linux-zen-server/tools/testing/selftests/net/srv6_hencap_red_l3vpn_test.sh

880 lines
23 KiB
Bash
Raw Permalink Normal View History

2023-08-30 17:53:23 +02:00
#!/bin/bash
# SPDX-License-Identifier: GPL-2.0
#
# author: Andrea Mayer <andrea.mayer@uniroma2.it>
#
# This script is designed for testing the SRv6 H.Encaps.Red behavior.
#
# Below is depicted the IPv6 network of an operator which offers advanced
# IPv4/IPv6 VPN services to hosts, enabling them to communicate with each
# other.
# In this example, hosts hs-1 and hs-2 are connected through an IPv4/IPv6 VPN
# service, while hs-3 and hs-4 are connected using an IPv6 only VPN.
#
# Routers rt-1,rt-2,rt-3 and rt-4 implement IPv4/IPv6 L3 VPN services
# leveraging the SRv6 architecture. The key components for such VPNs are:
#
# i) The SRv6 H.Encaps.Red behavior applies SRv6 Policies on traffic received
# by connected hosts, initiating the VPN tunnel. Such a behavior is an
# optimization of the SRv6 H.Encap aiming to reduce the length of the SID
# List carried in the pushed SRH. Specifically, the H.Encaps.Red removes
# the first SID contained in the SID List (i.e. SRv6 Policy) by storing it
# into the IPv6 Destination Address. When a SRv6 Policy is made of only one
# SID, the SRv6 H.Encaps.Red behavior omits the SRH at all and pushes that
# SID directly into the IPv6 DA;
#
# ii) The SRv6 End behavior advances the active SID in the SID List carried by
# the SRH;
#
# iii) The SRv6 End.DT46 behavior is used for removing the SRv6 Policy and,
# thus, it terminates the VPN tunnel. Such a behavior is capable of
# handling, at the same time, both tunneled IPv4 and IPv6 traffic.
#
#
# cafe::1 cafe::2
# 10.0.0.1 10.0.0.2
# +--------+ +--------+
# | | | |
# | hs-1 | | hs-2 |
# | | | |
# +---+----+ +--- +---+
# cafe::/64 | | cafe::/64
# 10.0.0.0/24 | | 10.0.0.0/24
# +---+----+ +----+---+
# | | fcf0:0:1:2::/64 | |
# | rt-1 +-------------------+ rt-2 |
# | | | |
# +---+----+ +----+---+
# | . . |
# | fcf0:0:1:3::/64 . |
# | . . |
# | . . |
# fcf0:0:1:4::/64 | . | fcf0:0:2:3::/64
# | . . |
# | . . |
# | fcf0:0:2:4::/64 . |
# | . . |
# +---+----+ +----+---+
# | | | |
# | rt-4 +-------------------+ rt-3 |
# | | fcf0:0:3:4::/64 | |
# +---+----+ +----+---+
# cafe::/64 | | cafe::/64
# 10.0.0.0/24 | | 10.0.0.0/24
# +---+----+ +--- +---+
# | | | |
# | hs-4 | | hs-3 |
# | | | |
# +--------+ +--------+
# cafe::4 cafe::3
# 10.0.0.4 10.0.0.3
#
#
# Every fcf0:0:x:y::/64 network interconnects the SRv6 routers rt-x with rt-y
# in the IPv6 operator network.
#
# Local SID table
# ===============
#
# Each SRv6 router is configured with a Local SID table in which SIDs are
# stored. Considering the given SRv6 router rt-x, at least two SIDs are
# configured in the Local SID table:
#
# Local SID table for SRv6 router rt-x
# +----------------------------------------------------------+
# |fcff:x::e is associated with the SRv6 End behavior |
# |fcff:x::d46 is associated with the SRv6 End.DT46 behavior |
# +----------------------------------------------------------+
#
# The fcff::/16 prefix is reserved by the operator for implementing SRv6 VPN
# services. Reachability of SIDs is ensured by proper configuration of the IPv6
# operator's network and SRv6 routers.
