linux-zen-server/arch/x86/crypto/poly1305-x86_64-cryptogams.pl

4249 lines
100 KiB
Perl
Raw Normal View History

2023-08-30 17:53:23 +02:00
#!/usr/bin/env perl
# SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
#
# Copyright (C) 2017-2018 Samuel Neves <sneves@dei.uc.pt>. All Rights Reserved.
# Copyright (C) 2017-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
# Copyright (C) 2006-2017 CRYPTOGAMS by <appro@openssl.org>. All Rights Reserved.
#
# This code is taken from the OpenSSL project but the author, Andy Polyakov,
# has relicensed it under the licenses specified in the SPDX header above.
# The original headers, including the original license headers, are
# included below for completeness.
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# This module implements Poly1305 hash for x86_64.
#
# March 2015
#
# Initial release.
#
# December 2016
#
# Add AVX512F+VL+BW code path.
#
# November 2017
#
# Convert AVX512F+VL+BW code path to pure AVX512F, so that it can be
# executed even on Knights Landing. Trigger for modification was
# observation that AVX512 code paths can negatively affect overall
# Skylake-X system performance. Since we are likely to suppress
# AVX512F capability flag [at least on Skylake-X], conversion serves
# as kind of "investment protection". Note that next *lake processor,
# Cannonlake, has AVX512IFMA code path to execute...
#
# Numbers are cycles per processed byte with poly1305_blocks alone,
# measured with rdtsc at fixed clock frequency.
#
# IALU/gcc-4.8(*) AVX(**) AVX2 AVX-512
# P4 4.46/+120% -
# Core 2 2.41/+90% -
# Westmere 1.88/+120% -
# Sandy Bridge 1.39/+140% 1.10
# Haswell 1.14/+175% 1.11 0.65
# Skylake[-X] 1.13/+120% 0.96 0.51 [0.35]
# Silvermont 2.83/+95% -
# Knights L 3.60/? 1.65 1.10 0.41(***)
# Goldmont 1.70/+180% -
# VIA Nano 1.82/+150% -
# Sledgehammer 1.38/+160% -
# Bulldozer 2.30/+130% 0.97
# Ryzen 1.15/+200% 1.08 1.18
#
# (*) improvement coefficients relative to clang are more modest and
# are ~50% on most processors, in both cases we are comparing to
# __int128 code;
# (**) SSE2 implementation was attempted, but among non-AVX processors
# it was faster than integer-only code only on older Intel P4 and
# Core processors, 50-30%, less newer processor is, but slower on
# contemporary ones, for example almost 2x slower on Atom, and as
# former are naturally disappearing, SSE2 is deemed unnecessary;
# (***) strangely enough performance seems to vary from core to core,
# listed result is best case;
$flavour = shift;
$output = shift;
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
$kernel=0; $kernel=1 if (!$flavour && !$output);
if (!$kernel) {
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";
open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\"";
*STDOUT=*OUT;
if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
=~ /GNU assembler version ([2-9]\.[0-9]+)/) {
$avx = ($1>=2.19) + ($1>=2.22) + ($1>=2.25);
}
if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
`nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)(?:\.([0-9]+))?/) {
$avx = ($1>=2.09) + ($1>=2.10) + ($1>=2.12);
$avx += 1 if ($1==2.11 && $2>=8);
}
if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) &&
`ml64 2>&1` =~ /Version ([0-9]+)\./) {
$avx = ($1>=10) + ($1>=11);
}
if (!$avx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|.*based on LLVM) ([3-9]\.[0-9]+)/) {
$avx = ($2>=3.0) + ($2>3.0);
}
} else {
$avx = 4; # The kernel uses ifdefs for this.
}
sub declare_function() {
my ($name, $align, $nargs) = @_;
if($kernel) {
$code .= "SYM_FUNC_START($name)\n";
$code .= ".L$name:\n";
} else {
$code .= ".globl $name\n";
$code .= ".type $name,\@function,$nargs\n";
$code .= ".align $align\n";
$code .= "$name:\n";
}
}
sub end_function() {
my ($name) = @_;
if($kernel) {
$code .= "SYM_FUNC_END($name)\n";
} else {
$code .= ".size $name,.-$name\n";
}
}
$code.=<<___ if $kernel;
#include <linux/linkage.h>
___
if ($avx) {
$code.=<<___ if $kernel;
.section .rodata
___
$code.=<<___;
.align 64
.Lconst:
.Lmask24:
.long 0x0ffffff,0,0x0ffffff,0,0x0ffffff,0,0x0ffffff,0
.L129:
.long `1<<24`,0,`1<<24`,0,`1<<24`,0,`1<<24`,0
.Lmask26:
.long 0x3ffffff,0,0x3ffffff,0,0x3ffffff,0,0x3ffffff,0
.Lpermd_avx2:
.long 2,2,2,3,2,0,2,1
.Lpermd_avx512:
.long 0,0,0,1, 0,2,0,3, 0,4,0,5, 0,6,0,7
.L2_44_inp_permd:
.long 0,1,1,2,2,3,7,7
.L2_44_inp_shift:
.quad 0,12,24,64
.L2_44_mask:
.quad 0xfffffffffff,0xfffffffffff,0x3ffffffffff,0xffffffffffffffff
.L2_44_shift_rgt:
.quad 44,44,42,64
.L2_44_shift_lft:
.quad 8,8,10,64
.align 64
.Lx_mask44:
.quad 0xfffffffffff,0xfffffffffff,0xfffffffffff,0xfffffffffff
.quad 0xfffffffffff,0xfffffffffff,0xfffffffffff,0xfffffffffff
.Lx_mask42:
.quad 0x3ffffffffff,0x3ffffffffff,0x3ffffffffff,0x3ffffffffff
.quad 0x3ffffffffff,0x3ffffffffff,0x3ffffffffff,0x3ffffffffff
___
}
$code.=<<___ if (!$kernel);
.asciz "Poly1305 for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
.align 16
___
my ($ctx,$inp,$len,$padbit)=("%rdi","%rsi","%rdx","%rcx");
my ($mac,$nonce)=($inp,$len); # *_emit arguments
my ($d1,$d2,$d3, $r0,$r1,$s1)=("%r8","%r9","%rdi","%r11","%r12","%r13");
my ($h0,$h1,$h2)=("%r14","%rbx","%r10");
sub poly1305_iteration {
# input: copy of $r1 in %rax, $h0-$h2, $r0-$r1
# output: $h0-$h2 *= $r0-$r1
$code.=<<___;
mulq $h0 # h0*r1
mov %rax,$d2
mov $r0,%rax
mov %rdx,$d3
mulq $h0 # h0*r0
mov %rax,$h0 # future $h0
mov $r0,%rax
mov %rdx,$d1
mulq $h1 # h1*r0
add %rax,$d2
mov $s1,%rax
adc %rdx,$d3
mulq $h1 # h1*s1
mov $h2,$h1 # borrow $h1
add %rax,$h0
adc %rdx,$d1
imulq $s1,$h1 # h2*s1
add $h1,$d2
mov $d1,$h1
adc \$0,$d3
imulq $r0,$h2 # h2*r0
add $d2,$h1
mov \$-4,%rax # mask value
adc $h2,$d3
and $d3,%rax # last reduction step
mov $d3,$h2
shr \$2,$d3
and \$3,$h2
add $d3,%rax
add %rax,$h0
adc \$0,$h1
adc \$0,$h2
___
}
########################################################################
# Layout of opaque area is following.
#
# unsigned __int64 h[3]; # current hash value base 2^64
# unsigned __int64 r[2]; # key value base 2^64
$code.=<<___;
.text
___
$code.=<<___ if (!$kernel);
.extern OPENSSL_ia32cap_P
.globl poly1305_init_x86_64
.hidden poly1305_init_x86_64
.globl poly1305_blocks_x86_64
.hidden poly1305_blocks_x86_64
.globl poly1305_emit_x86_64
.hidden poly1305_emit_x86_64
___
&declare_function("poly1305_init_x86_64", 32, 3);
$code.=<<___;
xor %eax,%eax
mov %rax,0($ctx) # initialize hash value
mov %rax,8($ctx)
mov %rax,16($ctx)
test $inp,$inp
je .Lno_key
___
$code.=<<___ if (!$kernel);
lea poly1305_blocks_x86_64(%rip),%r10
lea poly1305_emit_x86_64(%rip),%r11
___
$code.=<<___ if (!$kernel && $avx);
mov OPENSSL_ia32cap_P+4(%rip),%r9
lea poly1305_blocks_avx(%rip),%rax
lea poly1305_emit_avx(%rip),%rcx
bt \$`60-32`,%r9 # AVX?
cmovc %rax,%r10
cmovc %rcx,%r11
___
$code.=<<___ if (!$kernel && $avx>1);
lea poly1305_blocks_avx2(%rip),%rax
bt \$`5+32`,%r9 # AVX2?
cmovc %rax,%r10
___
$code.=<<___ if (!$kernel && $avx>3);
mov \$`(1<<31|1<<21|1<<16)`,%rax
shr \$32,%r9
and %rax,%r9
cmp %rax,%r9
je .Linit_base2_44
___
$code.=<<___;
mov \$0x0ffffffc0fffffff,%rax
mov \$0x0ffffffc0ffffffc,%rcx
and 0($inp),%rax
and 8($inp),%rcx
mov %rax,24($ctx)
mov %rcx,32($ctx)
___
$code.=<<___ if (!$kernel && $flavour !~ /elf32/);
mov %r10,0(%rdx)
mov %r11,8(%rdx)
___
$code.=<<___ if (!$kernel && $flavour =~ /elf32/);
mov %r10d,0(%rdx)
mov %r11d,4(%rdx)
___
$code.=<<___;
mov \$1,%eax
.Lno_key:
RET
___
&end_function("poly1305_init_x86_64");
&declare_function("poly1305_blocks_x86_64", 32, 4);
$code.=<<___;
.cfi_startproc
.Lblocks:
shr \$4,$len
jz .Lno_data # too short
push %rbx
.cfi_push %rbx
push %r12
.cfi_push %r12
push %r13
.cfi_push %r13
push %r14
.cfi_push %r14
push %r15
.cfi_push %r15
push $ctx
.cfi_push $ctx
.Lblocks_body:
mov $len,%r15 # reassign $len
mov 24($ctx),$r0 # load r
mov 32($ctx),$s1
mov 0($ctx),$h0 # load hash value
mov 8($ctx),$h1
mov 16($ctx),$h2
mov $s1,$r1
shr \$2,$s1
mov $r1,%rax
add $r1,$s1 # s1 = r1 + (r1 >> 2)
jmp .Loop
.align 32
.Loop:
add 0($inp),$h0 # accumulate input
adc 8($inp),$h1
lea 16($inp),$inp
adc $padbit,$h2
___
&poly1305_iteration();
$code.=<<___;
mov $r1,%rax
dec %r15 # len-=16
jnz .Loop
mov 0(%rsp),$ctx
.cfi_restore $ctx
mov $h0,0($ctx) # store hash value
mov $h1,8($ctx)
mov $h2,16($ctx)
mov 8(%rsp),%r15
.cfi_restore %r15
mov 16(%rsp),%r14
.cfi_restore %r14
mov 24(%rsp),%r13
.cfi_restore %r13
mov 32(%rsp),%r12
.cfi_restore %r12
mov 40(%rsp),%rbx
.cfi_restore %rbx
lea 48(%rsp),%rsp
.cfi_adjust_cfa_offset -48
.Lno_data:
.Lblocks_epilogue:
RET
.cfi_endproc
___
&end_function("poly1305_blocks_x86_64");
&declare_function("poly1305_emit_x86_64", 32, 3);
$code.=<<___;
.Lemit:
mov 0($ctx),%r8 # load hash value
mov 8($ctx),%r9
mov 16($ctx),%r10
mov %r8,%rax
add \$5,%r8 # compare to modulus
mov %r9,%rcx
adc \$0,%r9
adc \$0,%r10
shr \$2,%r10 # did 130-bit value overflow?
