648 lines
20 KiB
C
648 lines
20 KiB
C
|
/* SPDX-License-Identifier: GPL-2.0 */
|
||
|
#ifndef _ASM_POWERPC_BOOK3S_32_PGTABLE_H
|
||
|
#define _ASM_POWERPC_BOOK3S_32_PGTABLE_H
|
||
|
|
||
|
#include <asm-generic/pgtable-nopmd.h>
|
||
|
|
||
|
/*
|
||
|
* The "classic" 32-bit implementation of the PowerPC MMU uses a hash
|
||
|
* table containing PTEs, together with a set of 16 segment registers,
|
||
|
* to define the virtual to physical address mapping.
|
||
|
*
|
||
|
* We use the hash table as an extended TLB, i.e. a cache of currently
|
||
|
* active mappings. We maintain a two-level page table tree, much
|
||
|
* like that used by the i386, for the sake of the Linux memory
|
||
|
* management code. Low-level assembler code in hash_low_32.S
|
||
|
* (procedure hash_page) is responsible for extracting ptes from the
|
||
|
* tree and putting them into the hash table when necessary, and
|
||
|
* updating the accessed and modified bits in the page table tree.
|
||
|
*/
|
||
|
|
||
|
#define _PAGE_PRESENT 0x001 /* software: pte contains a translation */
|
||
|
#define _PAGE_HASHPTE 0x002 /* hash_page has made an HPTE for this pte */
|
||
|
#define _PAGE_USER 0x004 /* usermode access allowed */
|
||
|
#define _PAGE_GUARDED 0x008 /* G: prohibit speculative access */
|
||
|
#define _PAGE_COHERENT 0x010 /* M: enforce memory coherence (SMP systems) */
|
||
|
#define _PAGE_NO_CACHE 0x020 /* I: cache inhibit */
|
||
|
#define _PAGE_WRITETHRU 0x040 /* W: cache write-through */
|
||
|
#define _PAGE_DIRTY 0x080 /* C: page changed */
|
||
|
#define _PAGE_ACCESSED 0x100 /* R: page referenced */
|
||
|
#define _PAGE_EXEC 0x200 /* software: exec allowed */
|
||
|
#define _PAGE_RW 0x400 /* software: user write access allowed */
|
||
|
#define _PAGE_SPECIAL 0x800 /* software: Special page */
|
||
|
|
||
|
#ifdef CONFIG_PTE_64BIT
|
||
|
/* We never clear the high word of the pte */
|
||
|
#define _PTE_NONE_MASK (0xffffffff00000000ULL | _PAGE_HASHPTE)
|
||
|
#else
|
||
|
#define _PTE_NONE_MASK _PAGE_HASHPTE
|
||
|
#endif
|
||
|
|
||
|
#define _PMD_PRESENT 0
|
||
|
#define _PMD_PRESENT_MASK (PAGE_MASK)
|
||
|
#define _PMD_BAD (~PAGE_MASK)
|
||
|
|
||
|
/* We borrow the _PAGE_USER bit to store the exclusive marker in swap PTEs. */
|
||
|
#define _PAGE_SWP_EXCLUSIVE _PAGE_USER
|
||
|
|
||
|
/* And here we include common definitions */
|
||
|
|
||
|
#define _PAGE_KERNEL_RO 0
|
||
|
#define _PAGE_KERNEL_ROX (_PAGE_EXEC)
|
||
|
#define _PAGE_KERNEL_RW (_PAGE_DIRTY | _PAGE_RW)
|
||
|
#define _PAGE_KERNEL_RWX (_PAGE_DIRTY | _PAGE_RW | _PAGE_EXEC)
|
||
|
|
||
|
#define _PAGE_HPTEFLAGS _PAGE_HASHPTE
|
||
|
|
||
|
#ifndef __ASSEMBLY__
|
||
|
|
||
|
static inline bool pte_user(pte_t pte)
|
||
|
{
|
||
|
return pte_val(pte) & _PAGE_USER;
|
||
|
}
|
||
|
#endif /* __ASSEMBLY__ */
|
||
|
|
||
|
/*
|
||
|
* Location of the PFN in the PTE. Most 32-bit platforms use the same
|
||
|
* as _PAGE_SHIFT here (ie, naturally aligned).
