linux-zen-server/arch/loongarch/kernel/perf_event.c

888 lines
21 KiB
C
Raw Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0
/*
* Linux performance counter support for LoongArch.
*
* Copyright (C) 2022 Loongson Technology Corporation Limited
*
* Derived from MIPS:
* Copyright (C) 2010 MIPS Technologies, Inc.
* Copyright (C) 2011 Cavium Networks, Inc.
* Author: Deng-Cheng Zhu
*/
#include <linux/cpumask.h>
#include <linux/interrupt.h>
#include <linux/smp.h>
#include <linux/kernel.h>
#include <linux/perf_event.h>
#include <linux/uaccess.h>
#include <linux/sched/task_stack.h>
#include <asm/irq.h>
#include <asm/irq_regs.h>
#include <asm/stacktrace.h>
#include <asm/unwind.h>
/*
* Get the return address for a single stackframe and return a pointer to the
* next frame tail.
*/
static unsigned long
user_backtrace(struct perf_callchain_entry_ctx *entry, unsigned long fp)
{
unsigned long err;
unsigned long __user *user_frame_tail;
struct stack_frame buftail;
user_frame_tail = (unsigned long __user *)(fp - sizeof(struct stack_frame));
/* Also check accessibility of one struct frame_tail beyond */
if (!access_ok(user_frame_tail, sizeof(buftail)))
return 0;
pagefault_disable();
err = __copy_from_user_inatomic(&buftail, user_frame_tail, sizeof(buftail));
pagefault_enable();
if (err || (unsigned long)user_frame_tail >= buftail.fp)
return 0;
perf_callchain_store(entry, buftail.ra);
return buftail.fp;
}
void perf_callchain_user(struct perf_callchain_entry_ctx *entry,
struct pt_regs *regs)
{
unsigned long fp;
if (perf_guest_state()) {
/* We don't support guest os callchain now */
return;
}
perf_callchain_store(entry, regs->csr_era);
fp = regs->regs[22];
while (entry->nr < entry->max_stack && fp && !((unsigned long)fp & 0xf))
fp = user_backtrace(entry, fp);
}
void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
struct pt_regs *regs)
{
struct unwind_state state;
unsigned long addr;
for (unwind_start(&state, current, regs);
!unwind_done(&state); unwind_next_frame(&state)) {
addr = unwind_get_return_address(&state);
if (!addr || perf_callchain_store(entry, addr))
return;
}
}
#define LOONGARCH_MAX_HWEVENTS 32
struct cpu_hw_events {
/* Array of events on this cpu. */
struct perf_event *events[LOONGARCH_MAX_HWEVENTS];
/*
* Set the bit (indexed by the counter number) when the counter
* is used for an event.
*/
unsigned long used_mask[BITS_TO_LONGS(LOONGARCH_MAX_HWEVENTS)];
/*
* Software copy of the control register for each performance counter.