#
# # SRv6 Policies
# ===============
#
# An SRv6 ingress router applies SRv6 policies to the traffic received from a
# connected host. SRv6 policy enforcement consists of encapsulating the
# received traffic into a new IPv6 packet with a given SID List contained in
# the SRH.
#
# IPv4/IPv6 VPN between hs-1 and hs-2
# -----------------------------------
#
# Hosts hs-1 and hs-2 are connected using dedicated IPv4/IPv6 VPNs.
# Specifically, packets generated from hs-1 and directed towards hs-2 are
# handled by rt-1 which applies the following SRv6 Policies:
#
# i.a) IPv6 traffic, SID List=fcff:3::e,fcff:4::e,fcff:2::d46
# ii.a) IPv4 traffic, SID List=fcff:2::d46
#
# Policy (i.a) steers tunneled IPv6 traffic through SRv6 routers
# rt-3,rt-4,rt-2. Instead, Policy (ii.a) steers tunneled IPv4 traffic through
# rt-2.
# The H.Encaps.Red reduces the SID List (i.a) carried in SRH by removing the
# first SID (fcff:3::e) and pushing it into the IPv6 DA. In case of IPv4
# traffic, the H.Encaps.Red omits the presence of SRH at all, since the SID
# List (ii.a) consists of only one SID that can be stored directly in the IPv6
# DA.
#
# On the reverse path (i.e. from hs-2 to hs-1), rt-2 applies the following
# policies:
#
# i.b) IPv6 traffic, SID List=fcff:1::d46
# ii.b) IPv4 traffic, SID List=fcff:4::e,fcff:3::e,fcff:1::d46
#
# Policy (i.b) steers tunneled IPv6 traffic through the SRv6 router rt-1.
# Conversely, Policy (ii.b) steers tunneled IPv4 traffic through SRv6 routers
# rt-4,rt-3,rt-1.
# The H.Encaps.Red omits the SRH at all in case of (i.b) by pushing the single
# SID (fcff::1::d46) inside the IPv6 DA.
# The H.Encaps.Red reduces the SID List (ii.b) in the SRH by removing the first
# SID (fcff:4::e) and pushing it into the IPv6 DA.
#
# In summary:
# hs-1->hs-2 |IPv6 DA=fcff:3::e|SRH SIDs=fcff:4::e,fcff:2::d46|IPv6|...| (i.a)
# hs-1->hs-2 |IPv6 DA=fcff:2::d46|IPv4|...| (ii.a)
#
# hs-2->hs-1 |IPv6 DA=fcff:1::d46|IPv6|...| (i.b)
# hs-2->hs-1 |IPv6 DA=fcff:4::e|SRH SIDs=fcff:3::e,fcff:1::d46|IPv4|...| (ii.b)
#
#
# IPv6 VPN between hs-3 and hs-4
# ------------------------------
#
# Hosts hs-3 and hs-4 are connected using a dedicated IPv6 only VPN.
# Specifically, packets generated from hs-3 and directed towards hs-4 are
# handled by rt-3 which applies the following SRv6 Policy:
#
# i.c) IPv6 traffic, SID List=fcff:2::e,fcff:4::d46
#
# Policy (i.c) steers tunneled IPv6 traffic through SRv6 routers rt-2,rt-4.
# The H.Encaps.Red reduces the SID List (i.c) carried in SRH by pushing the
# first SID (fcff:2::e) in the IPv6 DA.