|
||
|
* Platform who don't just pre-define the value so we don't override it here.
|
||
|
*/
|
||
|
#define PTE_RPN_SHIFT (PAGE_SHIFT)
|
||
|
|
||
|
/*
|
||
|
* The mask covered by the RPN must be a ULL on 32-bit platforms with
|
||
|
* 64-bit PTEs.
|
||
|
*/
|
||
|
#ifdef CONFIG_PTE_64BIT
|
||
|
#define PTE_RPN_MASK (~((1ULL << PTE_RPN_SHIFT) - 1))
|
||
|
#define MAX_POSSIBLE_PHYSMEM_BITS 36
|
||
|
#else
|
||
|
#define PTE_RPN_MASK (~((1UL << PTE_RPN_SHIFT) - 1))
|
||
|
#define MAX_POSSIBLE_PHYSMEM_BITS 32
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* _PAGE_CHG_MASK masks of bits that are to be preserved across
|
||
|
* pgprot changes.
|
||
|
*/
|
||
|
#define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HASHPTE | _PAGE_DIRTY | \
|
||
|
_PAGE_ACCESSED | _PAGE_SPECIAL)
|
||
|
|
||
|
/*
|
||
|
* We define 2 sets of base prot bits, one for basic pages (ie,
|
||
|
* cacheable kernel and user pages) and one for non cacheable
|
||
|
* pages. We always set _PAGE_COHERENT when SMP is enabled or
|
||
|
* the processor might need it for DMA coherency.
|
||
|
*/
|
||
|
#define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED)
|
||
|
#define _PAGE_BASE (_PAGE_BASE_NC | _PAGE_COHERENT)
|
||
|
|
||
|
/*
|
||
|
* Permission masks used to generate the __P and __S table.
|
||
|
*
|
||
|
* Note:__pgprot is defined in arch/powerpc/include/asm/page.h
|
||
|
*
|
||
|
* Write permissions imply read permissions for now.
|
||
|
*/
|
||
|
#define PAGE_NONE __pgprot(_PAGE_BASE)
|
||
|
#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
|
||
|
#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
|
||
|
#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
|
||
|
#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
|
||
|
#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
|
||
|
#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
|
||
|
|
||
|
/* Permission masks used for kernel mappings */
|
||
|
#define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
|
||
|
#define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE)
|
||
|
#define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE | _PAGE_GUARDED)
|
||
|
#define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
|
||
|
#define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
|
||
|
#define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
|
||
|
|
||
|
#define PTE_INDEX_SIZE PTE_SHIFT
|
||
|
#define PMD_INDEX_SIZE 0
|
||
|
#define PUD_INDEX_SIZE 0
|
||
|
#define PGD_INDEX_SIZE (32 - PGDIR_SHIFT)
|
||
|
|
||
|
#define PMD_CACHE_INDEX PMD_INDEX_SIZE
|
||
|
#define PUD_CACHE_INDEX PUD_INDEX_SIZE
|
||
|
|
||
|
#ifndef __ASSEMBLY__
|
||
|
#define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_INDEX_SIZE)
|
||
|
#define PMD_TABLE_SIZE 0
|
||
|
#define PUD_TABLE_SIZE 0
|
||
|
#define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE)
|
||
|
|
||
|
/* Bits to mask out from a PMD to get to the PTE page */
|
||
|
#define PMD_MASKED_BITS (PTE_TABLE_SIZE - 1)
|
||
|
#endif /* __ASSEMBLY__ */
|
||
|
|
||
|
#define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
|
||
|
#define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
|
||
|
|
||
|
/*
|
||
|
* The normal case is that PTEs are 32-bits and we have a 1-page
|
||
|
* 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
|
||
|
*
|
||
|
* For any >32-bit physical address platform, we can use the following
|
||
|
* two level page table layout where the pgdir is 8KB and the MS 13 bits
|
||
|
* are an index to the second level table. The combined pgdir/pmd first
|
||
|
* level has 2048 entries and the second level has 512 64-bit PTE entries.
