423 lines
11 KiB
C
423 lines
11 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/*
|
||
|
* Based on arch/arm/mm/context.c
|
||
|
*
|
||
|
* Copyright (C) 2002-2003 Deep Blue Solutions Ltd, all rights reserved.
|
||
|
* Copyright (C) 2012 ARM Ltd.
|
||
|
*/
|
||
|
|
||
|
#include <linux/bitfield.h>
|
||
|
#include <linux/bitops.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/mm.h>
|
||
|
|
||
|
#include <asm/cpufeature.h>
|
||
|
#include <asm/mmu_context.h>
|
||
|
#include <asm/smp.h>
|
||
|
#include <asm/tlbflush.h>
|
||
|
|
||
|
static u32 asid_bits;
|
||
|
static DEFINE_RAW_SPINLOCK(cpu_asid_lock);
|
||
|
|
||
|
static atomic64_t asid_generation;
|
||
|
static unsigned long *asid_map;
|
||
|
|
||
|
static DEFINE_PER_CPU(atomic64_t, active_asids);
|
||
|
static DEFINE_PER_CPU(u64, reserved_asids);
|
||
|
static cpumask_t tlb_flush_pending;
|
||
|
|
||
|
static unsigned long max_pinned_asids;
|
||
|
static unsigned long nr_pinned_asids;
|
||
|
static unsigned long *pinned_asid_map;
|
||
|
|
||
|
#define ASID_MASK (~GENMASK(asid_bits - 1, 0))
|
||
|
#define ASID_FIRST_VERSION (1UL << asid_bits)
|
||
|
|
||
|
#define NUM_USER_ASIDS ASID_FIRST_VERSION
|
||
|
#define ctxid2asid(asid) ((asid) & ~ASID_MASK)
|
||
|
#define asid2ctxid(asid, genid) ((asid) | (genid))
|
||
|
|
||
|
/* Get the ASIDBits supported by the current CPU */
|
||
|
static u32 get_cpu_asid_bits(void)
|
||
|
{
|
||
|
u32 asid;
|
||
|
int fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64MMFR0_EL1),
|
||
|
ID_AA64MMFR0_EL1_ASIDBITS_SHIFT);
|
||
|
|
||
|
switch (fld) {
|
||
|
default:
|
||
|
pr_warn("CPU%d: Unknown ASID size (%d); assuming 8-bit\n",
|
||
|
smp_processor_id(), fld);
|
||
|
fallthrough;
|
||
|
case ID_AA64MMFR0_EL1_ASIDBITS_8:
|
||
|
asid = 8;
|
||
|
break;
|
||
|
case ID_AA64MMFR0_EL1_ASIDBITS_16:
|
||
|
asid = 16;
|
||
|
}
|
||
|
|
||
|
return asid;
|
||
|
}
|
||
|
|
||
|
/* Check if the current cpu's ASIDBits is compatible with asid_bits */
|
||
|
void verify_cpu_asid_bits(void)
|
||
|
{
|
||
|
u32 asid = get_cpu_asid_bits();
|
||
|
|
||
|
if (asid < asid_bits) {
|
||
|
/*
|
||
|
* We cannot decrease the ASID size at runtime, so panic if we support
|
||
|
* fewer ASID bits than the boot CPU.
|
||
|
*/
|
||
|
pr_crit("CPU%d: smaller ASID size(%u) than boot CPU (%u)\n",
|
||
|
smp_processor_id(), asid, asid_bits);
|
||
|
cpu_panic_kernel();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void set_kpti_asid_bits(unsigned long *map)
|
||
|
{
|
||
|
unsigned int len = BITS_TO_LONGS(NUM_USER_ASIDS) * sizeof(unsigned long);
|
||
|
/*
|
||
|
* In case of KPTI kernel/user ASIDs are allocated in
|
||
|
* pairs, the bottom bit distinguishes the two: if it
|
||
|
* is set, then the ASID will map only userspace. Thus
|
||
|
* mark even as reserved for kernel.
