520 lines
14 KiB
C
520 lines
14 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/*
|
||
|
* ARM64 Specific Low-Level ACPI Boot Support
|
||
|
*
|
||
|
* Copyright (C) 2013-2014, Linaro Ltd.
|
||
|
* Author: Al Stone <al.stone@linaro.org>
|
||
|
* Author: Graeme Gregory <graeme.gregory@linaro.org>
|
||
|
* Author: Hanjun Guo <hanjun.guo@linaro.org>
|
||
|
* Author: Tomasz Nowicki <tomasz.nowicki@linaro.org>
|
||
|
* Author: Naresh Bhat <naresh.bhat@linaro.org>
|
||
|
*/
|
||
|
|
||
|
#define pr_fmt(fmt) "ACPI: " fmt
|
||
|
|
||
|
#include <linux/acpi.h>
|
||
|
#include <linux/arm-smccc.h>
|
||
|
#include <linux/cpumask.h>
|
||
|
#include <linux/efi.h>
|
||
|
#include <linux/efi-bgrt.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/irq.h>
|
||
|
#include <linux/irqdomain.h>
|
||
|
#include <linux/irq_work.h>
|
||
|
#include <linux/memblock.h>
|
||
|
#include <linux/of_fdt.h>
|
||
|
#include <linux/libfdt.h>
|
||
|
#include <linux/smp.h>
|
||
|
#include <linux/serial_core.h>
|
||
|
#include <linux/pgtable.h>
|
||
|
|
||
|
#include <acpi/ghes.h>
|
||
|
#include <asm/cputype.h>
|
||
|
#include <asm/cpu_ops.h>
|
||
|
#include <asm/daifflags.h>
|
||
|
#include <asm/smp_plat.h>
|
||
|
|
||
|
int acpi_noirq = 1; /* skip ACPI IRQ initialization */
|
||
|
int acpi_disabled = 1;
|
||
|
EXPORT_SYMBOL(acpi_disabled);
|
||
|
|
||
|
int acpi_pci_disabled = 1; /* skip ACPI PCI scan and IRQ initialization */
|
||
|
EXPORT_SYMBOL(acpi_pci_disabled);
|
||
|
|
||
|
static bool param_acpi_off __initdata;
|
||
|
static bool param_acpi_on __initdata;
|
||
|
static bool param_acpi_force __initdata;
|
||
|
|
||
|
static int __init parse_acpi(char *arg)
|
||
|
{
|
||
|
if (!arg)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* "acpi=off" disables both ACPI table parsing and interpreter */
|
||
|
if (strcmp(arg, "off") == 0)
|
||
|
param_acpi_off = true;
|
||
|
else if (strcmp(arg, "on") == 0) /* prefer ACPI over DT */
|
||
|
param_acpi_on = true;
|
||
|
else if (strcmp(arg, "force") == 0) /* force ACPI to be enabled */
|
||
|
param_acpi_force = true;
|
||
|
else
|
||
|
return -EINVAL; /* Core will print when we return error */
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
early_param("acpi", parse_acpi);
|
||
|
|
||
|
static bool __init dt_is_stub(void)
|
||
|
{
|
||
|
int node;
|
||
|
|
||
|
fdt_for_each_subnode(node, initial_boot_params, 0) {
|
||
|
const char *name = fdt_get_name(initial_boot_params, node, NULL);
|
||
|
if (strcmp(name, "chosen") == 0)
|
||
|
continue;
|
||
|
if (strcmp(name, "hypervisor") == 0 &&
|
||
|
of_flat_dt_is_compatible(node, "xen,xen"))
|
||
|
continue;
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* __acpi_map_table() will be called before page_init(), so early_ioremap()
|
||
|
* or early_memremap() should be called here to for ACPI table mapping.