*/
unsigned int saved_ctrl[LOONGARCH_MAX_HWEVENTS];
};
static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
.saved_ctrl = {0},
};
/* The description of LoongArch performance events. */
struct loongarch_perf_event {
unsigned int event_id;
};
static struct loongarch_perf_event raw_event;
static DEFINE_MUTEX(raw_event_mutex);
#define C(x) PERF_COUNT_HW_CACHE_##x
#define HW_OP_UNSUPPORTED 0xffffffff
#define CACHE_OP_UNSUPPORTED 0xffffffff
#define PERF_MAP_ALL_UNSUPPORTED \
[0 ... PERF_COUNT_HW_MAX - 1] = {HW_OP_UNSUPPORTED}
#define PERF_CACHE_MAP_ALL_UNSUPPORTED \
[0 ... C(MAX) - 1] = { \
[0 ... C(OP_MAX) - 1] = { \
[0 ... C(RESULT_MAX) - 1] = {CACHE_OP_UNSUPPORTED}, \
}, \
}
struct loongarch_pmu {
u64 max_period;
u64 valid_count;
u64 overflow;
const char *name;
unsigned int num_counters;
u64 (*read_counter)(unsigned int idx);
void (*write_counter)(unsigned int idx, u64 val);
const struct loongarch_perf_event *(*map_raw_event)(u64 config);
const struct loongarch_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
const struct loongarch_perf_event (*cache_event_map)
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX];
};
static struct loongarch_pmu loongarch_pmu;
#define M_PERFCTL_EVENT(event) (event & CSR_PERFCTRL_EVENT)
#define M_PERFCTL_COUNT_EVENT_WHENEVER (CSR_PERFCTRL_PLV0 | \
CSR_PERFCTRL_PLV1 | \
CSR_PERFCTRL_PLV2 | \
CSR_PERFCTRL_PLV3 | \
CSR_PERFCTRL_IE)
#define M_PERFCTL_CONFIG_MASK 0x1f0000
static void pause_local_counters(void);
static void resume_local_counters(void);
static u64 loongarch_pmu_read_counter(unsigned int idx)
{
u64 val = -1;
switch (idx) {
case 0:
val = read_csr_perfcntr0();
break;
case 1:
val = read_csr_perfcntr1();
break;
case 2:
val = read_csr_perfcntr2();
break;
case 3:
val = read_csr_perfcntr3();
break;
default:
WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
return 0;
}
return val;
}
static void loongarch_pmu_write_counter(unsigned int idx, u64 val)
{
switch (idx) {
case 0:
write_csr_perfcntr0(val);
return;
case 1:
write_csr_perfcntr1(val);
return;
case 2:
write_csr_perfcntr2(val);
return;
case 3:
write_csr_perfcntr3(val);
return;
default:
WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
return;
}
}
static unsigned int loongarch_pmu_read_control(unsigned int idx)
{
unsigned int val = -1;
switch (idx) {
case 0:
val = read_csr_perfctrl0();
break;
case 1:
val = read_csr_perfctrl1();
break;
case 2:
val = read_csr_perfctrl2();
break;
case 3:
val = read_csr_perfctrl3();
break;
default:
WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
return 0;
}
return val;
}
static void loongarch_pmu_write_control(unsigned int idx, unsigned int val)
{
switch (idx) {
case 0:
write_csr_perfctrl0(val);
return;
case 1:
write_csr_perfctrl1(val);
return;
case 2:
write_csr_perfctrl2(val);
return;
case 3:
write_csr_perfctrl3(val);
return;
default:
WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
return;
}
}
static int loongarch_pmu_alloc_counter(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc)
{
int i;
for (i = 0; i < loongarch_pmu.num_counters; i++) {
if (!test_and_set_bit(i, cpuc->used_mask))
return i;
}
return -EAGAIN;
}
static void loongarch_pmu_enable_event(struct hw_perf_event *evt, int idx)
{
unsigned int cpu;
struct perf_event *event = container_of(evt, struct perf_event, hw);
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
WARN_ON(idx < 0 || idx >= loongarch_pmu.num_counters);
/* Make sure interrupt enabled. */
cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base) |
(evt->config_base & M_PERFCTL_CONFIG_MASK) | CSR_PERFCTRL_IE;
cpu = (event->cpu >= 0) ? event->cpu : smp_processor_id();
/*
* We do not actually let the counter run. Leave it until start().