|
||
|
*/
|
||
|
memset(map, 0xaa, len);
|
||
|
}
|
||
|
|
||
|
static void set_reserved_asid_bits(void)
|
||
|
{
|
||
|
if (pinned_asid_map)
|
||
|
bitmap_copy(asid_map, pinned_asid_map, NUM_USER_ASIDS);
|
||
|
else if (arm64_kernel_unmapped_at_el0())
|
||
|
set_kpti_asid_bits(asid_map);
|
||
|
else
|
||
|
bitmap_clear(asid_map, 0, NUM_USER_ASIDS);
|
||
|
}
|
||
|
|
||
|
#define asid_gen_match(asid) \
|
||
|
(!(((asid) ^ atomic64_read(&asid_generation)) >> asid_bits))
|
||
|
|
||
|
static void flush_context(void)
|
||
|
{
|
||
|
int i;
|
||
|
u64 asid;
|
||
|
|
||
|
/* Update the list of reserved ASIDs and the ASID bitmap. */
|
||
|
set_reserved_asid_bits();
|
||
|
|
||
|
for_each_possible_cpu(i) {
|
||
|
asid = atomic64_xchg_relaxed(&per_cpu(active_asids, i), 0);
|
||
|
/*
|
||
|
* If this CPU has already been through a
|
||
|
* rollover, but hasn't run another task in
|
||
|
* the meantime, we must preserve its reserved
|
||
|
* ASID, as this is the only trace we have of
|
||
|
* the process it is still running.
|
||
|
*/
|
||
|
if (asid == 0)
|
||
|
asid = per_cpu(reserved_asids, i);
|
||
|
__set_bit(ctxid2asid(asid), asid_map);
|
||
|
per_cpu(reserved_asids, i) = asid;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Queue a TLB invalidation for each CPU to perform on next
|
||
|
* context-switch
|
||
|
*/
|
||
|
cpumask_setall(&tlb_flush_pending);
|
||
|
}
|
||
|
|
||
|
static bool check_update_reserved_asid(u64 asid, u64 newasid)
|
||
|
{
|
||
|
int cpu;
|
||
|
bool hit = false;
|
||
|
|
||
|
/*
|
||
|
* Iterate over the set of reserved ASIDs looking for a match.
|
||
|
* If we find one, then we can update our mm to use newasid
|
||
|
* (i.e. the same ASID in the current generation) but we can't
|
||
|
* exit the loop early, since we need to ensure that all copies
|
||
|
* of the old ASID are updated to reflect the mm. Failure to do
|
||
|
* so could result in us missing the reserved ASID in a future
|
||
|
* generation.
|
||
|
*/
|
||
|
for_each_possible_cpu(cpu) {
|
||
|
if (per_cpu(reserved_asids, cpu) == asid) {
|
||
|
hit = true;
|
||
|
per_cpu(reserved_asids, cpu) = newasid;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return hit;
|
||
|
}
|
||
|
|
||
|
static u64 new_context(struct mm_struct *mm)
|
||
|
{
|
||
|
static u32 cur_idx = 1;
|
||
|
u64 asid = atomic64_read(&mm->context.id);
|
||
|
u64 generation = atomic64_read(&asid_generation);
|
||
|
|
||
|
if (asid != 0) {
|
||
|
u64 newasid = asid2ctxid(ctxid2asid(asid), generation);
|
||
|
|
||
|
/*
|
||
|
* If our current ASID was active during a rollover, we
|
||
|
* can continue to use it and this was just a false alarm.
|
||
|
*/
|
||
|
if (check_update_reserved_asid(asid, newasid))
|
||
|
return newasid;
|
||
|
|
||
|
/*
|
||
|
* If it is pinned, we can keep using it. Note that reserved
|
||
|
* takes priority, because even if it is also pinned, we need to
|
||
|
* update the generation into the reserved_asids.
|
||
|
*/
|
||
|
if (refcount_read(&mm->context.pinned))
|
||
|
return newasid;
|
||
|
|
||
|
/*
|
||
|
* We had a valid ASID in a previous life, so try to re-use
|
||
|
* it if possible.
|
||
|
*/
|
||
|
if (!__test_and_set_bit(ctxid2asid(asid), asid_map))
|
||
|
return newasid;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Allocate a free ASID. If we can't find one, take a note of the
|
||
|
* currently active ASIDs and mark the TLBs as requiring flushes. We
|
||
|
* always count from ASID #2 (index 1), as we use ASID #0 when setting
|
||
|
* a reserved TTBR0 for the init_mm and we allocate ASIDs in even/odd
|
||
|
* pairs.
|
||
|
*/
|
||
|
asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, cur_idx);
|
||
|
if (asid != NUM_USER_ASIDS)
|
||
|
goto set_asid;
|
||
|
|
||
|
/* We're out of ASIDs, so increment the global generation count */
|
||
|
generation = atomic64_add_return_relaxed(ASID_FIRST_VERSION,
|
||
|
&asid_generation);
|
||
|
flush_context();
|
||
|
|
||
|
/* We have more ASIDs than CPUs, so this will always succeed */
|
||
|
asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, 1);
|
||
|
|
||
|
set_asid:
|
||
|
__set_bit(asid, asid_map);
|
||
|
cur_idx = asid;
|
||
|
return asid2ctxid(asid, generation);
|
||
|
}
|
||
|
|
||
|
void check_and_switch_context(struct mm_struct *mm)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
unsigned int cpu;
|
||
|
u64 asid, old_active_asid;
|
||
|
|
||
|
if (system_supports_cnp())
|
||
|
cpu_set_reserved_ttbr0();
|
||
|
|
||
|
asid = atomic64_read(&mm->context.id);
|
||
|
|
||
|
/*
|
||
|
* The memory ordering here is subtle.