|
||
|
*/
|
||
|
void __init __iomem *__acpi_map_table(unsigned long phys, unsigned long size)
|
||
|
{
|
||
|
if (!size)
|
||
|
return NULL;
|
||
|
|
||
|
return early_memremap(phys, size);
|
||
|
}
|
||
|
|
||
|
void __init __acpi_unmap_table(void __iomem *map, unsigned long size)
|
||
|
{
|
||
|
if (!map || !size)
|
||
|
return;
|
||
|
|
||
|
early_memunmap(map, size);
|
||
|
}
|
||
|
|
||
|
bool __init acpi_psci_present(void)
|
||
|
{
|
||
|
return acpi_gbl_FADT.arm_boot_flags & ACPI_FADT_PSCI_COMPLIANT;
|
||
|
}
|
||
|
|
||
|
/* Whether HVC must be used instead of SMC as the PSCI conduit */
|
||
|
bool acpi_psci_use_hvc(void)
|
||
|
{
|
||
|
return acpi_gbl_FADT.arm_boot_flags & ACPI_FADT_PSCI_USE_HVC;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* acpi_fadt_sanity_check() - Check FADT presence and carry out sanity
|
||
|
* checks on it
|
||
|
*
|
||
|
* Return 0 on success, <0 on failure
|
||
|
*/
|
||
|
static int __init acpi_fadt_sanity_check(void)
|
||
|
{
|
||
|
struct acpi_table_header *table;
|
||
|
struct acpi_table_fadt *fadt;
|
||
|
acpi_status status;
|
||
|
int ret = 0;
|
||
|
|
||
|
/*
|
||
|
* FADT is required on arm64; retrieve it to check its presence
|
||
|
* and carry out revision and ACPI HW reduced compliancy tests
|
||
|
*/
|
||
|
status = acpi_get_table(ACPI_SIG_FADT, 0, &table);
|
||
|
if (ACPI_FAILURE(status)) {
|
||
|
const char *msg = acpi_format_exception(status);
|
||
|
|
||
|
pr_err("Failed to get FADT table, %s\n", msg);
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
fadt = (struct acpi_table_fadt *)table;
|
||
|
|
||
|
/*
|
||
|
* Revision in table header is the FADT Major revision, and there
|
||
|
* is a minor revision of FADT which was introduced by ACPI 5.1,
|
||
|
* we only deal with ACPI 5.1 or newer revision to get GIC and SMP
|
||
|
* boot protocol configuration data.
|
||
|
*/
|
||
|
if (table->revision < 5 ||
|
||
|
(table->revision == 5 && fadt->minor_revision < 1)) {
|
||
|
pr_err(FW_BUG "Unsupported FADT revision %d.%d, should be 5.1+\n",
|
||
|
table->revision, fadt->minor_revision);
|
||
|
|
||
|
if (!fadt->arm_boot_flags) {
|
||
|
ret = -EINVAL;
|
||
|
goto out;
|
||
|
}
|
||
|
pr_err("FADT has ARM boot flags set, assuming 5.1\n");
|
||
|
}
|
||
|
|
||
|
if (!(fadt->flags & ACPI_FADT_HW_REDUCED)) {
|
||
|
pr_err("FADT not ACPI hardware reduced compliant\n");
|
||
|
ret = -EINVAL;
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
/*
|
||
|
* acpi_get_table() creates FADT table mapping that
|
||
|
* should be released after parsing and before resuming boot
|
||
|
*/
|
||
|
acpi_put_table(table);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* acpi_boot_table_init() called from setup_arch(), always.
|
||
|
* 1. find RSDP and get its address, and then find XSDT
|
||
|
* 2. extract all tables and checksums them all
|
||
|
* 3. check ACPI FADT revision
|
||
|
* 4. check ACPI FADT HW reduced flag
|
||
|
*
|
||
|
* We can parse ACPI boot-time tables such as MADT after
|
||
|
* this function is called.