cmovnz %r8,%rax
cmovnz %r9,%rcx
add 0($nonce),%rax # accumulate nonce
adc 8($nonce),%rcx
mov %rax,0($mac) # write result
mov %rcx,8($mac)
RET
___
&end_function("poly1305_emit_x86_64");
if ($avx) {
########################################################################
# Layout of opaque area is following.
#
# unsigned __int32 h[5]; # current hash value base 2^26
# unsigned __int32 is_base2_26;
# unsigned __int64 r[2]; # key value base 2^64
# unsigned __int64 pad;
# struct { unsigned __int32 r^2, r^1, r^4, r^3; } r[9];
#
# where r^n are base 2^26 digits of degrees of multiplier key. There are
# 5 digits, but last four are interleaved with multiples of 5, totalling
# in 9 elements: r0, r1, 5*r1, r2, 5*r2, r3, 5*r3, r4, 5*r4.
my ($H0,$H1,$H2,$H3,$H4, $T0,$T1,$T2,$T3,$T4, $D0,$D1,$D2,$D3,$D4, $MASK) =
map("%xmm$_",(0..15));
$code.=<<___;
.type __poly1305_block,\@abi-omnipotent
.align 32
__poly1305_block:
push $ctx
___
&poly1305_iteration();
$code.=<<___;
pop $ctx
RET
.size __poly1305_block,.-__poly1305_block
.type __poly1305_init_avx,\@abi-omnipotent
.align 32
__poly1305_init_avx:
push %rbp
mov %rsp,%rbp
mov $r0,$h0
mov $r1,$h1
xor $h2,$h2
lea 48+64($ctx),$ctx # size optimization
mov $r1,%rax
call __poly1305_block # r^2
mov \$0x3ffffff,%eax # save interleaved r^2 and r base 2^26
mov \$0x3ffffff,%edx
mov $h0,$d1
and $h0#d,%eax
mov $r0,$d2
and $r0#d,%edx
mov %eax,`16*0+0-64`($ctx)
shr \$26,$d1
mov %edx,`16*0+4-64`($ctx)
shr \$26,$d2
mov \$0x3ffffff,%eax
mov \$0x3ffffff,%edx
and $d1#d,%eax
and $d2#d,%edx
mov %eax,`16*1+0-64`($ctx)
lea (%rax,%rax,4),%eax # *5
mov %edx,`16*1+4-64`($ctx)
lea (%rdx,%rdx,4),%edx # *5
mov %eax,`16*2+0-64`($ctx)
shr \$26,$d1
mov %edx,`16*2+4-64`($ctx)
shr \$26,$d2
mov $h1,%rax
mov $r1,%rdx
shl \$12,%rax
shl \$12,%rdx
or $d1,%rax
or $d2,%rdx
and \$0x3ffffff,%eax
and \$0x3ffffff,%edx
mov %eax,`16*3+0-64`($ctx)
lea (%rax,%rax,4),%eax # *5
mov %edx,`16*3+4-64`($ctx)
lea (%rdx,%rdx,4),%edx # *5
mov %eax,`16*4+0-64`($ctx)
mov $h1,$d1
mov %edx,`16*4+4-64`($ctx)
mov $r1,$d2
mov \$0x3ffffff,%eax
mov \$0x3ffffff,%edx
shr \$14,$d1
shr \$14,$d2
and $d1#d,%eax
and $d2#d,%edx
mov %eax,`16*5+0-64`($ctx)
lea (%rax,%rax,4),%eax # *5
mov %edx,`16*5+4-64`($ctx)
lea (%rdx,%rdx,4),%edx # *5
mov %eax,`16*6+0-64`($ctx)
shr \$26,$d1
mov %edx,`16*6+4-64`($ctx)
shr \$26,$d2
mov $h2,%rax
shl \$24,%rax
or %rax,$d1
mov $d1#d,`16*7+0-64`($ctx)
lea ($d1,$d1,4),$d1 # *5
mov $d2#d,`16*7+4-64`($ctx)
lea ($d2,$d2,4),$d2 # *5
mov $d1#d,`16*8+0-64`($ctx)
mov $d2#d,`16*8+4-64`($ctx)
mov $r1,%rax
call __poly1305_block # r^3
mov \$0x3ffffff,%eax # save r^3 base 2^26
mov $h0,$d1
and $h0#d,%eax
shr \$26,$d1
mov %eax,`16*0+12-64`($ctx)
mov \$0x3ffffff,%edx
and $d1#d,%edx
mov %edx,`16*1+12-64`($ctx)
lea (%rdx,%rdx,4),%edx # *5
shr \$26,$d1
mov %edx,`16*2+12-64`($ctx)
mov $h1,%rax
shl \$12,%rax
or $d1,%rax
and \$0x3ffffff,%eax
mov %eax,`16*3+12-64`($ctx)
lea (%rax,%rax,4),%eax # *5
mov $h1,$d1
mov %eax,`16*4+12-64`($ctx)
mov \$0x3ffffff,%edx
shr \$14,$d1
and $d1#d,%edx
mov %edx,`16*5+12-64`($ctx)
lea (%rdx,%rdx,4),%edx # *5
shr \$26,$d1
mov %edx,`16*6+12-64`($ctx)
mov $h2,%rax
shl \$24,%rax
or %rax,$d1
mov $d1#d,`16*7+12-64`($ctx)
lea ($d1,$d1,4),$d1 # *5
mov $d1#d,`16*8+12-64`($ctx)
mov $r1,%rax
call __poly1305_block # r^4
mov \$0x3ffffff,%eax # save r^4 base 2^26
mov $h0,$d1
and $h0#d,%eax
shr \$26,$d1
mov %eax,`16*0+8-64`($ctx)
mov \$0x3ffffff,%edx
and $d1#d,%edx
mov %edx,`16*1+8-64`($ctx)
lea (%rdx,%rdx,4),%edx # *5
shr \$26,$d1
mov %edx,`16*2+8-64`($ctx)
mov $h1,%rax
shl \$12,%rax
or $d1,%rax
and \$0x3ffffff,%eax
mov %eax,`16*3+8-64`($ctx)
lea (%rax,%rax,4),%eax # *5
mov $h1,$d1
mov %eax,`16*4+8-64`($ctx)
mov \$0x3ffffff,%edx
shr \$14,$d1
and $d1#d,%edx
mov %edx,`16*5+8-64`($ctx)
lea (%rdx,%rdx,4),%edx # *5
shr \$26,$d1
mov %edx,`16*6+8-64`($ctx)
mov $h2,%rax
shl \$24,%rax
or %rax,$d1
mov $d1#d,`16*7+8-64`($ctx)
lea ($d1,$d1,4),$d1 # *5
mov $d1#d,`16*8+8-64`($ctx)
lea -48-64($ctx),$ctx # size [de-]optimization
pop %rbp
RET
.size __poly1305_init_avx,.-__poly1305_init_avx
___
&declare_function("poly1305_blocks_avx", 32, 4);
$code.=<<___;
.cfi_startproc
mov 20($ctx),%r8d # is_base2_26
cmp \$128,$len
jae .Lblocks_avx
test %r8d,%r8d
jz .Lblocks
.Lblocks_avx:
and \$-16,$len
jz .Lno_data_avx
vzeroupper
test %r8d,%r8d
jz .Lbase2_64_avx
test \$31,$len
jz .Leven_avx
push %rbp
.cfi_push %rbp
mov %rsp,%rbp
push %rbx
.cfi_push %rbx
push %r12
.cfi_push %r12
push %r13
.cfi_push %r13
push %r14
.cfi_push %r14
push %r15
.cfi_push %r15
.Lblocks_avx_body:
mov $len,%r15 # reassign $len
mov 0($ctx),$d1 # load hash value
mov 8($ctx),$d2
mov 16($ctx),$h2#d
mov 24($ctx),$r0 # load r
mov 32($ctx),$s1
################################# base 2^26 -> base 2^64
mov $d1#d,$h0#d
and \$`-1*(1<<31)`,$d1
mov $d2,$r1 # borrow $r1
mov $d2#d,$h1#d
and \$`-1*(1<<31)`,$d2
shr \$6,$d1
shl \$52,$r1
add $d1,$h0
shr \$12,$h1
shr \$18,$d2
add $r1,$h0
adc $d2,$h1
mov $h2,$d1
shl \$40,$d1
shr \$24,$h2
add $d1,$h1
adc \$0,$h2 # can be partially reduced...
mov \$-4,$d2 # ... so reduce
mov $h2,$d1
and $h2,$d2
shr \$2,$d1
and \$3,$h2
add $d2,$d1 # =*5
add $d1,$h0
adc \$0,$h1
adc \$0,$h2
mov $s1,$r1
mov $s1,%rax
shr \$2,$s1
add $r1,$s1 # s1 = r1 + (r1 >> 2)
add 0($inp),$h0 # accumulate input
adc 8($inp),$h1
lea 16($inp),$inp
adc $padbit,$h2
call __poly1305_block
test $padbit,$padbit # if $padbit is zero,
jz .Lstore_base2_64_avx # store hash in base 2^64 format
################################# base 2^64 -> base 2^26
mov $h0,%rax
mov $h0,%rdx
shr \$52,$h0
mov $h1,$r0
mov $h1,$r1
shr \$26,%rdx
and \$0x3ffffff,%rax # h[0]
shl \$12,$r0
and \$0x3ffffff,%rdx # h[1]
shr \$14,$h1
or $r0,$h0
shl \$24,$h2
and \$0x3ffffff,$h0 # h[2]
shr \$40,$r1
and \$0x3ffffff,$h1 # h[3]
or $r1,$h2 # h[4]
sub \$16,%r15
jz .Lstore_base2_26_avx
vmovd %rax#d,$H0
vmovd %rdx#d,$H1
vmovd $h0#d,$H2
vmovd $h1#d,$H3
vmovd $h2#d,$H4
jmp .Lproceed_avx
.align 32
.Lstore_base2_64_avx:
mov $h0,0($ctx)
mov $h1,8($ctx)
mov $h2,16($ctx) # note that is_base2_26 is zeroed
jmp .Ldone_avx
.align 16
.Lstore_base2_26_avx:
mov %rax#d,0($ctx) # store hash value base 2^26
mov %rdx#d,4($ctx)
mov $h0#d,8($ctx)
mov $h1#d,12($ctx)
mov $h2#d,16($ctx)
.align 16
.Ldone_avx:
pop %r15
.cfi_restore %r15
pop %r14
.cfi_restore %r14
pop %r13
.cfi_restore %r13
pop %r12
.cfi_restore %r12
pop %rbx
.cfi_restore %rbx
pop %rbp
.cfi_restore %rbp
.Lno_data_avx:
.Lblocks_avx_epilogue:
RET
.cfi_endproc
.align 32
.Lbase2_64_avx:
.cfi_startproc
push %rbp
.cfi_push %rbp
mov %rsp,%rbp
push %rbx
.cfi_push %rbx
push %r12
.cfi_push %r12
push %r13
.cfi_push %r13
push %r14
.cfi_push %r14
push %r15
.cfi_push %r15
.Lbase2_64_avx_body:
mov $len,%r15 # reassign $len
mov 24($ctx),$r0 # load r
mov 32($ctx),$s1
mov 0($ctx),$h0 # load hash value
mov 8($ctx),$h1
mov 16($ctx),$h2#d
mov $s1,$r1
mov $s1,%rax
shr \$2,$s1
add $r1,$s1 # s1 = r1 + (r1 >> 2)
test \$31,$len
jz .Linit_avx
add 0($inp),$h0 # accumulate input
adc 8($inp),$h1
lea 16($inp),$inp
adc $padbit,$h2
sub \$16,%r15
call __poly1305_block
.Linit_avx:
################################# base 2^64 -> base 2^26
mov $h0,%rax
mov $h0,%rdx
shr \$52,$h0
mov $h1,$d1
mov $h1,$d2
shr \$26,%rdx
and \$0x3ffffff,%rax # h[0]
shl \$12,$d1
and \$0x3ffffff,%rdx # h[1]
shr \$14,$h1
or $d1,$h0
shl \$24,$h2
and \$0x3ffffff,$h0 # h[2]
shr \$40,$d2
and \$0x3ffffff,$h1 # h[3]
or $d2,$h2 # h[4]
vmovd %rax#d,$H0
vmovd %rdx#d,$H1
vmovd $h0#d,$H2
vmovd $h1#d,$H3
vmovd $h2#d,$H4
movl \$1,20($ctx) # set is_base2_26
call __poly1305_init_avx
.Lproceed_avx:
mov %r15,$len
pop %r15
.cfi_restore %r15
pop %r14
.cfi_restore %r14
pop %r13
.cfi_restore %r13
pop %r12
.cfi_restore %r12
pop %rbx
.cfi_restore %rbx
pop %rbp
.cfi_restore %rbp
.Lbase2_64_avx_epilogue:
jmp .Ldo_avx
.cfi_endproc
.align 32
.Leven_avx:
.cfi_startproc
vmovd 4*0($ctx),$H0 # load hash value
vmovd 4*1($ctx),$H1
vmovd 4*2($ctx),$H2
vmovd 4*3($ctx),$H3
vmovd 4*4($ctx),$H4
.Ldo_avx:
___
$code.=<<___ if (!$win64);
lea 8(%rsp),%r10
.cfi_def_cfa_register %r10