#
# On the reverse path (i.e. from hs-4 to hs-3) the router rt-4 applies the
# following SRv6 Policy:
#
# i.d) IPv6 traffic, SID List=fcff:1::e,fcff:3::d46.
#
# Policy (i.d) steers tunneled IPv6 traffic through SRv6 routers rt-1,rt-3.
# The H.Encaps.Red reduces the SID List (i.d) carried in SRH by pushing the
# first SID (fcff:1::e) in the IPv6 DA.
#
# In summary:
# hs-3->hs-4 |IPv6 DA=fcff:2::e|SRH SIDs=fcff:4::d46|IPv6|...| (i.c)
# hs-4->hs-3 |IPv6 DA=fcff:1::e|SRH SIDs=fcff:3::d46|IPv6|...| (i.d)
#
# Kselftest framework requirement - SKIP code is 4.
readonly ksft_skip=4
readonly RDMSUFF="$(mktemp -u XXXXXXXX)"
readonly VRF_TID=100
readonly VRF_DEVNAME="vrf-${VRF_TID}"
readonly RT2HS_DEVNAME="veth-t${VRF_TID}"
readonly LOCALSID_TABLE_ID=90
readonly IPv6_RT_NETWORK=fcf0:0
readonly IPv6_HS_NETWORK=cafe
readonly IPv4_HS_NETWORK=10.0.0
readonly VPN_LOCATOR_SERVICE=fcff
readonly END_FUNC=000e
readonly DT46_FUNC=0d46
PING_TIMEOUT_SEC=4
PAUSE_ON_FAIL=${PAUSE_ON_FAIL:=no}
# IDs of routers and hosts are initialized during the setup of the testing
# network
ROUTERS=''
HOSTS=''
SETUP_ERR=1
ret=${ksft_skip}
nsuccess=0
nfail=0
log_test()
{
local rc="$1"
local expected="$2"
local msg="$3"
if [ "${rc}" -eq "${expected}" ]; then
nsuccess=$((nsuccess+1))
printf "\n TEST: %-60s [ OK ]\n" "${msg}"
else
ret=1
nfail=$((nfail+1))
printf "\n TEST: %-60s [FAIL]\n" "${msg}"
if [ "${PAUSE_ON_FAIL}" = "yes" ]; then
echo
echo "hit enter to continue, 'q' to quit"
read a
[ "$a" = "q" ] && exit 1
fi
fi
}
print_log_test_results()
{
printf "\nTests passed: %3d\n" "${nsuccess}"
printf "Tests failed: %3d\n" "${nfail}"
# when a test fails, the value of 'ret' is set to 1 (error code).
# Conversely, when all tests are passed successfully, the 'ret' value
# is set to 0 (success code).
if [ "${ret}" -ne 1 ]; then
ret=0
fi
}
log_section()
{
echo
echo "################################################################################"
echo "TEST SECTION: $*"
echo "################################################################################"
}
test_command_or_ksft_skip()
{
local cmd="$1"
if [ ! -x "$(command -v "${cmd}")" ]; then
echo "SKIP: Could not run test without \"${cmd}\" tool";
exit "${ksft_skip}"
fi
}
get_nodename()
{
local name="$1"
echo "${name}-${RDMSUFF}"
}
get_rtname()
{
local rtid="$1"
get_nodename "rt-${rtid}"
}
get_hsname()
{
local hsid="$1"
get_nodename "hs-${hsid}"
}
__create_namespace()
{
local name="$1"
ip netns add "${name}"
}
create_router()
{
local rtid="$1"
local nsname
nsname="$(get_rtname "${rtid}")"
__create_namespace "${nsname}"
}
create_host()
{
local hsid="$1"
local nsname
nsname="$(get_hsname "${hsid}")"
__create_namespace "${nsname}"
}
cleanup()
{
local nsname
local i
# destroy routers
for i in ${ROUTERS}; do
nsname="$(get_rtname "${i}")"
ip netns del "${nsname}" &>/dev/null || true
done
# destroy hosts
for i in ${HOSTS}; do
nsname="$(get_hsname "${i}")"