|
||
|
*
|
||
|
* On return ACPI is enabled if either:
|
||
|
*
|
||
|
* - ACPI tables are initialized and sanity checks passed
|
||
|
* - acpi=force was passed in the command line and ACPI was not disabled
|
||
|
* explicitly through acpi=off command line parameter
|
||
|
*
|
||
|
* ACPI is disabled on function return otherwise
|
||
|
*/
|
||
|
void __init acpi_boot_table_init(void)
|
||
|
{
|
||
|
/*
|
||
|
* Enable ACPI instead of device tree unless
|
||
|
* - ACPI has been disabled explicitly (acpi=off), or
|
||
|
* - the device tree is not empty (it has more than just a /chosen node,
|
||
|
* and a /hypervisor node when running on Xen)
|
||
|
* and ACPI has not been [force] enabled (acpi=on|force)
|
||
|
*/
|
||
|
if (param_acpi_off ||
|
||
|
(!param_acpi_on && !param_acpi_force && !dt_is_stub()))
|
||
|
goto done;
|
||
|
|
||
|
/*
|
||
|
* ACPI is disabled at this point. Enable it in order to parse
|
||
|
* the ACPI tables and carry out sanity checks
|
||
|
*/
|
||
|
enable_acpi();
|
||
|
|
||
|
/*
|
||
|
* If ACPI tables are initialized and FADT sanity checks passed,
|
||
|
* leave ACPI enabled and carry on booting; otherwise disable ACPI
|
||
|
* on initialization error.
|
||
|
* If acpi=force was passed on the command line it forces ACPI
|
||
|
* to be enabled even if its initialization failed.
|
||
|
*/
|
||
|
if (acpi_table_init() || acpi_fadt_sanity_check()) {
|
||
|
pr_err("Failed to init ACPI tables\n");
|
||
|
if (!param_acpi_force)
|
||
|
disable_acpi();
|
||
|
}
|
||
|
|
||
|
done:
|
||
|
if (acpi_disabled) {
|
||
|
if (earlycon_acpi_spcr_enable)
|
||
|
early_init_dt_scan_chosen_stdout();
|
||
|
} else {
|
||
|
acpi_parse_spcr(earlycon_acpi_spcr_enable, true);
|
||
|
if (IS_ENABLED(CONFIG_ACPI_BGRT))
|
||
|
acpi_table_parse(ACPI_SIG_BGRT, acpi_parse_bgrt);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static pgprot_t __acpi_get_writethrough_mem_attribute(void)
|
||
|
{
|
||
|
/*
|
||
|
* Although UEFI specifies the use of Normal Write-through for
|
||
|
* EFI_MEMORY_WT, it is seldom used in practice and not implemented
|
||
|
* by most (all?) CPUs. Rather than allocate a MAIR just for this
|
||
|
* purpose, emit a warning and use Normal Non-cacheable instead.
|
||
|
*/
|
||
|
pr_warn_once("No MAIR allocation for EFI_MEMORY_WT; treating as Normal Non-cacheable\n");
|
||
|
return __pgprot(PROT_NORMAL_NC);
|
||
|
}
|
||
|
|
||
|
pgprot_t __acpi_get_mem_attribute(phys_addr_t addr)
|
||
|
{
|
||
|
/*
|
||
|
* According to "Table 8 Map: EFI memory types to AArch64 memory
|
||
|
* types" of UEFI 2.5 section 2.3.6.1, each EFI memory type is
|
||
|
* mapped to a corresponding MAIR attribute encoding.
|
||
|
* The EFI memory attribute advises all possible capabilities
|
||
|
* of a memory region.