and \$-32,%rsp
sub \$-8,%rsp
lea -0x58(%rsp),%r11
sub \$0x178,%rsp
___
$code.=<<___ if ($win64);
lea -0xf8(%rsp),%r11
sub \$0x218,%rsp
vmovdqa %xmm6,0x50(%r11)
vmovdqa %xmm7,0x60(%r11)
vmovdqa %xmm8,0x70(%r11)
vmovdqa %xmm9,0x80(%r11)
vmovdqa %xmm10,0x90(%r11)
vmovdqa %xmm11,0xa0(%r11)
vmovdqa %xmm12,0xb0(%r11)
vmovdqa %xmm13,0xc0(%r11)
vmovdqa %xmm14,0xd0(%r11)
vmovdqa %xmm15,0xe0(%r11)
.Ldo_avx_body:
___
$code.=<<___;
sub \$64,$len
lea -32($inp),%rax
cmovc %rax,$inp
vmovdqu `16*3`($ctx),$D4 # preload r0^2
lea `16*3+64`($ctx),$ctx # size optimization
lea .Lconst(%rip),%rcx
################################################################
# load input
vmovdqu 16*2($inp),$T0
vmovdqu 16*3($inp),$T1
vmovdqa 64(%rcx),$MASK # .Lmask26
vpsrldq \$6,$T0,$T2 # splat input
vpsrldq \$6,$T1,$T3
vpunpckhqdq $T1,$T0,$T4 # 4
vpunpcklqdq $T1,$T0,$T0 # 0:1
vpunpcklqdq $T3,$T2,$T3 # 2:3
vpsrlq \$40,$T4,$T4 # 4
vpsrlq \$26,$T0,$T1
vpand $MASK,$T0,$T0 # 0
vpsrlq \$4,$T3,$T2
vpand $MASK,$T1,$T1 # 1
vpsrlq \$30,$T3,$T3
vpand $MASK,$T2,$T2 # 2
vpand $MASK,$T3,$T3 # 3
vpor 32(%rcx),$T4,$T4 # padbit, yes, always
jbe .Lskip_loop_avx
# expand and copy pre-calculated table to stack
vmovdqu `16*1-64`($ctx),$D1
vmovdqu `16*2-64`($ctx),$D2
vpshufd \$0xEE,$D4,$D3 # 34xx -> 3434
vpshufd \$0x44,$D4,$D0 # xx12 -> 1212
vmovdqa $D3,-0x90(%r11)
vmovdqa $D0,0x00(%rsp)
vpshufd \$0xEE,$D1,$D4
vmovdqu `16*3-64`($ctx),$D0
vpshufd \$0x44,$D1,$D1
vmovdqa $D4,-0x80(%r11)
vmovdqa $D1,0x10(%rsp)
vpshufd \$0xEE,$D2,$D3
vmovdqu `16*4-64`($ctx),$D1
vpshufd \$0x44,$D2,$D2
vmovdqa $D3,-0x70(%r11)
vmovdqa $D2,0x20(%rsp)
vpshufd \$0xEE,$D0,$D4
vmovdqu `16*5-64`($ctx),$D2
vpshufd \$0x44,$D0,$D0
vmovdqa $D4,-0x60(%r11)
vmovdqa $D0,0x30(%rsp)
vpshufd \$0xEE,$D1,$D3
vmovdqu `16*6-64`($ctx),$D0
vpshufd \$0x44,$D1,$D1
vmovdqa $D3,-0x50(%r11)
vmovdqa $D1,0x40(%rsp)
vpshufd \$0xEE,$D2,$D4
vmovdqu `16*7-64`($ctx),$D1
vpshufd \$0x44,$D2,$D2
vmovdqa $D4,-0x40(%r11)
vmovdqa $D2,0x50(%rsp)
vpshufd \$0xEE,$D0,$D3
vmovdqu `16*8-64`($ctx),$D2
vpshufd \$0x44,$D0,$D0
vmovdqa $D3,-0x30(%r11)
vmovdqa $D0,0x60(%rsp)
vpshufd \$0xEE,$D1,$D4
vpshufd \$0x44,$D1,$D1
vmovdqa $D4,-0x20(%r11)
vmovdqa $D1,0x70(%rsp)
vpshufd \$0xEE,$D2,$D3
vmovdqa 0x00(%rsp),$D4 # preload r0^2
vpshufd \$0x44,$D2,$D2
vmovdqa $D3,-0x10(%r11)
vmovdqa $D2,0x80(%rsp)
jmp .Loop_avx
.align 32
.Loop_avx:
################################################################
# ((inp[0]*r^4+inp[2]*r^2+inp[4])*r^4+inp[6]*r^2
# ((inp[1]*r^4+inp[3]*r^2+inp[5])*r^3+inp[7]*r
# \___________________/
# ((inp[0]*r^4+inp[2]*r^2+inp[4])*r^4+inp[6]*r^2+inp[8])*r^2
# ((inp[1]*r^4+inp[3]*r^2+inp[5])*r^4+inp[7]*r^2+inp[9])*r
# \___________________/ \____________________/
#
# Note that we start with inp[2:3]*r^2. This is because it
# doesn't depend on reduction in previous iteration.
################################################################
# d4 = h4*r0 + h3*r1 + h2*r2 + h1*r3 + h0*r4
# d3 = h3*r0 + h2*r1 + h1*r2 + h0*r3 + h4*5*r4
# d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4
# d1 = h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + h2*5*r4
# d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4
#
# though note that $Tx and $Hx are "reversed" in this section,
# and $D4 is preloaded with r0^2...
vpmuludq $T0,$D4,$D0 # d0 = h0*r0
vpmuludq $T1,$D4,$D1 # d1 = h1*r0
vmovdqa $H2,0x20(%r11) # offload hash
vpmuludq $T2,$D4,$D2 # d3 = h2*r0
vmovdqa 0x10(%rsp),$H2 # r1^2
vpmuludq $T3,$D4,$D3 # d3 = h3*r0
vpmuludq $T4,$D4,$D4 # d4 = h4*r0
vmovdqa $H0,0x00(%r11) #
vpmuludq 0x20(%rsp),$T4,$H0 # h4*s1
vmovdqa $H1,0x10(%r11) #
vpmuludq $T3,$H2,$H1 # h3*r1
vpaddq $H0,$D0,$D0 # d0 += h4*s1
vpaddq $H1,$D4,$D4 # d4 += h3*r1
vmovdqa $H3,0x30(%r11) #
vpmuludq $T2,$H2,$H0 # h2*r1
vpmuludq $T1,$H2,$H1 # h1*r1
vpaddq $H0,$D3,$D3 # d3 += h2*r1
vmovdqa 0x30(%rsp),$H3 # r2^2
vpaddq $H1,$D2,$D2 # d2 += h1*r1
vmovdqa $H4,0x40(%r11) #
vpmuludq $T0,$H2,$H2 # h0*r1
vpmuludq $T2,$H3,$H0 # h2*r2
vpaddq $H2,$D1,$D1 # d1 += h0*r1
vmovdqa 0x40(%rsp),$H4 # s2^2
vpaddq $H0,$D4,$D4 # d4 += h2*r2
vpmuludq $T1,$H3,$H1 # h1*r2
vpmuludq $T0,$H3,$H3 # h0*r2
vpaddq $H1,$D3,$D3 # d3 += h1*r2
vmovdqa 0x50(%rsp),$H2 # r3^2
vpaddq $H3,$D2,$D2 # d2 += h0*r2
vpmuludq $T4,$H4,$H0 # h4*s2
vpmuludq $T3,$H4,$H4 # h3*s2
vpaddq $H0,$D1,$D1 # d1 += h4*s2
vmovdqa 0x60(%rsp),$H3 # s3^2
vpaddq $H4,$D0,$D0 # d0 += h3*s2
vmovdqa 0x80(%rsp),$H4 # s4^2
vpmuludq $T1,$H2,$H1 # h1*r3
vpmuludq $T0,$H2,$H2 # h0*r3
vpaddq $H1,$D4,$D4 # d4 += h1*r3
vpaddq $H2,$D3,$D3 # d3 += h0*r3
vpmuludq $T4,$H3,$H0 # h4*s3
vpmuludq $T3,$H3,$H1 # h3*s3
vpaddq $H0,$D2,$D2 # d2 += h4*s3
vmovdqu 16*0($inp),$H0 # load input
vpaddq $H1,$D1,$D1 # d1 += h3*s3
vpmuludq $T2,$H3,$H3 # h2*s3
vpmuludq $T2,$H4,$T2 # h2*s4
vpaddq $H3,$D0,$D0 # d0 += h2*s3
vmovdqu 16*1($inp),$H1 #
vpaddq $T2,$D1,$D1 # d1 += h2*s4
vpmuludq $T3,$H4,$T3 # h3*s4
vpmuludq $T4,$H4,$T4 # h4*s4
vpsrldq \$6,$H0,$H2 # splat input
vpaddq $T3,$D2,$D2 # d2 += h3*s4
vpaddq $T4,$D3,$D3 # d3 += h4*s4
vpsrldq \$6,$H1,$H3 #
vpmuludq 0x70(%rsp),$T0,$T4 # h0*r4
vpmuludq $T1,$H4,$T0 # h1*s4
vpunpckhqdq $H1,$H0,$H4 # 4
vpaddq $T4,$D4,$D4 # d4 += h0*r4
vmovdqa -0x90(%r11),$T4 # r0^4
vpaddq $T0,$D0,$D0 # d0 += h1*s4
vpunpcklqdq $H1,$H0,$H0 # 0:1
vpunpcklqdq $H3,$H2,$H3 # 2:3
#vpsrlq \$40,$H4,$H4 # 4
vpsrldq \$`40/8`,$H4,$H4 # 4
vpsrlq \$26,$H0,$H1
vpand $MASK,$H0,$H0 # 0
vpsrlq \$4,$H3,$H2
vpand $MASK,$H1,$H1 # 1
vpand 0(%rcx),$H4,$H4 # .Lmask24
vpsrlq \$30,$H3,$H3
vpand $MASK,$H2,$H2 # 2
vpand $MASK,$H3,$H3 # 3
vpor 32(%rcx),$H4,$H4 # padbit, yes, always
vpaddq 0x00(%r11),$H0,$H0 # add hash value
vpaddq 0x10(%r11),$H1,$H1
vpaddq 0x20(%r11),$H2,$H2
vpaddq 0x30(%r11),$H3,$H3
vpaddq 0x40(%r11),$H4,$H4
lea 16*2($inp),%rax
lea 16*4($inp),$inp
sub \$64,$len
cmovc %rax,$inp
################################################################
# Now we accumulate (inp[0:1]+hash)*r^4
################################################################
# d4 = h4*r0 + h3*r1 + h2*r2 + h1*r3 + h0*r4
# d3 = h3*r0 + h2*r1 + h1*r2 + h0*r3 + h4*5*r4
# d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4
# d1 = h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + h2*5*r4
# d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4
vpmuludq $H0,$T4,$T0 # h0*r0
vpmuludq $H1,$T4,$T1 # h1*r0
vpaddq $T0,$D0,$D0
vpaddq $T1,$D1,$D1
vmovdqa -0x80(%r11),$T2 # r1^4
vpmuludq $H2,$T4,$T0 # h2*r0
vpmuludq $H3,$T4,$T1 # h3*r0
vpaddq $T0,$D2,$D2
vpaddq $T1,$D3,$D3
vpmuludq $H4,$T4,$T4 # h4*r0
vpmuludq -0x70(%r11),$H4,$T0 # h4*s1
vpaddq $T4,$D4,$D4
vpaddq $T0,$D0,$D0 # d0 += h4*s1
vpmuludq $H2,$T2,$T1 # h2*r1
vpmuludq $H3,$T2,$T0 # h3*r1
vpaddq $T1,$D3,$D3 # d3 += h2*r1
vmovdqa -0x60(%r11),$T3 # r2^4
vpaddq $T0,$D4,$D4 # d4 += h3*r1
vpmuludq $H1,$T2,$T1 # h1*r1
vpmuludq $H0,$T2,$T2 # h0*r1
vpaddq $T1,$D2,$D2 # d2 += h1*r1
vpaddq $T2,$D1,$D1 # d1 += h0*r1
vmovdqa -0x50(%r11),$T4 # s2^4
vpmuludq $H2,$T3,$T0 # h2*r2
vpmuludq $H1,$T3,$T1 # h1*r2
vpaddq $T0,$D4,$D4 # d4 += h2*r2
vpaddq $T1,$D3,$D3 # d3 += h1*r2
vmovdqa -0x40(%r11),$T2 # r3^4
vpmuludq $H0,$T3,$T3 # h0*r2
vpmuludq $H4,$T4,$T0 # h4*s2
vpaddq $T3,$D2,$D2 # d2 += h0*r2
vpaddq $T0,$D1,$D1 # d1 += h4*s2
vmovdqa -0x30(%r11),$T3 # s3^4
vpmuludq $H3,$T4,$T4 # h3*s2
vpmuludq $H1,$T2,$T1 # h1*r3
vpaddq $T4,$D0,$D0 # d0 += h3*s2
vmovdqa -0x10(%r11),$T4 # s4^4
vpaddq $T1,$D4,$D4 # d4 += h1*r3
vpmuludq $H0,$T2,$T2 # h0*r3
vpmuludq $H4,$T3,$T0 # h4*s3
vpaddq $T2,$D3,$D3 # d3 += h0*r3
vpaddq $T0,$D2,$D2 # d2 += h4*s3
vmovdqu 16*2($inp),$T0 # load input
vpmuludq $H3,$T3,$T2 # h3*s3
vpmuludq $H2,$T3,$T3 # h2*s3
vpaddq $T2,$D1,$D1 # d1 += h3*s3
vmovdqu 16*3($inp),$T1 #
vpaddq $T3,$D0,$D0 # d0 += h2*s3
vpmuludq $H2,$T4,$H2 # h2*s4
vpmuludq $H3,$T4,$H3 # h3*s4
vpsrldq \$6,$T0,$T2 # splat input
vpaddq $H2,$D1,$D1 # d1 += h2*s4
vpmuludq $H4,$T4,$H4 # h4*s4
vpsrldq \$6,$T1,$T3 #
vpaddq $H3,$D2,$H2 # h2 = d2 + h3*s4
vpaddq $H4,$D3,$H3 # h3 = d3 + h4*s4
vpmuludq -0x20(%r11),$H0,$H4 # h0*r4
vpmuludq $H1,$T4,$H0