*/
pr_debug("Enabling perf counter for CPU%d\n", cpu);
}
static void loongarch_pmu_disable_event(int idx)
{
unsigned long flags;
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
WARN_ON(idx < 0 || idx >= loongarch_pmu.num_counters);
local_irq_save(flags);
cpuc->saved_ctrl[idx] = loongarch_pmu_read_control(idx) &
~M_PERFCTL_COUNT_EVENT_WHENEVER;
loongarch_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
local_irq_restore(flags);
}
static int loongarch_pmu_event_set_period(struct perf_event *event,
struct hw_perf_event *hwc,
int idx)
{
int ret = 0;
u64 left = local64_read(&hwc->period_left);
u64 period = hwc->sample_period;
if (unlikely((left + period) & (1ULL << 63))) {
/* left underflowed by more than period. */
left = period;
local64_set(&hwc->period_left, left);
hwc->last_period = period;
ret = 1;
} else if (unlikely((left + period) <= period)) {
/* left underflowed by less than period. */
left += period;
local64_set(&hwc->period_left, left);
hwc->last_period = period;
ret = 1;
}
if (left > loongarch_pmu.max_period) {
left = loongarch_pmu.max_period;
local64_set(&hwc->period_left, left);
}
local64_set(&hwc->prev_count, loongarch_pmu.overflow - left);
loongarch_pmu.write_counter(idx, loongarch_pmu.overflow - left);
perf_event_update_userpage(event);
return ret;
}
static void loongarch_pmu_event_update(struct perf_event *event,
struct hw_perf_event *hwc,
int idx)
{
u64 delta;
u64 prev_raw_count, new_raw_count;
again:
prev_raw_count = local64_read(&hwc->prev_count);
new_raw_count = loongarch_pmu.read_counter(idx);
if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
new_raw_count) != prev_raw_count)
goto again;
delta = new_raw_count - prev_raw_count;
local64_add(delta, &event->count);
local64_sub(delta, &hwc->period_left);
}
static void loongarch_pmu_start(struct perf_event *event, int flags)
{
struct hw_perf_event *hwc = &event->hw;
if (flags & PERF_EF_RELOAD)
WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
hwc->state = 0;
/* Set the period for the event. */
loongarch_pmu_event_set_period(event, hwc, hwc->idx);
/* Enable the event. */
loongarch_pmu_enable_event(hwc, hwc->idx);
}
static void loongarch_pmu_stop(struct perf_event *event, int flags)
{
struct hw_perf_event *hwc = &event->hw;
if (!(hwc->state & PERF_HES_STOPPED)) {
/* We are working on a local event. */
loongarch_pmu_disable_event(hwc->idx);
barrier();
loongarch_pmu_event_update(event, hwc, hwc->idx);
hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
}
}
static int loongarch_pmu_add(struct perf_event *event, int flags)
{
int idx, err = 0;
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
struct hw_perf_event *hwc = &event->hw;
perf_pmu_disable(event->pmu);
/* To look for a free counter for this event. */
idx = loongarch_pmu_alloc_counter(cpuc, hwc);
if (idx < 0) {
err = idx;
goto out;
}
/*
* If there is an event in the counter we are going to use then
* make sure it is disabled.
*/
event->hw.idx = idx;
loongarch_pmu_disable_event(idx);
cpuc->events[idx] = event;
hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
if (flags & PERF_EF_START)
loongarch_pmu_start(event, PERF_EF_RELOAD);
/* Propagate our changes to the userspace mapping. */
perf_event_update_userpage(event);
out:
perf_pmu_enable(event->pmu);
return err;
}
static void loongarch_pmu_del(struct perf_event *event, int flags)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
struct hw_perf_event *hwc = &event->hw;
int idx = hwc->idx;
WARN_ON(idx < 0 || idx >= loongarch_pmu.num_counters);
loongarch_pmu_stop(event, PERF_EF_UPDATE);
cpuc->events[idx] = NULL;
clear_bit(idx, cpuc->used_mask);
perf_event_update_userpage(event);
}
static void loongarch_pmu_read(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
/* Don't read disabled counters! */
if (hwc->idx < 0)
return;
loongarch_pmu_event_update(event, hwc, hwc->idx);
}
static void loongarch_pmu_enable(struct pmu *pmu)
{
resume_local_counters();
}
static void loongarch_pmu_disable(struct pmu *pmu)
{