|
||
|
* -Matt
|
||
|
*/
|
||
|
/* PGDIR_SHIFT determines what a top-level page table entry can map */
|
||
|
#define PGDIR_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
|
||
|
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
|
||
|
#define PGDIR_MASK (~(PGDIR_SIZE-1))
|
||
|
|
||
|
#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
|
||
|
|
||
|
#ifndef __ASSEMBLY__
|
||
|
|
||
|
int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot);
|
||
|
void unmap_kernel_page(unsigned long va);
|
||
|
|
||
|
#endif /* !__ASSEMBLY__ */
|
||
|
|
||
|
/*
|
||
|
* This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
|
||
|
* value (for now) on others, from where we can start layout kernel
|
||
|
* virtual space that goes below PKMAP and FIXMAP
|
||
|
*/
|
||
|
#include <asm/fixmap.h>
|
||
|
|
||
|
/*
|
||
|
* ioremap_bot starts at that address. Early ioremaps move down from there,
|
||
|
* until mem_init() at which point this becomes the top of the vmalloc
|
||
|
* and ioremap space
|
||
|
*/
|
||
|
#ifdef CONFIG_HIGHMEM
|
||
|
#define IOREMAP_TOP PKMAP_BASE
|
||
|
#else
|
||
|
#define IOREMAP_TOP FIXADDR_START
|
||
|
#endif
|
||
|
|
||
|
/* PPC32 shares vmalloc area with ioremap */
|
||
|
#define IOREMAP_START VMALLOC_START
|
||
|
#define IOREMAP_END VMALLOC_END
|
||
|
|
||
|
/*
|
||
|
* Just any arbitrary offset to the start of the vmalloc VM area: the
|
||
|
* current 16MB value just means that there will be a 64MB "hole" after the
|
||
|
* physical memory until the kernel virtual memory starts. That means that
|
||
|
* any out-of-bounds memory accesses will hopefully be caught.
|
||
|
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
|
||
|
* area for the same reason. ;)
|
||
|
*
|
||
|
* We no longer map larger than phys RAM with the BATs so we don't have
|
||
|
* to worry about the VMALLOC_OFFSET causing problems. We do have to worry
|
||
|
* about clashes between our early calls to ioremap() that start growing down
|
||
|
* from ioremap_base being run into the VM area allocations (growing upwards
|
||
|
* from VMALLOC_START). For this reason we have ioremap_bot to check when
|
||
|
* we actually run into our mappings setup in the early boot with the VM
|
||
|
* system. This really does become a problem for machines with good amounts
|
||
|
* of RAM. -- Cort
|
||
|
*/
|
||
|
#define VMALLOC_OFFSET (0x1000000) /* 16M */
|
||
|
|
||
|
#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
|
||
|
|
||
|
#ifdef CONFIG_KASAN_VMALLOC
|
||
|
#define VMALLOC_END ALIGN_DOWN(ioremap_bot, PAGE_SIZE << KASAN_SHADOW_SCALE_SHIFT)
|
||
|
#else
|
||
|
#define VMALLOC_END ioremap_bot
|
||
|
#endif
|
||
|
|
||
|
#define MODULES_END ALIGN_DOWN(PAGE_OFFSET, SZ_256M)
|
||
|
#define MODULES_VADDR (MODULES_END - SZ_256M)
|
||
|
|
||
|
#ifndef __ASSEMBLY__
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/threads.h>
|
||
|
|
||
|
/* Bits to mask out from a PGD to get to the PUD page */
|
||
|
#define PGD_MASKED_BITS 0
|
||
|
|
||
|
#define pte_ERROR(e) \
|
||
|
pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
|
||
|
(unsigned long long)pte_val(e))
|
||
|
#define pgd_ERROR(e) \
|
||
|
pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
|
||
|
/*
|
||
|
* Bits in a linux-style PTE. These match the bits in the
|
||
|
* (hardware-defined) PowerPC PTE as closely as possible.