vpunpckhqdq $T1,$T0,$T4 # 4
vpaddq $H4,$D4,$H4 # h4 = d4 + h0*r4
vpaddq $H0,$D0,$H0 # h0 = d0 + h1*s4
vpunpcklqdq $T1,$T0,$T0 # 0:1
vpunpcklqdq $T3,$T2,$T3 # 2:3
#vpsrlq \$40,$T4,$T4 # 4
vpsrldq \$`40/8`,$T4,$T4 # 4
vpsrlq \$26,$T0,$T1
vmovdqa 0x00(%rsp),$D4 # preload r0^2
vpand $MASK,$T0,$T0 # 0
vpsrlq \$4,$T3,$T2
vpand $MASK,$T1,$T1 # 1
vpand 0(%rcx),$T4,$T4 # .Lmask24
vpsrlq \$30,$T3,$T3
vpand $MASK,$T2,$T2 # 2
vpand $MASK,$T3,$T3 # 3
vpor 32(%rcx),$T4,$T4 # padbit, yes, always
################################################################
# lazy reduction as discussed in "NEON crypto" by D.J. Bernstein
# and P. Schwabe
vpsrlq \$26,$H3,$D3
vpand $MASK,$H3,$H3
vpaddq $D3,$H4,$H4 # h3 -> h4
vpsrlq \$26,$H0,$D0
vpand $MASK,$H0,$H0
vpaddq $D0,$D1,$H1 # h0 -> h1
vpsrlq \$26,$H4,$D0
vpand $MASK,$H4,$H4
vpsrlq \$26,$H1,$D1
vpand $MASK,$H1,$H1
vpaddq $D1,$H2,$H2 # h1 -> h2
vpaddq $D0,$H0,$H0
vpsllq \$2,$D0,$D0
vpaddq $D0,$H0,$H0 # h4 -> h0
vpsrlq \$26,$H2,$D2
vpand $MASK,$H2,$H2
vpaddq $D2,$H3,$H3 # h2 -> h3
vpsrlq \$26,$H0,$D0
vpand $MASK,$H0,$H0
vpaddq $D0,$H1,$H1 # h0 -> h1
vpsrlq \$26,$H3,$D3
vpand $MASK,$H3,$H3
vpaddq $D3,$H4,$H4 # h3 -> h4
ja .Loop_avx
.Lskip_loop_avx:
################################################################
# multiply (inp[0:1]+hash) or inp[2:3] by r^2:r^1
vpshufd \$0x10,$D4,$D4 # r0^n, xx12 -> x1x2
add \$32,$len
jnz .Long_tail_avx
vpaddq $H2,$T2,$T2
vpaddq $H0,$T0,$T0
vpaddq $H1,$T1,$T1
vpaddq $H3,$T3,$T3
vpaddq $H4,$T4,$T4
.Long_tail_avx:
vmovdqa $H2,0x20(%r11)
vmovdqa $H0,0x00(%r11)
vmovdqa $H1,0x10(%r11)
vmovdqa $H3,0x30(%r11)
vmovdqa $H4,0x40(%r11)
# d4 = h4*r0 + h3*r1 + h2*r2 + h1*r3 + h0*r4
# d3 = h3*r0 + h2*r1 + h1*r2 + h0*r3 + h4*5*r4
# d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4
# d1 = h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + h2*5*r4
# d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4
vpmuludq $T2,$D4,$D2 # d2 = h2*r0
vpmuludq $T0,$D4,$D0 # d0 = h0*r0
vpshufd \$0x10,`16*1-64`($ctx),$H2 # r1^n
vpmuludq $T1,$D4,$D1 # d1 = h1*r0
vpmuludq $T3,$D4,$D3 # d3 = h3*r0
vpmuludq $T4,$D4,$D4 # d4 = h4*r0
vpmuludq $T3,$H2,$H0 # h3*r1
vpaddq $H0,$D4,$D4 # d4 += h3*r1
vpshufd \$0x10,`16*2-64`($ctx),$H3 # s1^n
vpmuludq $T2,$H2,$H1 # h2*r1
vpaddq $H1,$D3,$D3 # d3 += h2*r1
vpshufd \$0x10,`16*3-64`($ctx),$H4 # r2^n
vpmuludq $T1,$H2,$H0 # h1*r1
vpaddq $H0,$D2,$D2 # d2 += h1*r1
vpmuludq $T0,$H2,$H2 # h0*r1
vpaddq $H2,$D1,$D1 # d1 += h0*r1
vpmuludq $T4,$H3,$H3 # h4*s1
vpaddq $H3,$D0,$D0 # d0 += h4*s1
vpshufd \$0x10,`16*4-64`($ctx),$H2 # s2^n
vpmuludq $T2,$H4,$H1 # h2*r2
vpaddq $H1,$D4,$D4 # d4 += h2*r2
vpmuludq $T1,$H4,$H0 # h1*r2
vpaddq $H0,$D3,$D3 # d3 += h1*r2
vpshufd \$0x10,`16*5-64`($ctx),$H3 # r3^n
vpmuludq $T0,$H4,$H4 # h0*r2
vpaddq $H4,$D2,$D2 # d2 += h0*r2
vpmuludq $T4,$H2,$H1 # h4*s2
vpaddq $H1,$D1,$D1 # d1 += h4*s2
vpshufd \$0x10,`16*6-64`($ctx),$H4 # s3^n
vpmuludq $T3,$H2,$H2 # h3*s2
vpaddq $H2,$D0,$D0 # d0 += h3*s2
vpmuludq $T1,$H3,$H0 # h1*r3
vpaddq $H0,$D4,$D4 # d4 += h1*r3
vpmuludq $T0,$H3,$H3 # h0*r3
vpaddq $H3,$D3,$D3 # d3 += h0*r3
vpshufd \$0x10,`16*7-64`($ctx),$H2 # r4^n
vpmuludq $T4,$H4,$H1 # h4*s3
vpaddq $H1,$D2,$D2 # d2 += h4*s3
vpshufd \$0x10,`16*8-64`($ctx),$H3 # s4^n
vpmuludq $T3,$H4,$H0 # h3*s3
vpaddq $H0,$D1,$D1 # d1 += h3*s3
vpmuludq $T2,$H4,$H4 # h2*s3
vpaddq $H4,$D0,$D0 # d0 += h2*s3
vpmuludq $T0,$H2,$H2 # h0*r4
vpaddq $H2,$D4,$D4 # h4 = d4 + h0*r4
vpmuludq $T4,$H3,$H1 # h4*s4
vpaddq $H1,$D3,$D3 # h3 = d3 + h4*s4
vpmuludq $T3,$H3,$H0 # h3*s4
vpaddq $H0,$D2,$D2 # h2 = d2 + h3*s4
vpmuludq $T2,$H3,$H1 # h2*s4
vpaddq $H1,$D1,$D1 # h1 = d1 + h2*s4
vpmuludq $T1,$H3,$H3 # h1*s4
vpaddq $H3,$D0,$D0 # h0 = d0 + h1*s4
jz .Lshort_tail_avx
vmovdqu 16*0($inp),$H0 # load input
vmovdqu 16*1($inp),$H1
vpsrldq \$6,$H0,$H2 # splat input
vpsrldq \$6,$H1,$H3
vpunpckhqdq $H1,$H0,$H4 # 4
vpunpcklqdq $H1,$H0,$H0 # 0:1
vpunpcklqdq $H3,$H2,$H3 # 2:3
vpsrlq \$40,$H4,$H4 # 4
vpsrlq \$26,$H0,$H1
vpand $MASK,$H0,$H0 # 0
vpsrlq \$4,$H3,$H2
vpand $MASK,$H1,$H1 # 1
vpsrlq \$30,$H3,$H3
vpand $MASK,$H2,$H2 # 2
vpand $MASK,$H3,$H3 # 3
vpor 32(%rcx),$H4,$H4 # padbit, yes, always
vpshufd \$0x32,`16*0-64`($ctx),$T4 # r0^n, 34xx -> x3x4
vpaddq 0x00(%r11),$H0,$H0
vpaddq 0x10(%r11),$H1,$H1
vpaddq 0x20(%r11),$H2,$H2
vpaddq 0x30(%r11),$H3,$H3
vpaddq 0x40(%r11),$H4,$H4
################################################################
# multiply (inp[0:1]+hash) by r^4:r^3 and accumulate
vpmuludq $H0,$T4,$T0 # h0*r0
vpaddq $T0,$D0,$D0 # d0 += h0*r0
vpmuludq $H1,$T4,$T1 # h1*r0
vpaddq $T1,$D1,$D1 # d1 += h1*r0
vpmuludq $H2,$T4,$T0 # h2*r0
vpaddq $T0,$D2,$D2 # d2 += h2*r0
vpshufd \$0x32,`16*1-64`($ctx),$T2 # r1^n
vpmuludq $H3,$T4,$T1 # h3*r0
vpaddq $T1,$D3,$D3 # d3 += h3*r0
vpmuludq $H4,$T4,$T4 # h4*r0
vpaddq $T4,$D4,$D4 # d4 += h4*r0
vpmuludq $H3,$T2,$T0 # h3*r1
vpaddq $T0,$D4,$D4 # d4 += h3*r1
vpshufd \$0x32,`16*2-64`($ctx),$T3 # s1
vpmuludq $H2,$T2,$T1 # h2*r1
vpaddq $T1,$D3,$D3 # d3 += h2*r1
vpshufd \$0x32,`16*3-64`($ctx),$T4 # r2
vpmuludq $H1,$T2,$T0 # h1*r1
vpaddq $T0,$D2,$D2 # d2 += h1*r1
vpmuludq $H0,$T2,$T2 # h0*r1
vpaddq $T2,$D1,$D1 # d1 += h0*r1
vpmuludq $H4,$T3,$T3 # h4*s1
vpaddq $T3,$D0,$D0 # d0 += h4*s1
vpshufd \$0x32,`16*4-64`($ctx),$T2 # s2
vpmuludq $H2,$T4,$T1 # h2*r2
vpaddq $T1,$D4,$D4 # d4 += h2*r2
vpmuludq $H1,$T4,$T0 # h1*r2
vpaddq $T0,$D3,$D3 # d3 += h1*r2
vpshufd \$0x32,`16*5-64`($ctx),$T3 # r3
vpmuludq $H0,$T4,$T4 # h0*r2
vpaddq $T4,$D2,$D2 # d2 += h0*r2
vpmuludq $H4,$T2,$T1 # h4*s2
vpaddq $T1,$D1,$D1 # d1 += h4*s2
vpshufd \$0x32,`16*6-64`($ctx),$T4 # s3
vpmuludq $H3,$T2,$T2 # h3*s2
vpaddq $T2,$D0,$D0 # d0 += h3*s2
vpmuludq $H1,$T3,$T0 # h1*r3
vpaddq $T0,$D4,$D4 # d4 += h1*r3
vpmuludq $H0,$T3,$T3 # h0*r3
vpaddq $T3,$D3,$D3 # d3 += h0*r3
vpshufd \$0x32,`16*7-64`($ctx),$T2 # r4
vpmuludq $H4,$T4,$T1 # h4*s3
vpaddq $T1,$D2,$D2 # d2 += h4*s3
vpshufd \$0x32,`16*8-64`($ctx),$T3 # s4
vpmuludq $H3,$T4,$T0 # h3*s3
vpaddq $T0,$D1,$D1 # d1 += h3*s3
vpmuludq $H2,$T4,$T4 # h2*s3
vpaddq $T4,$D0,$D0 # d0 += h2*s3
vpmuludq $H0,$T2,$T2 # h0*r4
vpaddq $T2,$D4,$D4 # d4 += h0*r4
vpmuludq $H4,$T3,$T1 # h4*s4
vpaddq $T1,$D3,$D3 # d3 += h4*s4
vpmuludq $H3,$T3,$T0 # h3*s4
vpaddq $T0,$D2,$D2 # d2 += h3*s4
vpmuludq $H2,$T3,$T1 # h2*s4
vpaddq $T1,$D1,$D1 # d1 += h2*s4
vpmuludq $H1,$T3,$T3 # h1*s4
vpaddq $T3,$D0,$D0 # d0 += h1*s4
.Lshort_tail_avx:
################################################################
# horizontal addition
vpsrldq \$8,$D4,$T4
vpsrldq \$8,$D3,$T3
vpsrldq \$8,$D1,$T1
vpsrldq \$8,$D0,$T0
vpsrldq \$8,$D2,$T2
vpaddq $T3,$D3,$D3
vpaddq $T4,$D4,$D4
vpaddq $T0,$D0,$D0
vpaddq $T1,$D1,$D1
vpaddq $T2,$D2,$D2
################################################################
# lazy reduction
vpsrlq \$26,$D3,$H3
vpand $MASK,$D3,$D3
vpaddq $H3,$D4,$D4 # h3 -> h4
vpsrlq \$26,$D0,$H0
vpand $MASK,$D0,$D0
vpaddq $H0,$D1,$D1 # h0 -> h1
vpsrlq \$26,$D4,$H4
vpand $MASK,$D4,$D4
vpsrlq \$26,$D1,$H1
vpand $MASK,$D1,$D1
vpaddq $H1,$D2,$D2 # h1 -> h2
vpaddq $H4,$D0,$D0
vpsllq \$2,$H4,$H4
vpaddq $H4,$D0,$D0 # h4 -> h0
vpsrlq \$26,$D2,$H2
vpand $MASK,$D2,$D2
vpaddq $H2,$D3,$D3 # h2 -> h3
vpsrlq \$26,$D0,$H0
vpand $MASK,$D0,$D0
vpaddq $H0,$D1,$D1 # h0 -> h1
vpsrlq \$26,$D3,$H3
vpand $MASK,$D3,$D3
vpaddq $H3,$D4,$D4 # h3 -> h4
vmovd $D0,`4*0-48-64`($ctx) # save partially reduced
vmovd $D1,`4*1-48-64`($ctx)
vmovd $D2,`4*2-48-64`($ctx)
vmovd $D3,`4*3-48-64`($ctx)
vmovd $D4,`4*4-48-64`($ctx)
___
$code.=<<___ if ($win64);
vmovdqa 0x50(%r11),%xmm6
vmovdqa 0x60(%r11),%xmm7
vmovdqa 0x70(%r11),%xmm8
vmovdqa 0x80(%r11),%xmm9
vmovdqa 0x90(%r11),%xmm10
vmovdqa 0xa0(%r11),%xmm11
vmovdqa 0xb0(%r11),%xmm12
vmovdqa 0xc0(%r11),%xmm13
vmovdqa 0xd0(%r11),%xmm14
vmovdqa 0xe0(%r11),%xmm15
lea 0xf8(%r11),%rsp
.Ldo_avx_epilogue:
___
$code.=<<___ if (!$win64);
lea -8(%r10),%rsp
.cfi_def_cfa_register %rsp
___
$code.=<<___;
vzeroupper
RET
.cfi_endproc
___
&end_function("poly1305_blocks_avx");
&declare_function("poly1305_emit_avx", 32, 3);
$code.=<<___;
cmpl \$0,20($ctx) # is_base2_26?