ip netns del "${nsname}" &>/dev/null || true
done
# check whether the setup phase was completed successfully or not. In
# case of an error during the setup phase of the testing environment,
# the selftest is considered as "skipped".
if [ "${SETUP_ERR}" -ne 0 ]; then
echo "SKIP: Setting up the testing environment failed"
exit "${ksft_skip}"
fi
exit "${ret}"
}
add_link_rt_pairs()
{
local rt="$1"
local rt_neighs="$2"
local neigh
local nsname
local neigh_nsname
nsname="$(get_rtname "${rt}")"
for neigh in ${rt_neighs}; do
neigh_nsname="$(get_rtname "${neigh}")"
ip link add "veth-rt-${rt}-${neigh}" netns "${nsname}" \
type veth peer name "veth-rt-${neigh}-${rt}" \
netns "${neigh_nsname}"
done
}
get_network_prefix()
{
local rt="$1"
local neigh="$2"
local p="${rt}"
local q="${neigh}"
if [ "${p}" -gt "${q}" ]; then
p="${q}"; q="${rt}"
fi
echo "${IPv6_RT_NETWORK}:${p}:${q}"
}
# Setup the basic networking for the routers
setup_rt_networking()
{
local rt="$1"
local rt_neighs="$2"
local nsname
local net_prefix
local devname
local neigh
nsname="$(get_rtname "${rt}")"
for neigh in ${rt_neighs}; do
devname="veth-rt-${rt}-${neigh}"
net_prefix="$(get_network_prefix "${rt}" "${neigh}")"
ip -netns "${nsname}" addr \
add "${net_prefix}::${rt}/64" dev "${devname}" nodad
ip -netns "${nsname}" link set "${devname}" up
done
ip -netns "${nsname}" link set lo up
ip netns exec "${nsname}" sysctl -wq net.ipv6.conf.all.accept_dad=0
ip netns exec "${nsname}" sysctl -wq net.ipv6.conf.default.accept_dad=0
ip netns exec "${nsname}" sysctl -wq net.ipv6.conf.all.forwarding=1
ip netns exec "${nsname}" sysctl -wq net.ipv4.conf.all.rp_filter=0
ip netns exec "${nsname}" sysctl -wq net.ipv4.conf.default.rp_filter=0
ip netns exec "${nsname}" sysctl -wq net.ipv4.ip_forward=1
}
# Setup local SIDs for an SRv6 router
setup_rt_local_sids()
{
local rt="$1"
local rt_neighs="$2"
local net_prefix
local devname
local nsname
local neigh
nsname="$(get_rtname "${rt}")"
for neigh in ${rt_neighs}; do
devname="veth-rt-${rt}-${neigh}"
net_prefix="$(get_network_prefix "${rt}" "${neigh}")"
# set underlay network routes for SIDs reachability
ip -netns "${nsname}" -6 route \
add "${VPN_LOCATOR_SERVICE}:${neigh}::/32" \
table "${LOCALSID_TABLE_ID}" \
via "${net_prefix}::${neigh}" dev "${devname}"
done
# Local End behavior (note that "dev" is dummy and the VRF is chosen
# for the sake of simplicity).
ip -netns "${nsname}" -6 route \
add "${VPN_LOCATOR_SERVICE}:${rt}::${END_FUNC}" \
table "${LOCALSID_TABLE_ID}" \
encap seg6local action End dev "${VRF_DEVNAME}"
# Local End.DT46 behavior
ip -netns "${nsname}" -6 route \
add "${VPN_LOCATOR_SERVICE}:${rt}::${DT46_FUNC}" \
table "${LOCALSID_TABLE_ID}" \
encap seg6local action End.DT46 vrftable "${VRF_TID}" \
dev "${VRF_DEVNAME}"
# all SIDs for VPNs start with a common locator. Routes and SRv6
# Endpoint behavior instaces are grouped together in the 'localsid'
# table.
ip -netns "${nsname}" -6 rule \
add to "${VPN_LOCATOR_SERVICE}::/16" \
lookup "${LOCALSID_TABLE_ID}" prio 999
# set default routes to unreachable for both ipv4 and ipv6
ip -netns "${nsname}" -6 route \
add unreachable default metric 4278198272 \
vrf "${VRF_DEVNAME}"
ip -netns "${nsname}" -4 route \
add unreachable default metric 4278198272 \
vrf "${VRF_DEVNAME}"
}
# build and install the SRv6 policy into the ingress SRv6 router.
# args:
# $1 - destination host (i.e. cafe::x host)
# $2 - SRv6 router configured for enforcing the SRv6 Policy
# $3 - SRv6 routers configured for steering traffic (End behaviors)
# $4 - SRv6 router configured for removing the SRv6 Policy (router connected
# to the destination host)
# $5 - encap mode (full or red)
# $6 - traffic type (IPv6 or IPv4)
__setup_rt_policy()
{
local dst="$1"
local encap_rt="$2"
local end_rts="$3"
local dec_rt="$4"
local mode="$5"
local traffic="$6"
local nsname
local policy=''
local n
nsname="$(get_rtname "${encap_rt}")"
for n in ${end_rts}; do
policy="${policy}${VPN_LOCATOR_SERVICE}:${n}::${END_FUNC},"
done
policy="${policy}${VPN_LOCATOR_SERVICE}:${dec_rt}::${DT46_FUNC}"
# add SRv6 policy to incoming traffic sent by connected hosts
if [ "${traffic}" -eq 6 ]; then
ip -netns "${nsname}" -6 route \
add "${IPv6_HS_NETWORK}::${dst}" vrf "${VRF_DEVNAME}" \
encap seg6 mode "${mode}" segs "${policy}" \
dev "${VRF_DEVNAME}"
ip -netns "${nsname}" -6 neigh \
add proxy "${IPv6_HS_NETWORK}::${dst}" \
dev "${RT2HS_DEVNAME}"