pause_local_counters();
}
static DEFINE_MUTEX(pmu_reserve_mutex);
static atomic_t active_events = ATOMIC_INIT(0);
static int get_pmc_irq(void)
{
struct irq_domain *d = irq_find_matching_fwnode(cpuintc_handle, DOMAIN_BUS_ANY);
if (d)
return irq_create_mapping(d, EXCCODE_PMC - EXCCODE_INT_START);
return -EINVAL;
}
static void reset_counters(void *arg);
static int __hw_perf_event_init(struct perf_event *event);
static void hw_perf_event_destroy(struct perf_event *event)
{
if (atomic_dec_and_mutex_lock(&active_events, &pmu_reserve_mutex)) {
on_each_cpu(reset_counters, NULL, 1);
free_irq(get_pmc_irq(), &loongarch_pmu);
mutex_unlock(&pmu_reserve_mutex);
}
}
static void handle_associated_event(struct cpu_hw_events *cpuc, int idx,
struct perf_sample_data *data, struct pt_regs *regs)
{
struct perf_event *event = cpuc->events[idx];
struct hw_perf_event *hwc = &event->hw;
loongarch_pmu_event_update(event, hwc, idx);
data->period = event->hw.last_period;
if (!loongarch_pmu_event_set_period(event, hwc, idx))
return;
if (perf_event_overflow(event, data, regs))
loongarch_pmu_disable_event(idx);
}
static irqreturn_t pmu_handle_irq(int irq, void *dev)
{
int n;
int handled = IRQ_NONE;
uint64_t counter;
struct pt_regs *regs;
struct perf_sample_data data;
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
/*
* First we pause the local counters, so that when we are locked
* here, the counters are all paused. When it gets locked due to
* perf_disable(), the timer interrupt handler will be delayed.
*
* See also loongarch_pmu_start().
*/
pause_local_counters();
regs = get_irq_regs();
perf_sample_data_init(&data, 0, 0);
for (n = 0; n < loongarch_pmu.num_counters; n++) {
if (test_bit(n, cpuc->used_mask)) {
counter = loongarch_pmu.read_counter(n);
if (counter & loongarch_pmu.overflow) {
handle_associated_event(cpuc, n, &data, regs);
handled = IRQ_HANDLED;
}
}
}
resume_local_counters();
/*
* Do all the work for the pending perf events. We can do this
* in here because the performance counter interrupt is a regular
* interrupt, not NMI.
*/
if (handled == IRQ_HANDLED)
irq_work_run();
return handled;
}
static int loongarch_pmu_event_init(struct perf_event *event)
{
int r, irq;
unsigned long flags;
/* does not support taken branch sampling */
if (has_branch_stack(event))
return -EOPNOTSUPP;
switch (event->attr.type) {
case PERF_TYPE_RAW:
case PERF_TYPE_HARDWARE:
case PERF_TYPE_HW_CACHE:
break;
default:
/* Init it to avoid false validate_group */
event->hw.event_base = 0xffffffff;
return -ENOENT;
}
if (event->cpu >= 0 && !cpu_online(event->cpu))
return -ENODEV;
irq = get_pmc_irq();
flags = IRQF_PERCPU | IRQF_NOBALANCING | IRQF_NO_THREAD | IRQF_NO_SUSPEND | IRQF_SHARED;
if (!atomic_inc_not_zero(&active_events)) {
mutex_lock(&pmu_reserve_mutex);
if (atomic_read(&active_events) == 0) {
r = request_irq(irq, pmu_handle_irq, flags, "Perf_PMU", &loongarch_pmu);
if (r < 0) {
mutex_unlock(&pmu_reserve_mutex);
pr_warn("PMU IRQ request failed\n");
return -ENODEV;
}
}
atomic_inc(&active_events);
mutex_unlock(&pmu_reserve_mutex);
}
return __hw_perf_event_init(event);
}
static struct pmu pmu = {
.pmu_enable = loongarch_pmu_enable,
.pmu_disable = loongarch_pmu_disable,
.event_init = loongarch_pmu_event_init,
.add = loongarch_pmu_add,
.del = loongarch_pmu_del,
.start = loongarch_pmu_start,
.stop = loongarch_pmu_stop,
.read = loongarch_pmu_read,
};
static unsigned int loongarch_pmu_perf_event_encode(const struct loongarch_perf_event *pev)
{
return M_PERFCTL_EVENT(pev->event_id);
}
static const struct loongarch_perf_event *loongarch_pmu_map_general_event(int idx)
{
const struct loongarch_perf_event *pev;
pev = &(*loongarch_pmu.general_event_map)[idx];
if (pev->event_id == HW_OP_UNSUPPORTED)
return ERR_PTR(-ENOENT);
return pev;
}
static const struct loongarch_perf_event *loongarch_pmu_map_cache_event(u64 config)
{
unsigned int cache_type, cache_op, cache_result;
const struct loongarch_perf_event *pev;
cache_type = (config >> 0) & 0xff;