je .Lemit
mov 0($ctx),%eax # load hash value base 2^26
mov 4($ctx),%ecx
mov 8($ctx),%r8d
mov 12($ctx),%r11d
mov 16($ctx),%r10d
shl \$26,%rcx # base 2^26 -> base 2^64
mov %r8,%r9
shl \$52,%r8
add %rcx,%rax
shr \$12,%r9
add %rax,%r8 # h0
adc \$0,%r9
shl \$14,%r11
mov %r10,%rax
shr \$24,%r10
add %r11,%r9
shl \$40,%rax
add %rax,%r9 # h1
adc \$0,%r10 # h2
mov %r10,%rax # could be partially reduced, so reduce
mov %r10,%rcx
and \$3,%r10
shr \$2,%rax
and \$-4,%rcx
add %rcx,%rax
add %rax,%r8
adc \$0,%r9
adc \$0,%r10
mov %r8,%rax
add \$5,%r8 # compare to modulus
mov %r9,%rcx
adc \$0,%r9
adc \$0,%r10
shr \$2,%r10 # did 130-bit value overflow?
cmovnz %r8,%rax
cmovnz %r9,%rcx
add 0($nonce),%rax # accumulate nonce
adc 8($nonce),%rcx
mov %rax,0($mac) # write result
mov %rcx,8($mac)
RET
___
&end_function("poly1305_emit_avx");
if ($avx>1) {
my ($H0,$H1,$H2,$H3,$H4, $MASK, $T4,$T0,$T1,$T2,$T3, $D0,$D1,$D2,$D3,$D4) =
map("%ymm$_",(0..15));
my $S4=$MASK;
sub poly1305_blocks_avxN {
my ($avx512) = @_;
my $suffix = $avx512 ? "_avx512" : "";
$code.=<<___;
.cfi_startproc
mov 20($ctx),%r8d # is_base2_26
cmp \$128,$len
jae .Lblocks_avx2$suffix
test %r8d,%r8d
jz .Lblocks
.Lblocks_avx2$suffix:
and \$-16,$len
jz .Lno_data_avx2$suffix
vzeroupper
test %r8d,%r8d
jz .Lbase2_64_avx2$suffix
test \$63,$len
jz .Leven_avx2$suffix
push %rbp
.cfi_push %rbp
mov %rsp,%rbp
push %rbx
.cfi_push %rbx
push %r12
.cfi_push %r12
push %r13
.cfi_push %r13
push %r14
.cfi_push %r14
push %r15
.cfi_push %r15
.Lblocks_avx2_body$suffix:
mov $len,%r15 # reassign $len
mov 0($ctx),$d1 # load hash value
mov 8($ctx),$d2
mov 16($ctx),$h2#d
mov 24($ctx),$r0 # load r
mov 32($ctx),$s1
################################# base 2^26 -> base 2^64
mov $d1#d,$h0#d
and \$`-1*(1<<31)`,$d1
mov $d2,$r1 # borrow $r1
mov $d2#d,$h1#d
and \$`-1*(1<<31)`,$d2
shr \$6,$d1
shl \$52,$r1
add $d1,$h0
shr \$12,$h1
shr \$18,$d2
add $r1,$h0
adc $d2,$h1
mov $h2,$d1
shl \$40,$d1
shr \$24,$h2
add $d1,$h1
adc \$0,$h2 # can be partially reduced...
mov \$-4,$d2 # ... so reduce
mov $h2,$d1
and $h2,$d2
shr \$2,$d1
and \$3,$h2
add $d2,$d1 # =*5
add $d1,$h0
adc \$0,$h1
adc \$0,$h2
mov $s1,$r1
mov $s1,%rax
shr \$2,$s1
add $r1,$s1 # s1 = r1 + (r1 >> 2)
.Lbase2_26_pre_avx2$suffix:
add 0($inp),$h0 # accumulate input
adc 8($inp),$h1
lea 16($inp),$inp
adc $padbit,$h2
sub \$16,%r15
call __poly1305_block
mov $r1,%rax
test \$63,%r15
jnz .Lbase2_26_pre_avx2$suffix
test $padbit,$padbit # if $padbit is zero,
jz .Lstore_base2_64_avx2$suffix # store hash in base 2^64 format
################################# base 2^64 -> base 2^26
mov $h0,%rax
mov $h0,%rdx
shr \$52,$h0
mov $h1,$r0
mov $h1,$r1
shr \$26,%rdx
and \$0x3ffffff,%rax # h[0]
shl \$12,$r0
and \$0x3ffffff,%rdx # h[1]
shr \$14,$h1
or $r0,$h0
shl \$24,$h2
and \$0x3ffffff,$h0 # h[2]
shr \$40,$r1
and \$0x3ffffff,$h1 # h[3]
or $r1,$h2 # h[4]
test %r15,%r15
jz .Lstore_base2_26_avx2$suffix
vmovd %rax#d,%x#$H0
vmovd %rdx#d,%x#$H1
vmovd $h0#d,%x#$H2
vmovd $h1#d,%x#$H3
vmovd $h2#d,%x#$H4
jmp .Lproceed_avx2$suffix
.align 32
.Lstore_base2_64_avx2$suffix:
mov $h0,0($ctx)
mov $h1,8($ctx)
mov $h2,16($ctx) # note that is_base2_26 is zeroed
jmp .Ldone_avx2$suffix
.align 16
.Lstore_base2_26_avx2$suffix:
mov %rax#d,0($ctx) # store hash value base 2^26
mov %rdx#d,4($ctx)
mov $h0#d,8($ctx)
mov $h1#d,12($ctx)
mov $h2#d,16($ctx)
.align 16
.Ldone_avx2$suffix:
pop %r15
.cfi_restore %r15
pop %r14
.cfi_restore %r14
pop %r13
.cfi_restore %r13
pop %r12
.cfi_restore %r12
pop %rbx
.cfi_restore %rbx
pop %rbp
.cfi_restore %rbp
.Lno_data_avx2$suffix:
.Lblocks_avx2_epilogue$suffix:
RET
.cfi_endproc
.align 32
.Lbase2_64_avx2$suffix:
.cfi_startproc
push %rbp
.cfi_push %rbp
mov %rsp,%rbp
push %rbx
.cfi_push %rbx
push %r12
.cfi_push %r12
push %r13
.cfi_push %r13
push %r14
.cfi_push %r14
push %r15
.cfi_push %r15
.Lbase2_64_avx2_body$suffix:
mov $len,%r15 # reassign $len
mov 24($ctx),$r0 # load r
mov 32($ctx),$s1
mov 0($ctx),$h0 # load hash value
mov 8($ctx),$h1
mov 16($ctx),$h2#d
mov $s1,$r1
mov $s1,%rax
shr \$2,$s1
add $r1,$s1 # s1 = r1 + (r1 >> 2)
test \$63,$len
jz .Linit_avx2$suffix
.Lbase2_64_pre_avx2$suffix:
add 0($inp),$h0 # accumulate input
adc 8($inp),$h1
lea 16($inp),$inp
adc $padbit,$h2
sub \$16,%r15
call __poly1305_block
mov $r1,%rax
test \$63,%r15
jnz .Lbase2_64_pre_avx2$suffix
.Linit_avx2$suffix:
################################# base 2^64 -> base 2^26
mov $h0,%rax
mov $h0,%rdx
shr \$52,$h0
mov $h1,$d1
mov $h1,$d2
shr \$26,%rdx
and \$0x3ffffff,%rax # h[0]
shl \$12,$d1
and \$0x3ffffff,%rdx # h[1]
shr \$14,$h1
or $d1,$h0
shl \$24,$h2
and \$0x3ffffff,$h0 # h[2]
shr \$40,$d2
and \$0x3ffffff,$h1 # h[3]
or $d2,$h2 # h[4]
vmovd %rax#d,%x#$H0
vmovd %rdx#d,%x#$H1
vmovd $h0#d,%x#$H2
vmovd $h1#d,%x#$H3
vmovd $h2#d,%x#$H4
movl \$1,20($ctx) # set is_base2_26
call __poly1305_init_avx
.Lproceed_avx2$suffix:
mov %r15,$len # restore $len
___
$code.=<<___ if (!$kernel);
mov OPENSSL_ia32cap_P+8(%rip),%r9d
mov \$`(1<<31|1<<30|1<<16)`,%r11d
___
$code.=<<___;
pop %r15
.cfi_restore %r15
pop %r14
.cfi_restore %r14
pop %r13
.cfi_restore %r13
pop %r12
.cfi_restore %r12
pop %rbx
.cfi_restore %rbx
pop %rbp
.cfi_restore %rbp
.Lbase2_64_avx2_epilogue$suffix:
jmp .Ldo_avx2$suffix
.cfi_endproc
.align 32
.Leven_avx2$suffix:
.cfi_startproc
___
$code.=<<___ if (!$kernel);
mov OPENSSL_ia32cap_P+8(%rip),%r9d
___
$code.=<<___;
vmovd 4*0($ctx),%x#$H0 # load hash value base 2^26
vmovd 4*1($ctx),%x#$H1
vmovd 4*2($ctx),%x#$H2
vmovd 4*3($ctx),%x#$H3
vmovd 4*4($ctx),%x#$H4
.Ldo_avx2$suffix:
___
$code.=<<___ if (!$kernel && $avx>2);
cmp \$512,$len
jb .Lskip_avx512
and %r11d,%r9d
test \$`1<<16`,%r9d # check for AVX512F
jnz .Lblocks_avx512
.Lskip_avx512$suffix:
___
$code.=<<___ if ($avx > 2 && $avx512 && $kernel);
cmp \$512,$len
jae .Lblocks_avx512
___
$code.=<<___ if (!$win64);
lea 8(%rsp),%r10
.cfi_def_cfa_register %r10
sub \$0x128,%rsp
___
$code.=<<___ if ($win64);
lea 8(%rsp),%r10
sub \$0x1c8,%rsp
vmovdqa %xmm6,-0xb0(%r10)
vmovdqa %xmm7,-0xa0(%r10)
vmovdqa %xmm8,-0x90(%r10)
vmovdqa %xmm9,-0x80(%r10)