|
||
|
*/
|
||
|
|
||
|
#define pte_clear(mm, addr, ptep) \
|
||
|
do { pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0); } while (0)
|
||
|
|
||
|
#define pmd_none(pmd) (!pmd_val(pmd))
|
||
|
#define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD)
|
||
|
#define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK)
|
||
|
static inline void pmd_clear(pmd_t *pmdp)
|
||
|
{
|
||
|
*pmdp = __pmd(0);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* When flushing the tlb entry for a page, we also need to flush the hash
|
||
|
* table entry. flush_hash_pages is assembler (for speed) in hashtable.S.
|
||
|
*/
|
||
|
extern int flush_hash_pages(unsigned context, unsigned long va,
|
||
|
unsigned long pmdval, int count);
|
||
|
|
||
|
/* Add an HPTE to the hash table */
|
||
|
extern void add_hash_page(unsigned context, unsigned long va,
|
||
|
unsigned long pmdval);
|
||
|
|
||
|
/* Flush an entry from the TLB/hash table */
|
||
|
static inline void flush_hash_entry(struct mm_struct *mm, pte_t *ptep, unsigned long addr)
|
||
|
{
|
||
|
if (mmu_has_feature(MMU_FTR_HPTE_TABLE)) {
|
||
|
unsigned long ptephys = __pa(ptep) & PAGE_MASK;
|
||
|
|
||
|
flush_hash_pages(mm->context.id, addr, ptephys, 1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* PTE updates. This function is called whenever an existing
|
||
|
* valid PTE is updated. This does -not- include set_pte_at()
|
||
|
* which nowadays only sets a new PTE.
|
||
|
*
|
||
|
* Depending on the type of MMU, we may need to use atomic updates
|
||
|
* and the PTE may be either 32 or 64 bit wide. In the later case,
|
||
|
* when using atomic updates, only the low part of the PTE is
|
||
|
* accessed atomically.
|
||
|
*/
|
||
|
static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
|
||
|
unsigned long clr, unsigned long set, int huge)
|
||
|
{
|
||
|
pte_basic_t old;
|
||
|
|
||
|
if (mmu_has_feature(MMU_FTR_HPTE_TABLE)) {
|
||
|
unsigned long tmp;
|
||
|
|
||
|
asm volatile(
|
||
|
#ifndef CONFIG_PTE_64BIT
|
||
|
"1: lwarx %0, 0, %3\n"
|
||
|
" andc %1, %0, %4\n"
|
||
|
#else
|
||
|
"1: lwarx %L0, 0, %3\n"
|
||
|
" lwz %0, -4(%3)\n"
|
||
|
" andc %1, %L0, %4\n"
|
||
|
#endif
|
||
|
" or %1, %1, %5\n"
|
||
|
" stwcx. %1, 0, %3\n"
|
||
|
" bne- 1b"
|
||
|
: "=&r" (old), "=&r" (tmp), "=m" (*p)
|
||
|
#ifndef CONFIG_PTE_64BIT
|
||
|
: "r" (p),
|
||
|
#else
|
||
|
: "b" ((unsigned long)(p) + 4),
|
||
|
#endif
|
||
|
"r" (clr), "r" (set), "m" (*p)
|
||
|
: "cc" );
|
||
|
} else {
|
||
|
old = pte_val(*p);
|
||
|
|
||
|
*p = __pte((old & ~(pte_basic_t)clr) | set);
|
||
|
}
|
||
|
|
||
|
return old;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* 2.6 calls this without flushing the TLB entry; this is wrong
|
||
|
* for our hash-based implementation, we fix that up here.