if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
return ERR_PTR(-EINVAL);
cache_op = (config >> 8) & 0xff;
if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
return ERR_PTR(-EINVAL);
cache_result = (config >> 16) & 0xff;
if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
return ERR_PTR(-EINVAL);
pev = &((*loongarch_pmu.cache_event_map)
[cache_type]
[cache_op]
[cache_result]);
if (pev->event_id == CACHE_OP_UNSUPPORTED)
return ERR_PTR(-ENOENT);
return pev;
}
static int validate_group(struct perf_event *event)
{
struct cpu_hw_events fake_cpuc;
struct perf_event *sibling, *leader = event->group_leader;
memset(&fake_cpuc, 0, sizeof(fake_cpuc));
if (loongarch_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
return -EINVAL;
for_each_sibling_event(sibling, leader) {
if (loongarch_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
return -EINVAL;
}
if (loongarch_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
return -EINVAL;
return 0;
}
static void reset_counters(void *arg)
{
int n;
int counters = loongarch_pmu.num_counters;
for (n = 0; n < counters; n++) {
loongarch_pmu_write_control(n, 0);
loongarch_pmu.write_counter(n, 0);
}
}
static const struct loongarch_perf_event loongson_event_map[PERF_COUNT_HW_MAX] = {
PERF_MAP_ALL_UNSUPPORTED,
[PERF_COUNT_HW_CPU_CYCLES] = { 0x00 },
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01 },
[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x08 },
[PERF_COUNT_HW_CACHE_MISSES] = { 0x09 },
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02 },
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x03 },
};
static const struct loongarch_perf_event loongson_cache_map
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
PERF_CACHE_MAP_ALL_UNSUPPORTED,
[C(L1D)] = {
/*
* Like some other architectures (e.g. ARM), the performance
* counters don't differentiate between read and write
* accesses/misses, so this isn't strictly correct, but it's the
* best we can do. Writes and reads get combined.
*/
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x8 },
[C(RESULT_MISS)] = { 0x9 },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x8 },
[C(RESULT_MISS)] = { 0x9 },
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = { 0xaa },
[C(RESULT_MISS)] = { 0xa9 },
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x6 },
[C(RESULT_MISS)] = { 0x7 },
},
},
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0xc },
[C(RESULT_MISS)] = { 0xd },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0xc },
[C(RESULT_MISS)] = { 0xd },
},
},
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_MISS)] = { 0x3b },
},
},
[C(DTLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x4 },
[C(RESULT_MISS)] = { 0x3c },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x4 },
[C(RESULT_MISS)] = { 0x3c },
},
},
[C(BPU)] = {
/* Using the same code for *HW_BRANCH* */
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x02 },
[C(RESULT_MISS)] = { 0x03 },
},
},
};
static int __hw_perf_event_init(struct perf_event *event)
{
int err;
struct hw_perf_event *hwc = &event->hw;
struct perf_event_attr *attr = &event->attr;
const struct loongarch_perf_event *pev;
/* Returning LoongArch event descriptor for generic perf event. */
if (PERF_TYPE_HARDWARE == event->attr.type) {
if (event->attr.config >= PERF_COUNT_HW_MAX)
return -EINVAL;
pev = loongarch_pmu_map_general_event(event->attr.config);
} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
pev = loongarch_pmu_map_cache_event(event->attr.config);
} else if (PERF_TYPE_RAW == event->attr.type) {
/* We are working on the global raw event. */
mutex_lock(&raw_event_mutex);
pev = loongarch_pmu.map_raw_event(event->attr.config);
} else {
/* The event type is not (yet) supported. */
return -EOPNOTSUPP;
}
if (IS_ERR(pev)) {
if (PERF_TYPE_RAW == event->attr.type)
mutex_unlock(&raw_event_mutex);
return PTR_ERR(pev);
}
/*
* We allow max flexibility on how each individual counter shared
* by the single CPU operates (the mode exclusion and the range).
