc_call *rxcall,
|
||
|
unsigned long call_user_ID)
|
||
|
{
|
||
|
struct afs_call *call = (struct afs_call *)call_user_ID;
|
||
|
|
||
|
afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* send an empty reply
|
||
|
*/
|
||
|
void afs_send_empty_reply(struct afs_call *call)
|
||
|
{
|
||
|
struct afs_net *net = call->net;
|
||
|
struct msghdr msg;
|
||
|
|
||
|
_enter("");
|
||
|
|
||
|
rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
|
||
|
|
||
|
msg.msg_name = NULL;
|
||
|
msg.msg_namelen = 0;
|
||
|
iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, NULL, 0, 0);
|
||
|
msg.msg_control = NULL;
|
||
|
msg.msg_controllen = 0;
|
||
|
msg.msg_flags = 0;
|
||
|
|
||
|
switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
|
||
|
afs_notify_end_reply_tx)) {
|
||
|
case 0:
|
||
|
_leave(" [replied]");
|
||
|
return;
|
||
|
|
||
|
case -ENOMEM:
|
||
|
_debug("oom");
|
||
|
rxrpc_kernel_abort_call(net->socket, call->rxcall,
|
||
|
RXGEN_SS_MARSHAL, -ENOMEM,
|
||
|
afs_abort_oom);
|
||
|
fallthrough;
|
||
|
default:
|
||
|
_leave(" [error]");
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* send a simple reply
|
||
|
*/
|
||
|
void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
|
||
|
{
|
||
|
struct afs_net *net = call->net;
|
||
|
struct msghdr msg;
|
||
|
struct kvec iov[1];
|
||
|
int n;
|
||
|
|
||
|
_enter("");
|
||
|
|
||
|
rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
|
||
|
|
||
|
iov[0].iov_base = (void *) buf;
|
||
|
iov[0].iov_len = len;
|
||
|
msg.msg_name = NULL;
|
||
|
msg.msg_namelen = 0;
|
||
|
iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, iov, 1, len);
|
||
|
msg.msg_control = NULL;
|
||
|
msg.msg_controllen = 0;
|
||
|
msg.msg_flags = 0;
|
||
|
|
||
|
n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
|
||
|
afs_notify_end_reply_tx);
|
||
|
if (n >= 0) {
|
||
|
/* Success */
|
||
|
_leave(" [replied]");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (n == -ENOMEM) {
|
||
|
_debug("oom");
|
||
|
rxrpc_kernel_abort_call(net->socket, call->rxcall,
|
||
|
RXGEN_SS_MARSHAL, -ENOMEM,
|
||
|
afs_abort_oom);
|
||
|
}
|
||
|
_leave(" [error]");
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Extract a piece of data from the received data socket buffers.
|
||
|
*/
|
||
|
int afs_extract_data(struct afs_call *call, bool want_more)
|
||
|
{
|
||
|
struct afs_net *net = call->net;
|
||
|
struct iov_iter *iter = call->iter;
|
||
|
enum afs_call_state state;
|
||
|
u32 remote_abort = 0;
|
||
|
int ret;
|
||
|
|
||
|
_enter("{%s,%zu,%zu},%d",
|
||
|
call->type->name, call->iov_len, iov_iter_count(iter), want_more);
|
||
|
|
||
|
ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
|
||
|
&call->iov_len, want_more, &remote_abort,
|
||
|
&call->service_id);
|
||
|
trace_afs_receive_data(call, call->iter, want_more, ret);
|
||
|
if (ret == 0 || ret == -EAGAIN)
|
||
|
return ret;
|
||
|
|
||
|
state = READ_ONCE(call->state);
|
||
|
if (ret == 1) {
|
||
|
switch (state) {
|
||
|
case AFS_CALL_CL_AWAIT_REPLY:
|
||
|
afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
|
||
|
break;
|
||
|
case AFS_CALL_SV_AWAIT_REQUEST:
|
||
|
afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
|
||
|
break;
|
||
|
case AFS_CALL_COMPLETE:
|
||
|
kdebug("prem complete %d", call->error);
|
||
|
return afs_io_error(call, afs_io_error_extract);
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
afs_set_call_complete(call, ret, remote_abort);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Log protocol error production.
|
||
|
*/
|
||
|
noinline int afs_protocol_error(struct afs_call *call,
|
||
|
enum afs_eproto_cause cause)
|
||
|
{
|
||
|
trace_afs_protocol_error(call, cause);
|
||
|
if (call)
|
||
|
call->unmarshalling_error = true;
|
||
|
return -EBADMSG;
|
||
|
}
|