|
||
|
*/
|
||
|
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
|
||
|
static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
|
||
|
unsigned long addr, pte_t *ptep)
|
||
|
{
|
||
|
unsigned long old;
|
||
|
old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
|
||
|
if (old & _PAGE_HASHPTE)
|
||
|
flush_hash_entry(mm, ptep, addr);
|
||
|
|
||
|
return (old & _PAGE_ACCESSED) != 0;
|
||
|
}
|
||
|
#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
|
||
|
__ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep)
|
||
|
|
||
|
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
|
||
|
static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
|
||
|
pte_t *ptep)
|
||
|
{
|
||
|
return __pte(pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0));
|
||
|
}
|
||
|
|
||
|
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
|
||
|
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
|
||
|
pte_t *ptep)
|
||
|
{
|
||
|
pte_update(mm, addr, ptep, _PAGE_RW, 0, 0);
|
||
|
}
|
||
|
|
||
|
static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
|
||
|
pte_t *ptep, pte_t entry,
|
||
|
unsigned long address,
|
||
|
int psize)
|
||
|
{
|
||
|
unsigned long set = pte_val(entry) &
|
||
|
(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
|
||
|
|
||
|
pte_update(vma->vm_mm, address, ptep, 0, set, 0);
|
||
|
|
||
|
flush_tlb_page(vma, address);
|
||
|
}
|
||
|
|
||
|
#define __HAVE_ARCH_PTE_SAME
|
||
|
#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
|
||
|
|
||
|
#define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT)
|
||
|
#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
|
||
|
|
||
|
/*
|
||
|
* Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
|
||
|
* are !pte_none() && !pte_present().
|
||
|
*
|
||
|
* Format of swap PTEs (32bit PTEs):
|
||
|
*
|
||
|
* 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
|
||
|
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
|
||
|
* <----------------- offset --------------------> < type -> E H P
|
||
|
*
|
||
|
* E is the exclusive marker that is not stored in swap entries.
|
||
|
* _PAGE_PRESENT (P) and __PAGE_HASHPTE (H) must be 0.
|
||
|
*
|
||
|
* For 64bit PTEs, the offset is extended by 32bit.
|
||
|
*/
|
||
|
#define __swp_type(entry) ((entry).val & 0x1f)
|
||
|
#define __swp_offset(entry) ((entry).val >> 5)
|
||
|
#define __swp_entry(type, offset) ((swp_entry_t) { ((type) & 0x1f) | ((offset) << 5) })
|
||
|
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 })
|
||
|
#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 })
|
||
|
|
||
|
static inline int pte_swp_exclusive(pte_t pte)
|
||
|
{
|
||
|
return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_swp_mkexclusive(pte_t pte)
|
||
|
{
|
||
|
return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_swp_clear_exclusive(pte_t pte)
|
||
|
{
|
||
|
return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);
|
||
|
}
|
||
|
|
||
|
/* Generic accessors to PTE bits */
|
||
|
static inline int pte_write(pte_t pte) { return !!(pte_val(pte) & _PAGE_RW);}
|
||
|
static inline int pte_read(pte_t pte) { return 1; }
|
||
|
static inline int pte_dirty(pte_t pte) { return !!(pte_val(pte) & _PAGE_DIRTY); }
|
||
|
static inline int pte_young(pte_t pte) { return !!(pte_val(pte) & _PAGE_ACCESSED); }
|
||
|
static inline int pte_special(pte_t pte) { return !!(pte_val(pte) & _PAGE_SPECIAL); }
|
||
|
static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
|
||
|
static inline bool pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }
|
||
|
|
||
|
static inline int pte_present(pte_t pte)
|
||
|
{
|
||
|
return pte_val(pte) & _PAGE_PRESENT;
|
||
|
}
|
||
|
|
||
|
static inline bool pte_hw_valid(pte_t pte)
|
||
|
{
|
||
|
return pte_val(pte) & _PAGE_PRESENT;
|
||
|
}
|
||
|
|
||
|
static inline bool pte_hashpte(pte_t pte)
|
||
|
{
|
||
|
return !!(pte_val(pte) & _PAGE_HASHPTE);
|
||
|
}
|
||
|
|
||
|
static inline bool pte_ci(pte_t pte)
|
||
|
{
|
||
|
return !!(pte_val(pte) & _PAGE_NO_CACHE);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We only find page table entry in the last level
|
||
|
* Hence no need for other accessors
|
||
|
*/
|
||
|
#define pte_access_permitted pte_access_permitted
|
||
|
static inline bool pte_access_permitted(pte_t pte, bool write)
|
||
|
{
|
||
|
/*
|
||
|
* A read-only access is controlled by _PAGE_USER bit.