|
||
|
* If our active_asids is non-zero and the ASID matches the current
|
||
|
* generation, then we update the active_asids entry with a relaxed
|
||
|
* cmpxchg. Racing with a concurrent rollover means that either:
|
||
|
*
|
||
|
* - We get a zero back from the cmpxchg and end up waiting on the
|
||
|
* lock. Taking the lock synchronises with the rollover and so
|
||
|
* we are forced to see the updated generation.
|
||
|
*
|
||
|
* - We get a valid ASID back from the cmpxchg, which means the
|
||
|
* relaxed xchg in flush_context will treat us as reserved
|
||
|
* because atomic RmWs are totally ordered for a given location.
|
||
|
*/
|
||
|
old_active_asid = atomic64_read(this_cpu_ptr(&active_asids));
|
||
|
if (old_active_asid && asid_gen_match(asid) &&
|
||
|
atomic64_cmpxchg_relaxed(this_cpu_ptr(&active_asids),
|
||
|
old_active_asid, asid))
|
||
|
goto switch_mm_fastpath;
|
||
|
|
||
|
raw_spin_lock_irqsave(&cpu_asid_lock, flags);
|
||
|
/* Check that our ASID belongs to the current generation. */
|
||
|
asid = atomic64_read(&mm->context.id);
|
||
|
if (!asid_gen_match(asid)) {
|
||
|
asid = new_context(mm);
|
||
|
atomic64_set(&mm->context.id, asid);
|
||
|
}
|
||
|
|
||
|
cpu = smp_processor_id();
|
||
|
if (cpumask_test_and_clear_cpu(cpu, &tlb_flush_pending))
|
||
|
local_flush_tlb_all();
|
||
|
|
||
|
atomic64_set(this_cpu_ptr(&active_asids), asid);
|
||
|
raw_spin_unlock_irqrestore(&cpu_asid_lock, flags);
|
||
|
|
||
|
switch_mm_fastpath:
|
||
|
|
||
|
arm64_apply_bp_hardening();
|
||
|
|
||
|
/*
|
||
|
* Defer TTBR0_EL1 setting for user threads to uaccess_enable() when
|
||
|
* emulating PAN.
|
||
|
*/
|
||
|
if (!system_uses_ttbr0_pan())
|
||
|
cpu_switch_mm(mm->pgd, mm);
|
||
|
}
|
||
|
|
||
|
unsigned long arm64_mm_context_get(struct mm_struct *mm)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
u64 asid;
|
||
|
|
||
|
if (!pinned_asid_map)
|
||
|
return 0;
|
||
|
|
||
|
raw_spin_lock_irqsave(&cpu_asid_lock, flags);
|
||
|
|
||
|
asid = atomic64_read(&mm->context.id);
|
||
|
|
||
|
if (refcount_inc_not_zero(&mm->context.pinned))
|
||
|
goto out_unlock;
|
||
|
|
||
|
if (nr_pinned_asids >= max_pinned_asids) {
|
||
|
asid = 0;
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
|
||
|
if (!asid_gen_match(asid)) {
|
||
|
/*
|
||
|
* We went through one or more rollover since that ASID was
|
||
|
* used. Ensure that it is still valid, or generate a new one.