vmovdqa %xmm10,-0x70(%r10)
vmovdqa %xmm11,-0x60(%r10)
vmovdqa %xmm12,-0x50(%r10)
vmovdqa %xmm13,-0x40(%r10)
vmovdqa %xmm14,-0x30(%r10)
vmovdqa %xmm15,-0x20(%r10)
.Ldo_avx2_body$suffix:
___
$code.=<<___;
lea .Lconst(%rip),%rcx
lea 48+64($ctx),$ctx # size optimization
vmovdqa 96(%rcx),$T0 # .Lpermd_avx2
# expand and copy pre-calculated table to stack
vmovdqu `16*0-64`($ctx),%x#$T2
and \$-512,%rsp
vmovdqu `16*1-64`($ctx),%x#$T3
vmovdqu `16*2-64`($ctx),%x#$T4
vmovdqu `16*3-64`($ctx),%x#$D0
vmovdqu `16*4-64`($ctx),%x#$D1
vmovdqu `16*5-64`($ctx),%x#$D2
lea 0x90(%rsp),%rax # size optimization
vmovdqu `16*6-64`($ctx),%x#$D3
vpermd $T2,$T0,$T2 # 00003412 -> 14243444
vmovdqu `16*7-64`($ctx),%x#$D4
vpermd $T3,$T0,$T3
vmovdqu `16*8-64`($ctx),%x#$MASK
vpermd $T4,$T0,$T4
vmovdqa $T2,0x00(%rsp)
vpermd $D0,$T0,$D0
vmovdqa $T3,0x20-0x90(%rax)
vpermd $D1,$T0,$D1
vmovdqa $T4,0x40-0x90(%rax)
vpermd $D2,$T0,$D2
vmovdqa $D0,0x60-0x90(%rax)
vpermd $D3,$T0,$D3
vmovdqa $D1,0x80-0x90(%rax)
vpermd $D4,$T0,$D4
vmovdqa $D2,0xa0-0x90(%rax)
vpermd $MASK,$T0,$MASK
vmovdqa $D3,0xc0-0x90(%rax)
vmovdqa $D4,0xe0-0x90(%rax)
vmovdqa $MASK,0x100-0x90(%rax)
vmovdqa 64(%rcx),$MASK # .Lmask26
################################################################
# load input
vmovdqu 16*0($inp),%x#$T0
vmovdqu 16*1($inp),%x#$T1
vinserti128 \$1,16*2($inp),$T0,$T0
vinserti128 \$1,16*3($inp),$T1,$T1
lea 16*4($inp),$inp
vpsrldq \$6,$T0,$T2 # splat input
vpsrldq \$6,$T1,$T3
vpunpckhqdq $T1,$T0,$T4 # 4
vpunpcklqdq $T3,$T2,$T2 # 2:3
vpunpcklqdq $T1,$T0,$T0 # 0:1
vpsrlq \$30,$T2,$T3
vpsrlq \$4,$T2,$T2
vpsrlq \$26,$T0,$T1
vpsrlq \$40,$T4,$T4 # 4
vpand $MASK,$T2,$T2 # 2
vpand $MASK,$T0,$T0 # 0
vpand $MASK,$T1,$T1 # 1
vpand $MASK,$T3,$T3 # 3
vpor 32(%rcx),$T4,$T4 # padbit, yes, always
vpaddq $H2,$T2,$H2 # accumulate input
sub \$64,$len
jz .Ltail_avx2$suffix
jmp .Loop_avx2$suffix
.align 32
.Loop_avx2$suffix:
################################################################
# ((inp[0]*r^4+inp[4])*r^4+inp[ 8])*r^4
# ((inp[1]*r^4+inp[5])*r^4+inp[ 9])*r^3
# ((inp[2]*r^4+inp[6])*r^4+inp[10])*r^2
# ((inp[3]*r^4+inp[7])*r^4+inp[11])*r^1
# \________/\__________/
################################################################
#vpaddq $H2,$T2,$H2 # accumulate input
vpaddq $H0,$T0,$H0
vmovdqa `32*0`(%rsp),$T0 # r0^4
vpaddq $H1,$T1,$H1
vmovdqa `32*1`(%rsp),$T1 # r1^4
vpaddq $H3,$T3,$H3
vmovdqa `32*3`(%rsp),$T2 # r2^4
vpaddq $H4,$T4,$H4
vmovdqa `32*6-0x90`(%rax),$T3 # s3^4
vmovdqa `32*8-0x90`(%rax),$S4 # s4^4
# d4 = h4*r0 + h3*r1 + h2*r2 + h1*r3 + h0*r4
# d3 = h3*r0 + h2*r1 + h1*r2 + h0*r3 + h4*5*r4
# d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4
# d1 = h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + h2*5*r4
# d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4
#
# however, as h2 is "chronologically" first one available pull
# corresponding operations up, so it's
#
# d4 = h2*r2 + h4*r0 + h3*r1 + h1*r3 + h0*r4
# d3 = h2*r1 + h3*r0 + h1*r2 + h0*r3 + h4*5*r4
# d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4
# d1 = h2*5*r4 + h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3
# d0 = h2*5*r3 + h0*r0 + h4*5*r1 + h3*5*r2 + h1*5*r4
vpmuludq $H2,$T0,$D2 # d2 = h2*r0
vpmuludq $H2,$T1,$D3 # d3 = h2*r1
vpmuludq $H2,$T2,$D4 # d4 = h2*r2
vpmuludq $H2,$T3,$D0 # d0 = h2*s3
vpmuludq $H2,$S4,$D1 # d1 = h2*s4
vpmuludq $H0,$T1,$T4 # h0*r1
vpmuludq $H1,$T1,$H2 # h1*r1, borrow $H2 as temp
vpaddq $T4,$D1,$D1 # d1 += h0*r1
vpaddq $H2,$D2,$D2 # d2 += h1*r1
vpmuludq $H3,$T1,$T4 # h3*r1
vpmuludq `32*2`(%rsp),$H4,$H2 # h4*s1
vpaddq $T4,$D4,$D4 # d4 += h3*r1
vpaddq $H2,$D0,$D0 # d0 += h4*s1
vmovdqa `32*4-0x90`(%rax),$T1 # s2
vpmuludq $H0,$T0,$T4 # h0*r0
vpmuludq $H1,$T0,$H2 # h1*r0
vpaddq $T4,$D0,$D0 # d0 += h0*r0
vpaddq $H2,$D1,$D1 # d1 += h1*r0
vpmuludq $H3,$T0,$T4 # h3*r0
vpmuludq $H4,$T0,$H2 # h4*r0
vmovdqu 16*0($inp),%x#$T0 # load input
vpaddq $T4,$D3,$D3 # d3 += h3*r0
vpaddq $H2,$D4,$D4 # d4 += h4*r0
vinserti128 \$1,16*2($inp),$T0,$T0
vpmuludq $H3,$T1,$T4 # h3*s2
vpmuludq $H4,$T1,$H2 # h4*s2
vmovdqu 16*1($inp),%x#$T1
vpaddq $T4,$D0,$D0 # d0 += h3*s2
vpaddq $H2,$D1,$D1 # d1 += h4*s2
vmovdqa `32*5-0x90`(%rax),$H2 # r3
vpmuludq $H1,$T2,$T4 # h1*r2
vpmuludq $H0,$T2,$T2 # h0*r2
vpaddq $T4,$D3,$D3 # d3 += h1*r2
vpaddq $T2,$D2,$D2 # d2 += h0*r2
vinserti128 \$1,16*3($inp),$T1,$T1
lea 16*4($inp),$inp
vpmuludq $H1,$H2,$T4 # h1*r3
vpmuludq $H0,$H2,$H2 # h0*r3
vpsrldq \$6,$T0,$T2 # splat input
vpaddq $T4,$D4,$D4 # d4 += h1*r3
vpaddq $H2,$D3,$D3 # d3 += h0*r3
vpmuludq $H3,$T3,$T4 # h3*s3
vpmuludq $H4,$T3,$H2 # h4*s3
vpsrldq \$6,$T1,$T3
vpaddq $T4,$D1,$D1 # d1 += h3*s3
vpaddq $H2,$D2,$D2 # d2 += h4*s3
vpunpckhqdq $T1,$T0,$T4 # 4
vpmuludq $H3,$S4,$H3 # h3*s4
vpmuludq $H4,$S4,$H4 # h4*s4
vpunpcklqdq $T1,$T0,$T0 # 0:1
vpaddq $H3,$D2,$H2 # h2 = d2 + h3*r4
vpaddq $H4,$D3,$H3 # h3 = d3 + h4*r4
vpunpcklqdq $T3,$T2,$T3 # 2:3
vpmuludq `32*7-0x90`(%rax),$H0,$H4 # h0*r4
vpmuludq $H1,$S4,$H0 # h1*s4
vmovdqa 64(%rcx),$MASK # .Lmask26
vpaddq $H4,$D4,$H4 # h4 = d4 + h0*r4
vpaddq $H0,$D0,$H0 # h0 = d0 + h1*s4
################################################################
# lazy reduction (interleaved with tail of input splat)
vpsrlq \$26,$H3,$D3
vpand $MASK,$H3,$H3
vpaddq $D3,$H4,$H4 # h3 -> h4
vpsrlq \$26,$H0,$D0
vpand $MASK,$H0,$H0
vpaddq $D0,$D1,$H1 # h0 -> h1
vpsrlq \$26,$H4,$D4
vpand $MASK,$H4,$H4
vpsrlq \$4,$T3,$T2
vpsrlq \$26,$H1,$D1
vpand $MASK,$H1,$H1
vpaddq $D1,$H2,$H2 # h1 -> h2
vpaddq $D4,$H0,$H0
vpsllq \$2,$D4,$D4
vpaddq $D4,$H0,$H0 # h4 -> h0
vpand $MASK,$T2,$T2 # 2
vpsrlq \$26,$T0,$T1
vpsrlq \$26,$H2,$D2
vpand $MASK,$H2,$H2
vpaddq $D2,$H3,$H3 # h2 -> h3
vpaddq $T2,$H2,$H2 # modulo-scheduled
vpsrlq \$30,$T3,$T3
vpsrlq \$26,$H0,$D0
vpand $MASK,$H0,$H0
vpaddq $D0,$H1,$H1 # h0 -> h1
vpsrlq \$40,$T4,$T4 # 4
vpsrlq \$26,$H3,$D3
vpand $MASK,$H3,$H3
vpaddq $D3,$H4,$H4 # h3 -> h4
vpand $MASK,$T0,$T0 # 0
vpand $MASK,$T1,$T1 # 1
vpand $MASK,$T3,$T3 # 3
vpor 32(%rcx),$T4,$T4 # padbit, yes, always
sub \$64,$len
jnz .Loop_avx2$suffix
.byte 0x66,0x90
.Ltail_avx2$suffix:
################################################################
# while above multiplications were by r^4 in all lanes, in last
# iteration we multiply least significant lane by r^4 and most
# significant one by r, so copy of above except that references
# to the precomputed table are displaced by 4...
#vpaddq $H2,$T2,$H2 # accumulate input
vpaddq $H0,$T0,$H0
vmovdqu `32*0+4`(%rsp),$T0 # r0^4
vpaddq $H1,$T1,$H1
vmovdqu `32*1+4`(%rsp),$T1 # r1^4
vpaddq $H3,$T3,$H3
vmovdqu `32*3+4`(%rsp),$T2 # r2^4
vpaddq $H4,$T4,$H4
vmovdqu `32*6+4-0x90`(%rax),$T3 # s3^4
vmovdqu `32*8+4-0x90`(%rax),$S4 # s4^4
vpmuludq $H2,$T0,$D2 # d2 = h2*r0
vpmuludq $H2,$T1,$D3 # d3 = h2*r1
vpmuludq $H2,$T2,$D4 # d4 = h2*r2
vpmuludq $H2,$T3,$D0 # d0 = h2*s3
vpmuludq $H2,$S4,$D1 # d1 = h2*s4
vpmuludq $H0,$T1,$T4 # h0*r1
vpmuludq $H1,$T1,$H2 # h1*r1
vpaddq $T4,$D1,$D1 # d1 += h0*r1
vpaddq $H2,$D2,$D2 # d2 += h1*r1
vpmuludq $H3,$T1,$T4 # h3*r1
vpmuludq `32*2+4`(%rsp),$H4,$H2 # h4*s1
vpaddq $T4,$D4,$D4 # d4 += h3*r1
vpaddq $H2,$D0,$D0 # d0 += h4*s1
vpmuludq $H0,$T0,$T4 # h0*r0
vpmuludq $H1,$T0,$H2 # h1*r0
vpaddq $T4,$D0,$D0 # d0 += h0*r0
vmovdqu `32*4+4-0x90`(%rax),$T1 # s2
vpaddq $H2,$D1,$D1 # d1 += h1*r0
vpmuludq $H3,$T0,$T4 # h3*r0
vpmuludq $H4,$T0,$H2 # h4*r0
vpaddq $T4,$D3,$D3 # d3 += h3*r0
vpaddq $H2,$D4,$D4 # d4 += h4*r0
vpmuludq $H3,$T1,$T4 # h3*s2
vpmuludq $H4,$T1,$H2 # h4*s2
vpaddq $T4,$D0,$D0 # d0 += h3*s2
vpaddq $H2,$D1,$D1 # d1 += h4*s2
vmovdqu `32*5+4-0x90`(%rax),$H2 # r3
vpmuludq $H1,$T2,$T4 # h1*r2
vpmuludq $H0,$T2,$T2 # h0*r2
vpaddq $T4,$D3,$D3 # d3 += h1*r2
vpaddq $T2,$D2,$D2 # d2 += h0*r2
vpmuludq $H1,$H2,$T4 # h1*r3
vpmuludq $H0,$H2,$H2 # h0*r3
vpaddq $T4,$D4,$D4 # d4 += h1*r3
vpaddq $H2,$D3,$D3 # d3 += h0*r3
vpmuludq $H3,$T3,$T4 # h3*s3
vpmuludq $H4,$T3,$H2 # h4*s3
vpaddq $T4,$D1,$D1 # d1 += h3*s3
vpaddq $H2,$D2,$D2 # d2 += h4*s3
vpmuludq $H3,$S4,$H3 # h3*s4
vpmuludq $H4,$S4,$H4 # h4*s4
vpaddq $H3,$D2,$H2 # h2 = d2 + h3*r4
vpaddq $H4,$D3,$H3 # h3 = d3 + h4*r4
vpmuludq `32*7+4-0x90`(%rax),$H0,$H4 # h0*r4
vpmuludq $H1,$S4,$H0 # h1*s4
vmovdqa 64(%rcx),$MASK # .Lmask26
vpaddq $H4,$D4,$H4 # h4 = d4 + h0*r4
vpaddq $H0,$D0,$H0 # h0 = d0 + h1*s4
################################################################
# horizontal addition
vpsrldq \$8,$D1,$T1
vpsrldq \$8,$H2,$T2
vpsrldq \$8,$H3,$T3
vpsrldq \$8,$H4,$T4
vpsrldq \$8,$H0,$T0
vpaddq $T1,$D1,$D1
vpaddq $T2,$H2,$H2
vpaddq $T3,$H3,$H3
vpaddq $T4,$H4,$H4
vpaddq $T0,$H0,$H0
vpermq \$0x2,$H3,$T3
vpermq \$0x2,$H4,$T4
vpermq \$0x2,$H0,$T0
vpermq \$0x2,$D1,$T1
vpermq \$0x2,$H2,$T2
vpaddq $T3,$H3,$H3
vpaddq $T4,$H4,$H4
vpaddq $T0,$H0,$H0
vpaddq $T1,$D1,$D1
vpaddq $T2,$H2,$H2
################################################################
# lazy reduction
vpsrlq \$26,$H3,$D3
vpand $MASK,$H3,$H3
vpaddq $D3,$H4,$H4 # h3 -> h4
vpsrlq \$26,$H0,$D0
vpand $MASK,$H0,$H0
vpaddq $D0,$D1,$H1 # h0 -> h1
vpsrlq \$26,$H4,$D4
vpand $MASK,$H4,$H4
vpsrlq \$26,$H1,$D1
vpand $MASK,$H1,$H1
vpaddq $D1,$H2,$H2 # h1 -> h2
vpaddq $D4,$H0,$H0
vpsllq \$2,$D4,$D4
vpaddq $D4,$H0,$H0 # h4 -> h0
vpsrlq \$26,$H2,$D2
vpand $MASK,$H2,$H2
vpaddq $D2,$H3,$H3 # h2 -> h3
vpsrlq \$26,$H0,$D0
vpand $MASK,$H0,$H0
vpaddq $D0,$H1,$H1 # h0 -> h1
vpsrlq \$26,$H3,$D3
vpand $MASK,$H3,$H3
vpaddq $D3,$H4,$H4 # h3 -> h4
vmovd %x#$H0,`4*0-48-64`($ctx)# save partially reduced
vmovd %x#$H1,`4*1-48-64`($ctx)
vmovd %x#$H2,`4*2-48-64`($ctx)
vmovd %x#$H3,`4*3-48-64`($ctx)
vmovd %x#$H4,`4*4-48-64`($ctx)
___
$code.=<<___ if ($win64);
vmovdqa -0xb0(%r10),%xmm6
vmovdqa -0xa0(%r10),%xmm7
vmovdqa -0x90(%r10),%xmm8
vmovdqa -0x80(%r10),%xmm9
vmovdqa -0x70(%r10),%xmm10
vmovdqa -0x60(%r10),%xmm11
vmovdqa -0x50(%r10),%xmm12
vmovdqa -0x40(%r10),%xmm13
vmovdqa -0x30(%r10),%xmm14
vmovdqa -0x20(%r10),%xmm15
lea -8(%r10),%rsp
.Ldo_avx2_epilogue$suffix:
___
$code.=<<___ if (!$win64);
lea -8(%r10),%rsp
.cfi_def_cfa_register %rsp
___
$code.=<<___;
vzeroupper
RET
.cfi_endproc
___
if($avx > 2 && $avx512) {
my ($R0,$R1,$R2,$R3,$R4, $S1,$S2,$S3,$S4) = map("%zmm$_",(16..24));
my ($M0,$M1,$M2,$M3,$M4) = map("%zmm$_",(25..29));
my $PADBIT="%zmm30";
map(s/%y/%z/,($T4,$T0,$T1,$T2,$T3)); # switch to %zmm domain
map(s/%y/%z/,($D0,$D1,$D2,$D3,$D4));
map(s/%y/%z/,($H0,$H1,$H2,$H3,$H4));
map(s/%y/%z/,($MASK));
$code.=<<___;
.cfi_startproc
.Lblocks_avx512:
mov \$15,%eax
kmovw %eax,%k2
___
$code.=<<___ if (!$win64);
lea 8(%rsp),%r10
.cfi_def_cfa_register %r10
sub \$0x128,%rsp
___
$code.=<<___ if ($win64);
lea 8(%rsp),%r10
sub \$0x1c8,%rsp
vmovdqa %xmm6,-0xb0(%r10)
vmovdqa %xmm7,-0xa0(%r10)
vmovdqa %xmm8,-0x90(%r10)
vmovdqa %xmm9,-0x80(%r10)
vmovdqa %xmm10,-0x70(%r10)
vmovdqa %xmm11,-0x60(%r10)
vmovdqa %xmm12,-0x50(%r10)
vmovdqa %xmm13,-0x40(%r10)
vmovdqa %xmm14,-0x30(%r10)
vmovdqa %xmm15,-0x20(%r10)
.Ldo_avx512_body:
___
$code.=<<___;
