301 lines
8.3 KiB
C
301 lines
8.3 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/*
|
||
|
* Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
|
||
|
*/
|
||
|
|
||
|
#include <linux/elf.h>
|
||
|
#include <linux/ftrace.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/sort.h>
|
||
|
#include <linux/moduleloader.h>
|
||
|
|
||
|
#include <asm/cache.h>
|
||
|
#include <asm/opcodes.h>
|
||
|
|
||
|
#ifdef CONFIG_THUMB2_KERNEL
|
||
|
#define PLT_ENT_LDR __opcode_to_mem_thumb32(0xf8dff000 | \
|
||
|
(PLT_ENT_STRIDE - 4))
|
||
|
#else
|
||
|
#define PLT_ENT_LDR __opcode_to_mem_arm(0xe59ff000 | \
|
||
|
(PLT_ENT_STRIDE - 8))
|
||
|
#endif
|
||
|
|
||
|
static const u32 fixed_plts[] = {
|
||
|
#ifdef CONFIG_DYNAMIC_FTRACE
|
||
|
FTRACE_ADDR,
|
||
|
MCOUNT_ADDR,
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
static bool in_init(const struct module *mod, unsigned long loc)
|
||
|
{
|
||
|
return loc - (u32)mod->init_layout.base < mod->init_layout.size;
|
||
|
}
|
||
|
|
||
|
static void prealloc_fixed(struct mod_plt_sec *pltsec, struct plt_entries *plt)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
if (!ARRAY_SIZE(fixed_plts) || pltsec->plt_count)
|
||
|
return;
|
||
|
pltsec->plt_count = ARRAY_SIZE(fixed_plts);
|
||
|
|
||
|
for (i = 0; i < ARRAY_SIZE(plt->ldr); ++i)
|
||
|
plt->ldr[i] = PLT_ENT_LDR;
|
||
|
|
||
|
BUILD_BUG_ON(sizeof(fixed_plts) > sizeof(plt->lit));
|
||
|
memcpy(plt->lit, fixed_plts, sizeof(fixed_plts));
|
||
|
}
|
||
|
|
||
|
u32 get_module_plt(struct module *mod, unsigned long loc, Elf32_Addr val)
|
||
|
{
|
||
|
struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
|
||
|
&mod->arch.init;
|
||
|
struct plt_entries *plt;
|
||
|
int idx;
|
||
|
|
||
|
/* cache the address, ELF header is available only during module load */
|
||
|
if (!pltsec->plt_ent)
|
||
|
pltsec->plt_ent = (struct plt_entries *)pltsec->plt->sh_addr;
|
||
|
plt = pltsec->plt_ent;
|
||
|
|
||
|
prealloc_fixed(pltsec, plt);
|
||
|
|
||
|
for (idx = 0; idx < ARRAY_SIZE(fixed_plts); ++idx)
|
||
|
if (plt->lit[idx] == val)
|
||
|
return (u32)&plt->ldr[idx];
|
||
|
|
||
|
idx = 0;
|
||
|
/*
|
||
|
* Look for an existing entry pointing to 'val'. Given that the
|
||
|
* relocations are sorted, this will be the last entry we allocated.
|
||
|
* (if one exists).
|
||
|
*/
|
||
|
if (pltsec->plt_count > 0) {
|
||
|
plt += (pltsec->plt_count - 1) / PLT_ENT_COUNT;
|
||
|
idx = (pltsec->plt_count - 1) % PLT_ENT_COUNT;
|
||
|
|
||
|
if (plt->lit[idx] == val)
|
||
|
return (u32)&plt->ldr[idx];
|
||
|
|
||
|
idx = (idx + 1) % PLT_ENT_COUNT;
|
||
|
if (!idx)
|
||
|
plt++;
|
||
|
}
|
||
|
|
||
|
pltsec->plt_count++;
|
||
|
BUG_ON(pltsec->plt_count * PLT_ENT_SIZE > pltsec->plt->sh_size);
|
||
|
|
||
|
if (!idx)
|
||
|
/* Populate a new set of entries */
|
||
|
*plt = (struct plt_entries){
|
||
|
{ [0 ... PLT_ENT_COUNT - 1] = PLT_ENT_LDR, },
|
||
|
{ val, }
|
||
|
};
|
||
|
else
|
||
|
plt->lit[idx] = val;
|
||
|
|
||
|
return (u32)&plt->ldr[idx];
|
||
|
}
|
||
|
|
||
|
#define cmp_3way(a,b) ((a) < (b) ? -1 : (a) > (b))
|
||
|
|
||
|
static int cmp_rel(const void *a, const void *b)
|
||
|
{
|
||
|
const Elf32_Rel *x = a, *y = b;
|
||
|
int i;
|
||
|
|
||
|
/* sort by type and symbol index */
|
||
|
i = cmp_3way(ELF32_R_TYPE(x->r_info), ELF32_R_TYPE(y->r_info));
|
||
|
if (i == 0)
|
||
|
i = cmp_3way(ELF32_R_SYM(x->r_info), ELF32_R_SYM(y->r_info));
|
||
|
return i;
|
||
|
}
|
||
|
|
||
|
static bool is_zero_addend_relocation(Elf32_Addr base, const Elf32_Rel *rel)
|
||
|
{
|
||
|
u32 *tval = (u32 *)(base + rel->r_offset);
|
||
|
|
||
|
/*
|
||
|
* Do a bitwise compare on the raw addend rather than fully decoding
|
||
|
* the offset and doing an arithmetic comparison.