|
||
|
*/
|
||
|
|
||
|
u64 attr;
|
||
|
|
||
|
attr = efi_mem_attributes(addr);
|
||
|
if (attr & EFI_MEMORY_WB)
|
||
|
return PAGE_KERNEL;
|
||
|
if (attr & EFI_MEMORY_WC)
|
||
|
return __pgprot(PROT_NORMAL_NC);
|
||
|
if (attr & EFI_MEMORY_WT)
|
||
|
return __acpi_get_writethrough_mem_attribute();
|
||
|
return __pgprot(PROT_DEVICE_nGnRnE);
|
||
|
}
|
||
|
|
||
|
void __iomem *acpi_os_ioremap(acpi_physical_address phys, acpi_size size)
|
||
|
{
|
||
|
efi_memory_desc_t *md, *region = NULL;
|
||
|
pgprot_t prot;
|
||
|
|
||
|
if (WARN_ON_ONCE(!efi_enabled(EFI_MEMMAP)))
|
||
|
return NULL;
|
||
|
|
||
|
for_each_efi_memory_desc(md) {
|
||
|
u64 end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT);
|
||
|
|
||
|
if (phys < md->phys_addr || phys >= end)
|
||
|
continue;
|
||
|
|
||
|
if (phys + size > end) {
|
||
|
pr_warn(FW_BUG "requested region covers multiple EFI memory regions\n");
|
||
|
return NULL;
|
||
|
}
|
||
|
region = md;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* It is fine for AML to remap regions that are not represented in the
|
||
|
* EFI memory map at all, as it only describes normal memory, and MMIO
|
||
|
* regions that require a virtual mapping to make them accessible to
|
||
|
* the EFI runtime services.
|
||
|
*/
|
||
|
prot = __pgprot(PROT_DEVICE_nGnRnE);
|
||
|
if (region) {
|
||
|
switch (region->type) {
|
||
|
case EFI_LOADER_CODE:
|
||
|
case EFI_LOADER_DATA:
|
||
|
case EFI_BOOT_SERVICES_CODE:
|
||
|
case EFI_BOOT_SERVICES_DATA:
|
||
|
case EFI_CONVENTIONAL_MEMORY:
|
||
|
case EFI_PERSISTENT_MEMORY:
|
||
|
if (memblock_is_map_memory(phys) ||
|
||
|
!memblock_is_region_memory(phys, size)) {
|
||
|
pr_warn(FW_BUG "requested region covers kernel memory @ %pa\n", &phys);
|
||
|
return NULL;
|
||
|
}
|
||
|
/*
|
||
|
* Mapping kernel memory is permitted if the region in
|
||
|
* question is covered by a single memblock with the
|
||
|
* NOMAP attribute set: this enables the use of ACPI
|
||
|
* table overrides passed via initramfs, which are
|
||
|
* reserved in memory using arch_reserve_mem_area()
|
||
|
* below. As this particular use case only requires
|
||
|
* read access, fall through to the R/O mapping case.
|
||
|
*/
|
||
|
fallthrough;
|
||
|
|
||
|
case EFI_RUNTIME_SERVICES_CODE:
|
||
|
/*
|
||
|
* This would be unusual, but not problematic per se,
|
||
|
* as long as we take care not to create a writable
|
||
|
* mapping for executable code.
|
||
|
*/
|
||
|
prot = PAGE_KERNEL_RO;
|
||
|
break;
|
||
|
|
||
|
case EFI_ACPI_RECLAIM_MEMORY:
|
||
|
/*
|
||
|
* ACPI reclaim memory is used to pass firmware tables
|
||
|
* and other data that is intended for consumption by
|
||
|
* the OS only, which may decide it wants to reclaim
|
||
|
* that memory and use it for something else. We never
|
||
|
* do that, but we usually add it to the linear map
|
||
|
* anyway, in which case we should use the existing
|
||
|
* mapping.
|
||
|
*/
|
||
|
if (memblock_is_map_memory(phys))
|
||
|
return (void __iomem *)__phys_to_virt(phys);
|
||
|
fallthrough;
|
||
|
|
||
|
default:
|
||
|
if (region->attribute & EFI_MEMORY_WB)
|
||
|
prot = PAGE_KERNEL;
|
||
|
else if (region->attribute & EFI_MEMORY_WC)
|
||
|
prot = __pgprot(PROT_NORMAL_NC);
|
||
|
else if (region->attribute & EFI_MEMORY_WT)
|
||
|
prot = __acpi_get_writethrough_mem_attribute();
|
||
|
}
|
||
|
}
|
||
|
return ioremap_prot(phys, size, pgprot_val(prot));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Claim Synchronous External Aborts as a firmware first notification.