*/
hwc->config_base = CSR_PERFCTRL_IE;
hwc->event_base = loongarch_pmu_perf_event_encode(pev);
if (PERF_TYPE_RAW == event->attr.type)
mutex_unlock(&raw_event_mutex);
if (!attr->exclude_user) {
hwc->config_base |= CSR_PERFCTRL_PLV3;
hwc->config_base |= CSR_PERFCTRL_PLV2;
}
if (!attr->exclude_kernel) {
hwc->config_base |= CSR_PERFCTRL_PLV0;
}
if (!attr->exclude_hv) {
hwc->config_base |= CSR_PERFCTRL_PLV1;
}
hwc->config_base &= M_PERFCTL_CONFIG_MASK;
/*
* The event can belong to another cpu. We do not assign a local
* counter for it for now.
*/
hwc->idx = -1;
hwc->config = 0;
if (!hwc->sample_period) {
hwc->sample_period = loongarch_pmu.max_period;
hwc->last_period = hwc->sample_period;
local64_set(&hwc->period_left, hwc->sample_period);
}
err = 0;
if (event->group_leader != event)
err = validate_group(event);
event->destroy = hw_perf_event_destroy;
if (err)
event->destroy(event);
return err;
}
static void pause_local_counters(void)
{
unsigned long flags;
int ctr = loongarch_pmu.num_counters;
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
local_irq_save(flags);
do {
ctr--;
cpuc->saved_ctrl[ctr] = loongarch_pmu_read_control(ctr);
loongarch_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
~M_PERFCTL_COUNT_EVENT_WHENEVER);
} while (ctr > 0);
local_irq_restore(flags);
}
static void resume_local_counters(void)
{
int ctr = loongarch_pmu.num_counters;
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
do {
ctr--;
loongarch_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
} while (ctr > 0);
}
static const struct loongarch_perf_event *loongarch_pmu_map_raw_event(u64 config)
{
raw_event.event_id = M_PERFCTL_EVENT(config);
return &raw_event;
}
static int __init init_hw_perf_events(void)
{
int counters;
if (!cpu_has_pmp)
return -ENODEV;
pr_info("Performance counters: ");
counters = ((read_cpucfg(LOONGARCH_CPUCFG6) & CPUCFG6_PMNUM) >> 4) + 1;
loongarch_pmu.num_counters = counters;
loongarch_pmu.max_period = (1ULL << 63) - 1;
loongarch_pmu.valid_count = (1ULL << 63) - 1;
loongarch_pmu.overflow = 1ULL << 63;
loongarch_pmu.name = "loongarch/loongson64";
loongarch_pmu.read_counter = loongarch_pmu_read_counter;
loongarch_pmu.write_counter = loongarch_pmu_write_counter;
loongarch_pmu.map_raw_event = loongarch_pmu_map_raw_event;
loongarch_pmu.general_event_map = &loongson_event_map;
loongarch_pmu.cache_event_map = &loongson_cache_map;
on_each_cpu(reset_counters, NULL, 1);
pr_cont("%s PMU enabled, %d %d-bit counters available to each CPU.\n",
loongarch_pmu.name, counters, 64);
perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
return 0;
}
early_initcall(init_hw_perf_events);