|
||
|
* Note that a zero-addend jump/call relocation is encoded taking the
|
||
|
* PC bias into account, i.e., -8 for ARM and -4 for Thumb2.
|
||
|
*/
|
||
|
switch (ELF32_R_TYPE(rel->r_info)) {
|
||
|
u16 upper, lower;
|
||
|
|
||
|
case R_ARM_THM_CALL:
|
||
|
case R_ARM_THM_JUMP24:
|
||
|
upper = __mem_to_opcode_thumb16(((u16 *)tval)[0]);
|
||
|
lower = __mem_to_opcode_thumb16(((u16 *)tval)[1]);
|
||
|
|
||
|
return (upper & 0x7ff) == 0x7ff && (lower & 0x2fff) == 0x2ffe;
|
||
|
|
||
|
case R_ARM_CALL:
|
||
|
case R_ARM_PC24:
|
||
|
case R_ARM_JUMP24:
|
||
|
return (__mem_to_opcode_arm(*tval) & 0xffffff) == 0xfffffe;
|
||
|
}
|
||
|
BUG();
|
||
|
}
|
||
|
|
||
|
static bool duplicate_rel(Elf32_Addr base, const Elf32_Rel *rel, int num)
|
||
|
{
|
||
|
const Elf32_Rel *prev;
|
||
|
|
||
|
/*
|
||
|
* Entries are sorted by type and symbol index. That means that,
|
||
|
* if a duplicate entry exists, it must be in the preceding
|
||
|
* slot.
|
||
|
*/
|
||
|
if (!num)
|
||
|
return false;
|
||
|
|
||
|
prev = rel + num - 1;
|
||
|
return cmp_rel(rel + num, prev) == 0 &&
|
||
|
is_zero_addend_relocation(base, prev);
|
||
|
}
|
||
|
|
||
|
/* Count how many PLT entries we may need */
|
||
|
static unsigned int count_plts(const Elf32_Sym *syms, Elf32_Addr base,
|
||
|
const Elf32_Rel *rel, int num, Elf32_Word dstidx)
|
||
|
{
|
||
|
unsigned int ret = 0;
|
||
|
const Elf32_Sym *s;
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < num; i++) {
|
||
|
switch (ELF32_R_TYPE(rel[i].r_info)) {
|
||
|
case R_ARM_CALL:
|
||
|
case R_ARM_PC24:
|
||
|
case R_ARM_JUMP24:
|
||
|
case R_ARM_THM_CALL:
|
||
|
case R_ARM_THM_JUMP24:
|
||
|
/*
|
||
|
* We only have to consider branch targets that resolve
|
||
|
* to symbols that are defined in a different section.
|
||
|
* This is not simply a heuristic, it is a fundamental
|
||
|
* limitation, since there is no guaranteed way to emit
|
||
|
* PLT entries sufficiently close to the branch if the
|
||
|
* section size exceeds the range of a branch
|
||
|
* instruction. So ignore relocations against defined
|
||
|
* symbols if they live in the same section as the
|
||
|
* relocation target.
|
||
|
*/
|
||
|
s = syms + ELF32_R_SYM(rel[i].r_info);
|
||
|
if (s->st_shndx == dstidx)
|
||
|
break;
|
||
|
|
||
|
/*
|
||
|
* Jump relocations with non-zero addends against
|
||
|
* undefined symbols are supported by the ELF spec, but
|
||
|
* do not occur in practice (e.g., 'jump n bytes past
|
||
|
* the entry point of undefined function symbol f').
|
||
|
* So we need to support them, but there is no need to
|
||
|
* take them into consideration when trying to optimize
|
||
|
* this code. So let's only check for duplicates when
|
||
|
* the addend is zero. (Note that calls into the core
|
||
|
* module via init PLT entries could involve section
|
||
|
* relative symbol references with non-zero addends, for
|
||
|
* which we may end up emitting duplicates, but the init
|
||
|
* PLT is released along with the rest of the .init
|
||
|
* region as soon as module loading completes.)