else
# "dev" must be different from the one where the packet is
# received, otherwise the proxy arp does not work.
ip -netns "${nsname}" -4 route \
add "${IPv4_HS_NETWORK}.${dst}" vrf "${VRF_DEVNAME}" \
encap seg6 mode "${mode}" segs "${policy}" \
dev "${VRF_DEVNAME}"
fi
}
# see __setup_rt_policy
setup_rt_policy_ipv6()
{
__setup_rt_policy "$1" "$2" "$3" "$4" "$5" 6
}
#see __setup_rt_policy
setup_rt_policy_ipv4()
{
__setup_rt_policy "$1" "$2" "$3" "$4" "$5" 4
}
setup_hs()
{
local hs="$1"
local rt="$2"
local hsname
local rtname
hsname="$(get_hsname "${hs}")"
rtname="$(get_rtname "${rt}")"
ip netns exec "${hsname}" sysctl -wq net.ipv6.conf.all.accept_dad=0
ip netns exec "${hsname}" sysctl -wq net.ipv6.conf.default.accept_dad=0
ip -netns "${hsname}" link add veth0 type veth \
peer name "${RT2HS_DEVNAME}" netns "${rtname}"
ip -netns "${hsname}" addr \
add "${IPv6_HS_NETWORK}::${hs}/64" dev veth0 nodad
ip -netns "${hsname}" addr add "${IPv4_HS_NETWORK}.${hs}/24" dev veth0
ip -netns "${hsname}" link set veth0 up
ip -netns "${hsname}" link set lo up
# configure the VRF on the router which is directly connected to the
# source host.
ip -netns "${rtname}" link \
add "${VRF_DEVNAME}" type vrf table "${VRF_TID}"
ip -netns "${rtname}" link set "${VRF_DEVNAME}" up
# enslave the veth interface connecting the router with the host to the
# VRF in the access router
ip -netns "${rtname}" link \
set "${RT2HS_DEVNAME}" master "${VRF_DEVNAME}"
ip -netns "${rtname}" addr \
add "${IPv6_HS_NETWORK}::254/64" dev "${RT2HS_DEVNAME}" nodad
ip -netns "${rtname}" addr \
add "${IPv4_HS_NETWORK}.254/24" dev "${RT2HS_DEVNAME}"
ip -netns "${rtname}" link set "${RT2HS_DEVNAME}" up
ip netns exec "${rtname}" \
sysctl -wq net.ipv6.conf."${RT2HS_DEVNAME}".proxy_ndp=1
ip netns exec "${rtname}" \
sysctl -wq net.ipv4.conf."${RT2HS_DEVNAME}".proxy_arp=1
# disable the rp_filter otherwise the kernel gets confused about how
# to route decap ipv4 packets.
ip netns exec "${rtname}" \
sysctl -wq net.ipv4.conf."${RT2HS_DEVNAME}".rp_filter=0
ip netns exec "${rtname}" sh -c "echo 1 > /proc/sys/net/vrf/strict_mode"
}
setup()
{
local i
# create routers
ROUTERS="1 2 3 4"; readonly ROUTERS
for i in ${ROUTERS}; do
create_router "${i}"
done
# create hosts
HOSTS="1 2 3 4"; readonly HOSTS
for i in ${HOSTS}; do
create_host "${i}"
done
# set up the links for connecting routers
add_link_rt_pairs 1 "2 3 4"
add_link_rt_pairs 2 "3 4"
add_link_rt_pairs 3 "4"
# set up the basic connectivity of routers and routes required for
# reachability of SIDs.
setup_rt_networking 1 "2 3 4"
setup_rt_networking 2 "1 3 4"
setup_rt_networking 3 "1 2 4"
setup_rt_networking 4 "1 2 3"
# set up the hosts connected to routers
setup_hs 1 1
setup_hs 2 2
setup_hs 3 3
setup_hs 4 4
# set up default SRv6 Endpoints (i.e. SRv6 End and SRv6 End.DT46)
setup_rt_local_sids 1 "2 3 4"
setup_rt_local_sids 2 "1 3 4"
setup_rt_local_sids 3 "1 2 4"
setup_rt_local_sids 4 "1 2 3"