|
||
|
*/
|
||
|
asid = new_context(mm);
|
||
|
atomic64_set(&mm->context.id, asid);
|
||
|
}
|
||
|
|
||
|
nr_pinned_asids++;
|
||
|
__set_bit(ctxid2asid(asid), pinned_asid_map);
|
||
|
refcount_set(&mm->context.pinned, 1);
|
||
|
|
||
|
out_unlock:
|
||
|
raw_spin_unlock_irqrestore(&cpu_asid_lock, flags);
|
||
|
|
||
|
asid = ctxid2asid(asid);
|
||
|
|
||
|
/* Set the equivalent of USER_ASID_BIT */
|
||
|
if (asid && arm64_kernel_unmapped_at_el0())
|
||
|
asid |= 1;
|
||
|
|
||
|
return asid;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(arm64_mm_context_get);
|
||
|
|
||
|
void arm64_mm_context_put(struct mm_struct *mm)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
u64 asid = atomic64_read(&mm->context.id);
|
||
|
|
||
|
if (!pinned_asid_map)
|
||
|
return;
|
||
|
|
||
|
raw_spin_lock_irqsave(&cpu_asid_lock, flags);
|
||
|
|
||
|
if (refcount_dec_and_test(&mm->context.pinned)) {
|
||
|
__clear_bit(ctxid2asid(asid), pinned_asid_map);
|
||
|
nr_pinned_asids--;
|
||
|
}
|
||
|
|
||
|
raw_spin_unlock_irqrestore(&cpu_asid_lock, flags);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(arm64_mm_context_put);
|
||
|
|
||
|
/* Errata workaround post TTBRx_EL1 update. */
|
||
|
asmlinkage void post_ttbr_update_workaround(void)
|
||
|
{
|
||
|
if (!IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456))
|
||
|
return;
|
||
|
|
||
|
asm(ALTERNATIVE("nop; nop; nop",
|
||
|
"ic iallu; dsb nsh; isb",
|
||
|
ARM64_WORKAROUND_CAVIUM_27456));
|
||
|
}
|
||
|
|
||
|
void cpu_do_switch_mm(phys_addr_t pgd_phys, struct mm_struct *mm)
|
||
|
{
|
||
|
unsigned long ttbr1 = read_sysreg(ttbr1_el1);
|
||
|
unsigned long asid = ASID(mm);
|
||
|
unsigned long ttbr0 = phys_to_ttbr(pgd_phys);
|
||
|
|
||
|
/* Skip CNP for the reserved ASID */
|
||
|
if (system_supports_cnp() && asid)
|
||
|
ttbr0 |= TTBR_CNP_BIT;
|
||
|
|
||
|
/* SW PAN needs a copy of the ASID in TTBR0 for entry */
|
||
|
if (IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN))
|
||
|
ttbr0 |= FIELD_PREP(TTBR_ASID_MASK, asid);
|
||
|
|
||
|
/* Set ASID in TTBR1 since TCR.A1 is set */
|
||
|
ttbr1 &= ~TTBR_ASID_MASK;
|
||
|
ttbr1 |= FIELD_PREP(TTBR_ASID_MASK, asid);
|
||
|
|
||
|
write_sysreg(ttbr1, ttbr1_el1);
|
||
|
isb();
|
||
|
write_sysreg(ttbr0, ttbr0_el1);
|
||
|
isb();
|
||
|
post_ttbr_update_workaround();
|
||
|
}
|
||
|
|
||
|
static int asids_update_limit(void)
|
||
|
{
|
||
|
unsigned long num_available_asids = NUM_USER_ASIDS;
|
||
|
|
||
|
if (arm64_kernel_unmapped_at_el0()) {
|
||
|
num_available_asids /= 2;
|
||
|
if (pinned_asid_map)
|
||
|
set_kpti_asid_bits(pinned_asid_map);
|
||
|
}
|
||
|
/*
|
||
|
* Expect allocation after rollover to fail if we don't have at least
|
||
|
* one more ASID than CPUs. ASID #0 is reserved for init_mm.
|
||
|
*/
|
||
|
WARN_ON(num_available_asids - 1 <= num_possible_cpus());
|
||
|
pr_info("ASID allocator initialised with %lu entries\n",
|
||
|
num_available_asids);
|
||
|
|
||
|
/*
|
||
|
* There must always be an ASID available after rollover. Ensure that,
|
||
|
* even if all CPUs have a reserved ASID and the maximum number of ASIDs
|
||
|
* are pinned, there still is at least one empty slot in the ASID map.
|
||
|
*/
|
||
|
max_pinned_asids = num_available_asids - num_possible_cpus() - 2;
|
||
|
return 0;
|
||
|
}
|
||
|
arch_initcall(asids_update_limit);
|
||
|
|
||
|
static int asids_init(void)
|
||
|
{
|
||
|
asid_bits = get_cpu_asid_bits();
|
||
|
atomic64_set(&asid_generation, ASID_FIRST_VERSION);
|
||
|
asid_map = bitmap_zalloc(NUM_USER_ASIDS, GFP_KERNEL);
|
||
|
if (!asid_map)
|
||
|
panic("Failed to allocate bitmap for %lu ASIDs\n",
|
||
|
NUM_USER_ASIDS);
|
||
|
|
||
|
pinned_asid_map = bitmap_zalloc(NUM_USER_ASIDS, GFP_KERNEL);
|
||
|
nr_pinned_asids = 0;
|
||
|
|
||
|
/*
|
||
|
* We cannot call set_reserved_asid_bits() here because CPU
|
||
|
* caps are not finalized yet, so it is safer to assume KPTI
|
||
|
* and reserve kernel ASID's from beginning.
|
||
|
*/
|
||
|
if (IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0))
|
||
|
set_kpti_asid_bits(asid_map);
|
||
|
return 0;
|
||
|
}
|
||
|
early_initcall(asids_init);
|