|
||
|
*/
|
||
|
if (!is_zero_addend_relocation(base, rel + i) ||
|
||
|
!duplicate_rel(base, rel, i))
|
||
|
ret++;
|
||
|
}
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
|
||
|
char *secstrings, struct module *mod)
|
||
|
{
|
||
|
unsigned long core_plts = ARRAY_SIZE(fixed_plts);
|
||
|
unsigned long init_plts = ARRAY_SIZE(fixed_plts);
|
||
|
Elf32_Shdr *s, *sechdrs_end = sechdrs + ehdr->e_shnum;
|
||
|
Elf32_Sym *syms = NULL;
|
||
|
|
||
|
/*
|
||
|
* To store the PLTs, we expand the .text section for core module code
|
||
|
* and for initialization code.
|
||
|
*/
|
||
|
for (s = sechdrs; s < sechdrs_end; ++s) {
|
||
|
if (strcmp(".plt", secstrings + s->sh_name) == 0)
|
||
|
mod->arch.core.plt = s;
|
||
|
else if (strcmp(".init.plt", secstrings + s->sh_name) == 0)
|
||
|
mod->arch.init.plt = s;
|
||
|
else if (s->sh_type == SHT_SYMTAB)
|
||
|
syms = (Elf32_Sym *)s->sh_addr;
|
||
|
}
|
||
|
|
||
|
if (!mod->arch.core.plt || !mod->arch.init.plt) {
|
||
|
pr_err("%s: module PLT section(s) missing\n", mod->name);
|
||
|
return -ENOEXEC;
|
||
|
}
|
||
|
if (!syms) {
|
||
|
pr_err("%s: module symtab section missing\n", mod->name);
|
||
|
return -ENOEXEC;
|
||
|
}
|
||
|
|
||
|
for (s = sechdrs + 1; s < sechdrs_end; ++s) {
|
||
|
Elf32_Rel *rels = (void *)ehdr + s->sh_offset;
|
||
|
int numrels = s->sh_size / sizeof(Elf32_Rel);
|
||
|
Elf32_Shdr *dstsec = sechdrs + s->sh_info;
|
||
|
|
||
|
if (s->sh_type != SHT_REL)
|
||
|
continue;
|
||
|
|
||
|
/* ignore relocations that operate on non-exec sections */
|
||
|
if (!(dstsec->sh_flags & SHF_EXECINSTR))
|
||
|
continue;
|
||
|
|
||
|
/* sort by type and symbol index */
|
||
|
sort(rels, numrels, sizeof(Elf32_Rel), cmp_rel, NULL);
|
||
|
|
||
|
if (strncmp(secstrings + dstsec->sh_name, ".init", 5) != 0)
|
||
|
core_plts += count_plts(syms, dstsec->sh_addr, rels,
|
||
|
numrels, s->sh_info);
|
||
|
else
|
||
|
init_plts += count_plts(syms, dstsec->sh_addr, rels,
|
||
|
numrels, s->sh_info);
|
||
|
}
|
||
|
|
||
|
mod->arch.core.plt->sh_type = SHT_NOBITS;
|
||
|
mod->arch.core.plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
|
||
|
mod->arch.core.plt->sh_addralign = L1_CACHE_BYTES;
|
||
|
mod->arch.core.plt->sh_size = round_up(core_plts * PLT_ENT_SIZE,
|
||
|
sizeof(struct plt_entries));
|
||
|
mod->arch.core.plt_count = 0;
|
||
|
mod->arch.core.plt_ent = NULL;
|
||
|
|
||
|
mod->arch.init.plt->sh_type = SHT_NOBITS;
|
||
|
mod->arch.init.plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
|
||
|
mod->arch.init.plt->sh_addralign = L1_CACHE_BYTES;
|
||
|
mod->arch.init.plt->sh_size = round_up(init_plts * PLT_ENT_SIZE,
|
||
|
sizeof(struct plt_entries));
|
||
|
mod->arch.init.plt_count = 0;
|
||
|
mod->arch.init.plt_ent = NULL;
|
||
|
|
||
|
pr_debug("%s: plt=%x, init.plt=%x\n", __func__,
|
||
|
mod->arch.core.plt->sh_size, mod->arch.init.plt->sh_size);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
bool in_module_plt(unsigned long loc)
|
||
|
{
|
||
|
struct module *mod;
|
||
|
bool ret;
|
||
|
|
||
|
preempt_disable();
|
||
|
mod = __module_text_address(loc);
|
||
|
ret = mod && (loc - (u32)mod->arch.core.plt_ent < mod->arch.core.plt_count * PLT_ENT_SIZE ||
|
||
|
loc - (u32)mod->arch.init.plt_ent < mod->arch.init.plt_count * PLT_ENT_SIZE);
|
||
|
preempt_enable();
|
||
|
|
||
|
return ret;
|
||
|
}
|