# set up SRv6 policies
# create an IPv6 VPN between hosts hs-1 and hs-2.
# the network path between hs-1 and hs-2 traverses several routers
# depending on the direction of traffic.
#
# Direction hs-1 -> hs-2 (H.Encaps.Red)
# - rt-3,rt-4 (SRv6 End behaviors)
# - rt-2 (SRv6 End.DT46 behavior)
#
# Direction hs-2 -> hs-1 (H.Encaps.Red)
# - rt-1 (SRv6 End.DT46 behavior)
setup_rt_policy_ipv6 2 1 "3 4" 2 encap.red
setup_rt_policy_ipv6 1 2 "" 1 encap.red
# create an IPv4 VPN between hosts hs-1 and hs-2
# the network path between hs-1 and hs-2 traverses several routers
# depending on the direction of traffic.
#
# Direction hs-1 -> hs-2 (H.Encaps.Red)
# - rt-2 (SRv6 End.DT46 behavior)
#
# Direction hs-2 -> hs-1 (H.Encaps.Red)
# - rt-4,rt-3 (SRv6 End behaviors)
# - rt-1 (SRv6 End.DT46 behavior)
setup_rt_policy_ipv4 2 1 "" 2 encap.red
setup_rt_policy_ipv4 1 2 "4 3" 1 encap.red
# create an IPv6 VPN between hosts hs-3 and hs-4
# the network path between hs-3 and hs-4 traverses several routers
# depending on the direction of traffic.
#
# Direction hs-3 -> hs-4 (H.Encaps.Red)
# - rt-2 (SRv6 End Behavior)
# - rt-4 (SRv6 End.DT46 behavior)
#
# Direction hs-4 -> hs-3 (H.Encaps.Red)
# - rt-1 (SRv6 End behavior)
# - rt-3 (SRv6 End.DT46 behavior)
setup_rt_policy_ipv6 4 3 "2" 4 encap.red
setup_rt_policy_ipv6 3 4 "1" 3 encap.red
# testing environment was set up successfully
SETUP_ERR=0
}
check_rt_connectivity()
{
local rtsrc="$1"
local rtdst="$2"
local prefix
local rtsrc_nsname
rtsrc_nsname="$(get_rtname "${rtsrc}")"
prefix="$(get_network_prefix "${rtsrc}" "${rtdst}")"
ip netns exec "${rtsrc_nsname}" ping -c 1 -W "${PING_TIMEOUT_SEC}" \
"${prefix}::${rtdst}" >/dev/null 2>&1
}
check_and_log_rt_connectivity()
{
local rtsrc="$1"
local rtdst="$2"
check_rt_connectivity "${rtsrc}" "${rtdst}"
log_test $? 0 "Routers connectivity: rt-${rtsrc} -> rt-${rtdst}"
}
check_hs_ipv6_connectivity()
{
local hssrc="$1"
local hsdst="$2"
local hssrc_nsname
hssrc_nsname="$(get_hsname "${hssrc}")"
ip netns exec "${hssrc_nsname}" ping -c 1 -W "${PING_TIMEOUT_SEC}" \
"${IPv6_HS_NETWORK}::${hsdst}" >/dev/null 2>&1
}
check_hs_ipv4_connectivity()
{
local hssrc="$1"
local hsdst="$2"
local hssrc_nsname
hssrc_nsname="$(get_hsname "${hssrc}")"
ip netns exec "${hssrc_nsname}" ping -c 1 -W "${PING_TIMEOUT_SEC}" \
"${IPv4_HS_NETWORK}.${hsdst}" >/dev/null 2>&1
}
check_and_log_hs2gw_connectivity()
{
local hssrc="$1"
check_hs_ipv6_connectivity "${hssrc}" 254
log_test $? 0 "IPv6 Hosts connectivity: hs-${hssrc} -> gw"
check_hs_ipv4_connectivity "${hssrc}" 254
log_test $? 0 "IPv4 Hosts connectivity: hs-${hssrc} -> gw"
}
check_and_log_hs_ipv6_connectivity()
{
local hssrc="$1"
local hsdst="$2"
check_hs_ipv6_connectivity "${hssrc}" "${hsdst}"
log_test $? 0 "IPv6 Hosts connectivity: hs-${hssrc} -> hs-${hsdst}"
}
check_and_log_hs_ipv4_connectivity()
{
local hssrc="$1"
local hsdst="$2"