|
||
|
*
|
||
|
* Used by KVM and the arch do_sea handler.
|
||
|
* @regs may be NULL when called from process context.
|
||
|
*/
|
||
|
int apei_claim_sea(struct pt_regs *regs)
|
||
|
{
|
||
|
int err = -ENOENT;
|
||
|
bool return_to_irqs_enabled;
|
||
|
unsigned long current_flags;
|
||
|
|
||
|
if (!IS_ENABLED(CONFIG_ACPI_APEI_GHES))
|
||
|
return err;
|
||
|
|
||
|
current_flags = local_daif_save_flags();
|
||
|
|
||
|
/* current_flags isn't useful here as daif doesn't tell us about pNMI */
|
||
|
return_to_irqs_enabled = !irqs_disabled_flags(arch_local_save_flags());
|
||
|
|
||
|
if (regs)
|
||
|
return_to_irqs_enabled = interrupts_enabled(regs);
|
||
|
|
||
|
/*
|
||
|
* SEA can interrupt SError, mask it and describe this as an NMI so
|
||
|
* that APEI defers the handling.
|
||
|
*/
|
||
|
local_daif_restore(DAIF_ERRCTX);
|
||
|
nmi_enter();
|
||
|
err = ghes_notify_sea();
|
||
|
nmi_exit();
|
||
|
|
||
|
/*
|
||
|
* APEI NMI-like notifications are deferred to irq_work. Unless
|
||
|
* we interrupted irqs-masked code, we can do that now.
|
||
|
*/
|
||
|
if (!err) {
|
||
|
if (return_to_irqs_enabled) {
|
||
|
local_daif_restore(DAIF_PROCCTX_NOIRQ);
|
||
|
__irq_enter();
|
||
|
irq_work_run();
|
||
|
__irq_exit();
|
||
|
} else {
|
||
|
pr_warn_ratelimited("APEI work queued but not completed");
|
||
|
err = -EINPROGRESS;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
local_daif_restore(current_flags);
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
void arch_reserve_mem_area(acpi_physical_address addr, size_t size)
|
||
|
{
|
||
|
memblock_mark_nomap(addr, size);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_ACPI_FFH
|
||
|
/*
|
||
|
* Implements ARM64 specific callbacks to support ACPI FFH Operation Region as
|
||
|
* specified in https://developer.arm.com/docs/den0048/latest
|
||
|
*/
|
||
|
struct acpi_ffh_data {
|
||
|
struct acpi_ffh_info info;
|
||
|
void (*invoke_ffh_fn)(unsigned long a0, unsigned long a1,
|
||
|
unsigned long a2, unsigned long a3,
|
||
|
unsigned long a4, unsigned long a5,
|
||
|
unsigned long a6, unsigned long a7,
|
||
|
struct arm_smccc_res *args,
|
||
|
struct arm_smccc_quirk *res);
|
||
|
void (*invoke_ffh64_fn)(const struct arm_smccc_1_2_regs *args,
|
||
|
struct arm_smccc_1_2_regs *res);
|
||
|
};
|
||
|
|
||
|
int acpi_ffh_address_space_arch_setup(void *handler_ctxt, void **region_ctxt)
|
||
|
{
|
||
|
enum arm_smccc_conduit conduit;
|
||
|
struct acpi_ffh_data *ffh_ctxt;
|
||
|
|
||
|
if (arm_smccc_get_version() < ARM_SMCCC_VERSION_1_2)