|
||
|
* We have _PAGE_READ set for WRITE and EXECUTE
|
||
|
*/
|
||
|
if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
|
||
|
return false;
|
||
|
|
||
|
if (write && !pte_write(pte))
|
||
|
return false;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/* Conversion functions: convert a page and protection to a page entry,
|
||
|
* and a page entry and page directory to the page they refer to.
|
||
|
*
|
||
|
* Even if PTEs can be unsigned long long, a PFN is always an unsigned
|
||
|
* long for now.
|
||
|
*/
|
||
|
static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
|
||
|
{
|
||
|
return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
|
||
|
pgprot_val(pgprot));
|
||
|
}
|
||
|
|
||
|
static inline unsigned long pte_pfn(pte_t pte)
|
||
|
{
|
||
|
return pte_val(pte) >> PTE_RPN_SHIFT;
|
||
|
}
|
||
|
|
||
|
/* Generic modifiers for PTE bits */
|
||
|
static inline pte_t pte_wrprotect(pte_t pte)
|
||
|
{
|
||
|
return __pte(pte_val(pte) & ~_PAGE_RW);
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_exprotect(pte_t pte)
|
||
|
{
|
||
|
return __pte(pte_val(pte) & ~_PAGE_EXEC);
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_mkclean(pte_t pte)
|
||
|
{
|
||
|
return __pte(pte_val(pte) & ~_PAGE_DIRTY);
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_mkold(pte_t pte)
|
||
|
{
|
||
|
return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_mkexec(pte_t pte)
|
||
|
{
|
||
|
return __pte(pte_val(pte) | _PAGE_EXEC);
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_mkpte(pte_t pte)
|
||
|
{
|
||
|
return pte;
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_mkwrite(pte_t pte)
|
||
|
{
|
||
|
return __pte(pte_val(pte) | _PAGE_RW);
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_mkdirty(pte_t pte)
|
||
|
{
|
||
|
return __pte(pte_val(pte) | _PAGE_DIRTY);
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_mkyoung(pte_t pte)
|
||
|
{
|
||
|
return __pte(pte_val(pte) | _PAGE_ACCESSED);
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_mkspecial(pte_t pte)
|
||
|
{
|
||
|
return __pte(pte_val(pte) | _PAGE_SPECIAL);
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_mkhuge(pte_t pte)
|
||
|
{
|
||
|
return pte;
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_mkprivileged(pte_t pte)
|
||
|
{
|
||
|
return __pte(pte_val(pte) & ~_PAGE_USER);
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_mkuser(pte_t pte)
|
||
|
{
|
||
|
return __pte(pte_val(pte) | _PAGE_USER);
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
|
||
|
{
|
||
|
return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/* This low level function performs the actual PTE insertion
|
||
|
* Setting the PTE depends on the MMU type and other factors. It's
|
||
|
* an horrible mess that I'm not going to try to clean up now but
|
||
|
* I'm keeping it in one place rather than spread around
|
||
|
*/
|
||
|
static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
|
||
|
pte_t *ptep, pte_t pte, int percpu)
|
||
|
{
|
||
|
#if defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
|
||
|
/* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
|
||
|
* helper pte_update() which does an atomic update. We need to do that
|
||
|
* because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
|
||
|
* per-CPU PTE such as a kmap_atomic, we do a simple update preserving
|
||
|
* the hash bits instead (ie, same as the non-SMP case)
|
||
|
*/
|
||
|
if (percpu)
|
||
|
*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
|
||
|
| (pte_val(pte) & ~_PAGE_HASHPTE));
|
||
|
else
|
||
|
pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, pte_val(pte), 0);
|
||
|
|
||
|
#elif defined(CONFIG_PTE_64BIT)
|
||
|
/* Second case is 32-bit with 64-bit PTE. In this case, we
|
||
|
* can just store as long as we do the two halves in the right order
|
||
|
* with a barrier in between. This is possible because we take care,
|
||
|
* in the hash code, to pre-invalidate if the PTE was already hashed,
|
||
|
* which synchronizes us with any concurrent invalidation.