check_hs_ipv4_connectivity "${hssrc}" "${hsdst}"
log_test $? 0 "IPv4 Hosts connectivity: hs-${hssrc} -> hs-${hsdst}"
}
check_and_log_hs_connectivity()
{
local hssrc="$1"
local hsdst="$2"
check_and_log_hs_ipv4_connectivity "${hssrc}" "${hsdst}"
check_and_log_hs_ipv6_connectivity "${hssrc}" "${hsdst}"
}
check_and_log_hs_ipv6_isolation()
{
local hssrc="$1"
local hsdst="$2"
# in this case, the connectivity test must fail
check_hs_ipv6_connectivity "${hssrc}" "${hsdst}"
log_test $? 1 "IPv6 Hosts isolation: hs-${hssrc} -X-> hs-${hsdst}"
}
check_and_log_hs_ipv4_isolation()
{
local hssrc="$1"
local hsdst="$2"
# in this case, the connectivity test must fail
check_hs_ipv4_connectivity "${hssrc}" "${hsdst}"
log_test $? 1 "IPv4 Hosts isolation: hs-${hssrc} -X-> hs-${hsdst}"
}
check_and_log_hs_isolation()
{
local hssrc="$1"
local hsdst="$2"
check_and_log_hs_ipv6_isolation "${hssrc}" "${hsdst}"
check_and_log_hs_ipv4_isolation "${hssrc}" "${hsdst}"
}
router_tests()
{
local i
local j
log_section "IPv6 routers connectivity test"
for i in ${ROUTERS}; do
for j in ${ROUTERS}; do
if [ "${i}" -eq "${j}" ]; then
continue
fi
check_and_log_rt_connectivity "${i}" "${j}"
done
done
}
host2gateway_tests()
{
local hs
log_section "IPv4/IPv6 connectivity test among hosts and gateways"
for hs in ${HOSTS}; do
check_and_log_hs2gw_connectivity "${hs}"
done
}
host_vpn_tests()
{
log_section "SRv6 VPN connectivity test hosts (h1 <-> h2, IPv4/IPv6)"
check_and_log_hs_connectivity 1 2
check_and_log_hs_connectivity 2 1
log_section "SRv6 VPN connectivity test hosts (h3 <-> h4, IPv6 only)"
check_and_log_hs_ipv6_connectivity 3 4
check_and_log_hs_ipv6_connectivity 4 3
}
host_vpn_isolation_tests()
{
local l1="1 2"
local l2="3 4"
local tmp
local i
local j
local k
log_section "SRv6 VPN isolation test among hosts"
for k in 0 1; do
for i in ${l1}; do
for j in ${l2}; do
check_and_log_hs_isolation "${i}" "${j}"
done
done
# let us test the reverse path
tmp="${l1}"; l1="${l2}"; l2="${tmp}"
done
log_section "SRv6 VPN isolation test among hosts (h2 <-> h4, IPv4 only)"
check_and_log_hs_ipv4_isolation 2 4
check_and_log_hs_ipv4_isolation 4 2
}
test_iproute2_supp_or_ksft_skip()
{
if ! ip route help 2>&1 | grep -qo "encap.red"; then
echo "SKIP: Missing SRv6 encap.red support in iproute2"
exit "${ksft_skip}"
fi
}
test_vrf_or_ksft_skip()
{
modprobe vrf &>/dev/null || true
if [ ! -e /proc/sys/net/vrf/strict_mode ]; then
echo "SKIP: vrf sysctl does not exist"
exit "${ksft_skip}"
fi
}
if [ "$(id -u)" -ne 0 ]; then
echo "SKIP: Need root privileges"
exit "${ksft_skip}"
fi
# required programs to carry out this selftest
test_command_or_ksft_skip ip
test_command_or_ksft_skip ping
test_command_or_ksft_skip sysctl
test_command_or_ksft_skip grep
test_iproute2_supp_or_ksft_skip
test_vrf_or_ksft_skip
set -e
trap cleanup EXIT
setup
set +e
router_tests
host2gateway_tests
host_vpn_tests
host_vpn_isolation_tests
print_log_test_results