|
||
|
return -EOPNOTSUPP;
|
||
|
|
||
|
conduit = arm_smccc_1_1_get_conduit();
|
||
|
if (conduit == SMCCC_CONDUIT_NONE) {
|
||
|
pr_err("%s: invalid SMCCC conduit\n", __func__);
|
||
|
return -EOPNOTSUPP;
|
||
|
}
|
||
|
|
||
|
ffh_ctxt = kzalloc(sizeof(*ffh_ctxt), GFP_KERNEL);
|
||
|
if (!ffh_ctxt)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
if (conduit == SMCCC_CONDUIT_SMC) {
|
||
|
ffh_ctxt->invoke_ffh_fn = __arm_smccc_smc;
|
||
|
ffh_ctxt->invoke_ffh64_fn = arm_smccc_1_2_smc;
|
||
|
} else {
|
||
|
ffh_ctxt->invoke_ffh_fn = __arm_smccc_hvc;
|
||
|
ffh_ctxt->invoke_ffh64_fn = arm_smccc_1_2_hvc;
|
||
|
}
|
||
|
|
||
|
memcpy(ffh_ctxt, handler_ctxt, sizeof(ffh_ctxt->info));
|
||
|
|
||
|
*region_ctxt = ffh_ctxt;
|
||
|
return AE_OK;
|
||
|
}
|
||
|
|
||
|
static bool acpi_ffh_smccc_owner_allowed(u32 fid)
|
||
|
{
|
||
|
int owner = ARM_SMCCC_OWNER_NUM(fid);
|
||
|
|
||
|
if (owner == ARM_SMCCC_OWNER_STANDARD ||
|
||
|
owner == ARM_SMCCC_OWNER_SIP || owner == ARM_SMCCC_OWNER_OEM)
|
||
|
return true;
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
int acpi_ffh_address_space_arch_handler(acpi_integer *value, void *region_context)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
struct acpi_ffh_data *ffh_ctxt = region_context;
|
||
|
|
||
|
if (ffh_ctxt->info.offset == 0) {
|
||
|
/* SMC/HVC 32bit call */
|
||
|
struct arm_smccc_res res;
|
||
|
u32 a[8] = { 0 }, *ptr = (u32 *)value;
|
||
|
|
||
|
if (!ARM_SMCCC_IS_FAST_CALL(*ptr) || ARM_SMCCC_IS_64(*ptr) ||
|
||
|
!acpi_ffh_smccc_owner_allowed(*ptr) ||
|
||
|
ffh_ctxt->info.length > 32) {
|
||
|
ret = AE_ERROR;
|
||
|
} else {
|
||
|
int idx, len = ffh_ctxt->info.length >> 2;
|
||
|
|
||
|
for (idx = 0; idx < len; idx++)
|
||
|
a[idx] = *(ptr + idx);
|
||
|
|
||
|
ffh_ctxt->invoke_ffh_fn(a[0], a[1], a[2], a[3], a[4],
|
||
|
a[5], a[6], a[7], &res, NULL);
|
||
|
memcpy(value, &res, sizeof(res));
|
||
|
}
|
||
|
|
||
|
} else if (ffh_ctxt->info.offset == 1) {
|
||
|
/* SMC/HVC 64bit call */
|
||
|
struct arm_smccc_1_2_regs *r = (struct arm_smccc_1_2_regs *)value;
|
||
|
|
||
|
if (!ARM_SMCCC_IS_FAST_CALL(r->a0) || !ARM_SMCCC_IS_64(r->a0) ||
|
||
|
!acpi_ffh_smccc_owner_allowed(r->a0) ||
|
||
|
ffh_ctxt->info.length > sizeof(*r)) {
|
||
|
ret = AE_ERROR;
|
||
|
} else {
|
||
|
ffh_ctxt->invoke_ffh64_fn(r, r);
|
||
|
memcpy(value, r, ffh_ctxt->info.length);
|
||
|
}
|
||
|
} else {
|
||
|
ret = AE_ERROR;
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
#endif /* CONFIG_ACPI_FFH */
|