|
||
|
* In the percpu case, we also fallback to the simple update preserving
|
||
|
* the hash bits
|
||
|
*/
|
||
|
if (percpu) {
|
||
|
*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
|
||
|
| (pte_val(pte) & ~_PAGE_HASHPTE));
|
||
|
return;
|
||
|
}
|
||
|
if (pte_val(*ptep) & _PAGE_HASHPTE)
|
||
|
flush_hash_entry(mm, ptep, addr);
|
||
|
__asm__ __volatile__("\
|
||
|
stw%X0 %2,%0\n\
|
||
|
eieio\n\
|
||
|
stw%X1 %L2,%1"
|
||
|
: "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
|
||
|
: "r" (pte) : "memory");
|
||
|
|
||
|
#else
|
||
|
/* Third case is 32-bit hash table in UP mode, we need to preserve
|
||
|
* the _PAGE_HASHPTE bit since we may not have invalidated the previous
|
||
|
* translation in the hash yet (done in a subsequent flush_tlb_xxx())
|
||
|
* and see we need to keep track that this PTE needs invalidating
|
||
|
*/
|
||
|
*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
|
||
|
| (pte_val(pte) & ~_PAGE_HASHPTE));
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Macro to mark a page protection value as "uncacheable".
|
||
|
*/
|
||
|
|
||
|
#define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
|
||
|
_PAGE_WRITETHRU)
|
||
|
|
||
|
#define pgprot_noncached pgprot_noncached
|
||
|
static inline pgprot_t pgprot_noncached(pgprot_t prot)
|
||
|
{
|
||
|
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
|
||
|
_PAGE_NO_CACHE | _PAGE_GUARDED);
|
||
|
}
|
||
|
|
||
|
#define pgprot_noncached_wc pgprot_noncached_wc
|
||
|
static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
|
||
|
{
|
||
|
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
|
||
|
_PAGE_NO_CACHE);
|
||
|
}
|
||
|
|
||
|
#define pgprot_cached pgprot_cached
|
||
|
static inline pgprot_t pgprot_cached(pgprot_t prot)
|
||
|
{
|
||
|
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
|
||
|
_PAGE_COHERENT);
|
||
|
}
|
||
|
|
||
|
#define pgprot_cached_wthru pgprot_cached_wthru
|
||
|
static inline pgprot_t pgprot_cached_wthru(pgprot_t prot)
|
||
|
{
|
||
|
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
|
||
|
_PAGE_COHERENT | _PAGE_WRITETHRU);
|
||
|
}
|
||
|
|
||
|
#define pgprot_cached_noncoherent pgprot_cached_noncoherent
|
||
|
static inline pgprot_t pgprot_cached_noncoherent(pgprot_t prot)
|
||
|
{
|
||
|
return __pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL);
|
||
|
}
|
||
|
|
||
|
#define pgprot_writecombine pgprot_writecombine
|
||
|
static inline pgprot_t pgprot_writecombine(pgprot_t prot)
|
||
|
{
|
||
|
return pgprot_noncached_wc(prot);
|
||
|
}
|
||
|
|
||
|
#endif /* !__ASSEMBLY__ */
|
||
|
|
||
|
#endif /* _ASM_POWERPC_BOOK3S_32_PGTABLE_H */
|