lea .Lconst(%rip),%rcx
lea 48+64($ctx),$ctx # size optimization
vmovdqa 96(%rcx),%y#$T2 # .Lpermd_avx2
# expand pre-calculated table
vmovdqu `16*0-64`($ctx),%x#$D0 # will become expanded ${R0}
and \$-512,%rsp
vmovdqu `16*1-64`($ctx),%x#$D1 # will become ... ${R1}
mov \$0x20,%rax
vmovdqu `16*2-64`($ctx),%x#$T0 # ... ${S1}
vmovdqu `16*3-64`($ctx),%x#$D2 # ... ${R2}
vmovdqu `16*4-64`($ctx),%x#$T1 # ... ${S2}
vmovdqu `16*5-64`($ctx),%x#$D3 # ... ${R3}
vmovdqu `16*6-64`($ctx),%x#$T3 # ... ${S3}
vmovdqu `16*7-64`($ctx),%x#$D4 # ... ${R4}
vmovdqu `16*8-64`($ctx),%x#$T4 # ... ${S4}
vpermd $D0,$T2,$R0 # 00003412 -> 14243444
vpbroadcastq 64(%rcx),$MASK # .Lmask26
vpermd $D1,$T2,$R1
vpermd $T0,$T2,$S1
vpermd $D2,$T2,$R2
vmovdqa64 $R0,0x00(%rsp){%k2} # save in case $len%128 != 0
vpsrlq \$32,$R0,$T0 # 14243444 -> 01020304
vpermd $T1,$T2,$S2
vmovdqu64 $R1,0x00(%rsp,%rax){%k2}
vpsrlq \$32,$R1,$T1
vpermd $D3,$T2,$R3
vmovdqa64 $S1,0x40(%rsp){%k2}
vpermd $T3,$T2,$S3
vpermd $D4,$T2,$R4
vmovdqu64 $R2,0x40(%rsp,%rax){%k2}
vpermd $T4,$T2,$S4
vmovdqa64 $S2,0x80(%rsp){%k2}
vmovdqu64 $R3,0x80(%rsp,%rax){%k2}
vmovdqa64 $S3,0xc0(%rsp){%k2}
vmovdqu64 $R4,0xc0(%rsp,%rax){%k2}
vmovdqa64 $S4,0x100(%rsp){%k2}
################################################################
# calculate 5th through 8th powers of the key
#
# d0 = r0'*r0 + r1'*5*r4 + r2'*5*r3 + r3'*5*r2 + r4'*5*r1
# d1 = r0'*r1 + r1'*r0 + r2'*5*r4 + r3'*5*r3 + r4'*5*r2
# d2 = r0'*r2 + r1'*r1 + r2'*r0 + r3'*5*r4 + r4'*5*r3
# d3 = r0'*r3 + r1'*r2 + r2'*r1 + r3'*r0 + r4'*5*r4
# d4 = r0'*r4 + r1'*r3 + r2'*r2 + r3'*r1 + r4'*r0
vpmuludq $T0,$R0,$D0 # d0 = r0'*r0
vpmuludq $T0,$R1,$D1 # d1 = r0'*r1
vpmuludq $T0,$R2,$D2 # d2 = r0'*r2
vpmuludq $T0,$R3,$D3 # d3 = r0'*r3
vpmuludq $T0,$R4,$D4 # d4 = r0'*r4
vpsrlq \$32,$R2,$T2
vpmuludq $T1,$S4,$M0
vpmuludq $T1,$R0,$M1
vpmuludq $T1,$R1,$M2
vpmuludq $T1,$R2,$M3
vpmuludq $T1,$R3,$M4
vpsrlq \$32,$R3,$T3
vpaddq $M0,$D0,$D0 # d0 += r1'*5*r4
vpaddq $M1,$D1,$D1 # d1 += r1'*r0
vpaddq $M2,$D2,$D2 # d2 += r1'*r1
vpaddq $M3,$D3,$D3 # d3 += r1'*r2
vpaddq $M4,$D4,$D4 # d4 += r1'*r3
vpmuludq $T2,$S3,$M0
vpmuludq $T2,$S4,$M1
vpmuludq $T2,$R1,$M3
vpmuludq $T2,$R2,$M4
vpmuludq $T2,$R0,$M2
vpsrlq \$32,$R4,$T4
vpaddq $M0,$D0,$D0 # d0 += r2'*5*r3
vpaddq $M1,$D1,$D1 # d1 += r2'*5*r4
vpaddq $M3,$D3,$D3 # d3 += r2'*r1
vpaddq $M4,$D4,$D4 # d4 += r2'*r2
vpaddq $M2,$D2,$D2 # d2 += r2'*r0
vpmuludq $T3,$S2,$M0
vpmuludq $T3,$R0,$M3
vpmuludq $T3,$R1,$M4
vpmuludq $T3,$S3,$M1
vpmuludq $T3,$S4,$M2
vpaddq $M0,$D0,$D0 # d0 += r3'*5*r2
vpaddq $M3,$D3,$D3 # d3 += r3'*r0
vpaddq $M4,$D4,$D4 # d4 += r3'*r1
vpaddq $M1,$D1,$D1 # d1 += r3'*5*r3
vpaddq $M2,$D2,$D2 # d2 += r3'*5*r4
vpmuludq $T4,$S4,$M3
vpmuludq $T4,$R0,$M4
vpmuludq $T4,$S1,$M0
vpmuludq $T4,$S2,$M1
vpmuludq $T4,$S3,$M2
vpaddq $M3,$D3,$D3 # d3 += r2'*5*r4
vpaddq $M4,$D4,$D4 # d4 += r2'*r0
vpaddq $M0,$D0,$D0 # d0 += r2'*5*r1
vpaddq $M1,$D1,$D1 # d1 += r2'*5*r2
vpaddq $M2,$D2,$D2 # d2 += r2'*5*r3
################################################################
# load input
vmovdqu64 16*0($inp),%z#$T3
vmovdqu64 16*4($inp),%z#$T4
lea 16*8($inp),$inp
################################################################
# lazy reduction
vpsrlq \$26,$D3,$M3
vpandq $MASK,$D3,$D3
vpaddq $M3,$D4,$D4 # d3 -> d4
vpsrlq \$26,$D0,$M0
vpandq $MASK,$D0,$D0
vpaddq $M0,$D1,$D1 # d0 -> d1
vpsrlq \$26,$D4,$M4
vpandq $MASK,$D4,$D4
vpsrlq \$26,$D1,$M1
vpandq $MASK,$D1,$D1
vpaddq $M1,$D2,$D2 # d1 -> d2
vpaddq $M4,$D0,$D0
vpsllq \$2,$M4,$M4
vpaddq $M4,$D0,$D0 # d4 -> d0
vpsrlq \$26,$D2,$M2
vpandq $MASK,$D2,$D2
vpaddq $M2,$D3,$D3 # d2 -> d3
vpsrlq \$26,$D0,$M0
vpandq $MASK,$D0,$D0
vpaddq $M0,$D1,$D1 # d0 -> d1
vpsrlq \$26,$D3,$M3
vpandq $MASK,$D3,$D3
vpaddq $M3,$D4,$D4 # d3 -> d4
################################################################
# at this point we have 14243444 in $R0-$S4 and 05060708 in
# $D0-$D4, ...
vpunpcklqdq $T4,$T3,$T0 # transpose input
vpunpckhqdq $T4,$T3,$T4
# ... since input 64-bit lanes are ordered as 73625140, we could
# "vperm" it to 76543210 (here and in each loop iteration), *or*
# we could just flow along, hence the goal for $R0-$S4 is
# 1858286838784888 ...
vmovdqa32 128(%rcx),$M0 # .Lpermd_avx512:
mov \$0x7777,%eax
kmovw %eax,%k1
vpermd $R0,$M0,$R0 # 14243444 -> 1---2---3---4---
vpermd $R1,$M0,$R1
vpermd $R2,$M0,$R2
vpermd $R3,$M0,$R3
vpermd $R4,$M0,$R4
vpermd $D0,$M0,${R0}{%k1} # 05060708 -> 1858286838784888
vpermd $D1,$M0,${R1}{%k1}
vpermd $D2,$M0,${R2}{%k1}
vpermd $D3,$M0,${R3}{%k1}
vpermd $D4,$M0,${R4}{%k1}
vpslld \$2,$R1,$S1 # *5
vpslld \$2,$R2,$S2
vpslld \$2,$R3,$S3
vpslld \$2,$R4,$S4
vpaddd $R1,$S1,$S1
vpaddd $R2,$S2,$S2
vpaddd $R3,$S3,$S3
vpaddd $R4,$S4,$S4
vpbroadcastq 32(%rcx),$PADBIT # .L129
vpsrlq \$52,$T0,$T2 # splat input
vpsllq \$12,$T4,$T3
vporq $T3,$T2,$T2
vpsrlq \$26,$T0,$T1
vpsrlq \$14,$T4,$T3
vpsrlq \$40,$T4,$T4 # 4
vpandq $MASK,$T2,$T2 # 2
vpandq $MASK,$T0,$T0 # 0
#vpandq $MASK,$T1,$T1 # 1
#vpandq $MASK,$T3,$T3 # 3
#vporq $PADBIT,$T4,$T4 # padbit, yes, always
vpaddq $H2,$T2,$H2 # accumulate input
sub \$192,$len
jbe .Ltail_avx512
jmp .Loop_avx512
.align 32
.Loop_avx512:
################################################################
# ((inp[0]*r^8+inp[ 8])*r^8+inp[16])*r^8
# ((inp[1]*r^8+inp[ 9])*r^8+inp[17])*r^7
# ((inp[2]*r^8+inp[10])*r^8+inp[18])*r^6
# ((inp[3]*r^8+inp[11])*r^8+inp[19])*r^5
# ((inp[4]*r^8+inp[12])*r^8+inp[20])*r^4
# ((inp[5]*r^8+inp[13])*r^8+inp[21])*r^3
# ((inp[6]*r^8+inp[14])*r^8+inp[22])*r^2
# ((inp[7]*r^8+inp[15])*r^8+inp[23])*r^1
# \________/\___________/
################################################################
#vpaddq $H2,$T2,$H2 # accumulate input
# d4 = h4*r0 + h3*r1 + h2*r2 + h1*r3 + h0*r4
# d3 = h3*r0 + h2*r1 + h1*r2 + h0*r3 + h4*5*r4
# d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4
# d1 = h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + h2*5*r4
# d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4
#
# however, as h2 is "chronologically" first one available pull
# corresponding operations up, so it's
#
# d3 = h2*r1 + h0*r3 + h1*r2 + h3*r0 + h4*5*r4
# d4 = h2*r2 + h0*r4 + h1*r3 + h3*r1 + h4*r0
# d0 = h2*5*r3 + h0*r0 + h1*5*r4 + h3*5*r2 + h4*5*r1
# d1 = h2*5*r4 + h0*r1 + h1*r0 + h3*5*r3 + h4*5*r2
# d2 = h2*r0 + h0*r2 + h1*r1 + h3*5*r4 + h4*5*r3
vpmuludq $H2,$R1,$D3 # d3 = h2*r1
vpaddq $H0,$T0,$H0
vpmuludq $H2,$R2,$D4 # d4 = h2*r2
vpandq $MASK,$T1,$T1 # 1
vpmuludq $H2,$S3,$D0 # d0 = h2*s3
vpandq $MASK,$T3,$T3 # 3
vpmuludq $H2,$S4,$D1 # d1 = h2*s4
vporq $PADBIT,$T4,$T4 # padbit, yes, always
vpmuludq $H2,$R0,$D2 # d2 = h2*r0
vpaddq $H1,$T1,$H1 # accumulate input
vpaddq $H3,$T3,$H3
vpaddq $H4,$T4,$H4
vmovdqu64 16*0($inp),$T3 # load input
vmovdqu64 16*4($inp),$T4
lea 16*8($inp),$inp
vpmuludq $H0,$R3,$M3
vpmuludq $H0,$R4,$M4
vpmuludq $H0,$R0,$M0
vpmuludq $H0,$R1,$M1
vpaddq $M3,$D3,$D3 # d3 += h0*r3
vpaddq $M4,$D4,$D4 # d4 += h0*r4
vpaddq $M0,$D0,$D0 # d0 += h0*r0
vpaddq $M1,$D1,$D1 # d1 += h0*r1
vpmuludq $H1,$R2,$M3
vpmuludq $H1,$R3,$M4
vpmuludq $H1,$S4,$M0
vpmuludq $H0,$R2,$M2
vpaddq $M3,$D3,$D3 # d3 += h1*r2
vpaddq $M4,$D4,$D4 # d4 += h1*r3
vpaddq $M0,$D0,$D0 # d0 += h1*s4
vpaddq $M2,$D2,$D2 # d2 += h0*r2
vpunpcklqdq $T4,$T3,$T0 # transpose input
vpunpckhqdq $T4,$T3,$T4
vpmuludq $H3,$R0,$M3
vpmuludq $H3,$R1,$M4
vpmuludq $H1,$R0,$M1
vpmuludq $H1,$R1,$M2
vpaddq $M3,$D3,$D3 # d3 += h3*r0
vpaddq $M4,$D4,$D4 # d4 += h3*r1
vpaddq $M1,$D1,$D1 # d1 += h1*r0
vpaddq $M2,$D2,$D2 # d2 += h1*r1
vpmuludq $H4,$S4,$M3
vpmuludq $H4,$R0,$M4
vpmuludq $H3,$S2,$M0
vpmuludq $H3,$S3,$M1
vpaddq $M3,$D3,$D3 # d3 += h4*s4
vpmuludq $H3,$S4,$M2
vpaddq $M4,$D4,$D4 # d4 += h4*r0
vpaddq $M0,$D0,$D0 # d0 += h3*s2
vpaddq $M1,$D1,$D1 # d1 += h3*s3
vpaddq $M2,$D2,$D2 # d2 += h3*s4
vpmuludq $H4,$S1,$M0
vpmuludq $H4,$S2,$M1
vpmuludq $H4,$S3,$M2
vpaddq $M0,$D0,$H0 # h0 = d0 + h4*s1
vpaddq $M1,$D1,$H1 # h1 = d2 + h4*s2
vpaddq $M2,$D2,$H2 # h2 = d3 + h4*s3
################################################################
# lazy reduction (interleaved with input splat)
vpsrlq \$52,$T0,$T2 # splat input
vpsllq \$12,$T4,$T3
vpsrlq \$26,$D3,$H3
vpandq $MASK,$D3,$D3
vpaddq $H3,$D4,$H4 # h3 -> h4
vporq $T3,$T2,$T2
vpsrlq \$26,$H0,$D0
vpandq $MASK,$H0,$H0
vpaddq $D0,$H1,$H1 # h0 -> h1
vpandq $MASK,$T2,$T2 # 2
vpsrlq \$26,$H4,$D4
vpandq $MASK,$H4,$H4
vpsrlq \$26,$H1,$D1
vpandq $MASK,$H1,$H1
vpaddq $D1,$H2,$H2 # h1 -> h2
vpaddq $D4,$H0,$H0
vpsllq \$2,$D4,$D4
vpaddq $D4,$H0,$H0 # h4 -> h0
vpaddq $T2,$H2,$H2 # modulo-scheduled
vpsrlq \$26,$T0,$T1
vpsrlq \$26,$H2,$D2
vpandq $MASK,$H2,$H2
vpaddq $D2,$D3,$H3 # h2 -> h3
vpsrlq \$14,$T4,$T3
vpsrlq \$26,$H0,$D0
vpandq $MASK,$H0,$H0
vpaddq $D0,$H1,$H1 # h0 -> h1
vpsrlq \$40,$T4,$T4 # 4
vpsrlq \$26,$H3,$D3
vpandq $MASK,$H3,$H3
vpaddq $D3,$H4,$H4 # h3 -> h4
vpandq $MASK,$T0,$T0 # 0
#vpandq $MASK,$T1,$T1 # 1
#vpandq $MASK,$T3,$T3 # 3
#vporq $PADBIT,$T4,$T4 # padbit, yes, always
sub \$128,$len
ja .Loop_avx512
.Ltail_avx512:
################################################################
# while above multiplications were by r^8 in all lanes, in last
# iteration we multiply least significant lane by r^8 and most
# significant one by r, that's why table gets shifted...
vpsrlq \$32,$R0,$R0 # 0105020603070408
vpsrlq \$32,$R1,$R1
vpsrlq \$32,$R2,$R2
vpsrlq \$32,$S3,$S3
vpsrlq \$32,$S4,$S4
vpsrlq \$32,$R3,$R3
vpsrlq \$32,$R4,$R4
vpsrlq \$32,$S1,$S1
vpsrlq \$32,$S2,$S2
################################################################
# load either next or last 64 byte of input
lea ($inp,$len),$inp
#vpaddq $H2,$T2,$H2 # accumulate input
vpaddq $H0,$T0,$H0
vpmuludq $H2,$R1,$D3 # d3 = h2*r1
vpmuludq $H2,$R2,$D4 # d4 = h2*r2
vpmuludq $H2,$S3,$D0 # d0 = h2*s3
vpandq $MASK,$T1,$T1 # 1
vpmuludq $H2,$S4,$D1 # d1 = h2*s4
vpandq $MASK,$T3,$T3 # 3
vpmuludq $H2,$R0,$D2 # d2 = h2*r0
vporq $PADBIT,$T4,$T4 # padbit, yes, always
vpaddq $H1,$T1,$H1 # accumulate input
vpaddq $H3,$T3,$H3
vpaddq $H4,$T4,$H4
vmovdqu 16*0($inp),%x#$T0
vpmuludq $H0,$R3,$M3
vpmuludq $H0,$R4,$M4
vpmuludq $H0,$R0,$M0
vpmuludq $H0,$R1,$M1
vpaddq $M3,$D3,$D3 # d3 += h0*r3
vpaddq $M4,$D4,$D4 # d4 += h0*r4
vpaddq $M0,$D0,$D0 # d0 += h0*r0
vpaddq $M1,$D1,$D1 # d1 += h0*r1
vmovdqu 16*1($inp),%x#$T1
vpmuludq $H1,$R2,$M3
vpmuludq $H1,$R3,$M4
vpmuludq $H1,$S4,$M0
vpmuludq $H0,$R2,$M2
vpaddq $M3,$D3,$D3 # d3 += h1*r2
vpaddq $M4,$D4,$D4 # d4 += h1*r3
vpaddq $M0,$D0,$D0 # d0 += h1*s4
vpaddq $M2,$D2,$D2 # d2 += h0*r2
vinserti128 \$1,16*2($inp),%y#$T0,%y#$T0
vpmuludq $H3,$R0,$M3
vpmuludq $H3,$R1,$M4
vpmuludq $H1,$R0,$M1
vpmuludq $H1,$R1,$M2
vpaddq $M3,$D3,$D3 # d3 += h3*r0
vpaddq $M4,$D4,$D4 # d4 += h3*r1
vpaddq $M1,$D1,$D1 # d1 += h1*r0
vpaddq $M2,$D2,$D2 # d2 += h1*r1
vinserti128 \$1,16*3($inp),%y#$T1,%y#$T1
vpmuludq $H4,$S4,$M3
vpmuludq $H4,$R0,$M4
vpmuludq $H3,$S2,$M0
vpmuludq $H3,$S3,$M1
vpmuludq $H3,$S4,$M2
vpaddq $M3,$D3,$H3 # h3 = d3 + h4*s4
vpaddq $M4,$D4,$D4 # d4 += h4*r0
vpaddq $M0,$D0,$D0 # d0 += h3*s2
vpaddq $M1,$D1,$D1 # d1 += h3*s3
vpaddq $M2,$D2,$D2 # d2 += h3*s4
vpmuludq $H4,$S1,$M0
vpmuludq $H4,$S2,$M1
vpmuludq $H4,$S3,$M2
vpaddq $M0,$D0,$H0 # h0 = d0 + h4*s1
vpaddq $M1,$D1,$H1 # h1 = d2 + h4*s2
vpaddq $M2,$D2,$H2 # h2 = d3 + h4*s3
################################################################
# horizontal addition
mov \$1,%eax
vpermq \$0xb1,$H3,$D3
vpermq \$0xb1,$D4,$H4
vpermq \$0xb1,$H0,$D0
vpermq \$0xb1,$H1,$D1
vpermq \$0xb1,$H2,$D2
vpaddq $D3,$H3,$H3
vpaddq $D4,$H4,$H4
vpaddq $D0,$H0,$H0
vpaddq $D1,$H1,$H1
vpaddq $D2,$H2,$H2
kmovw %eax,%k3
vpermq \$0x2,$H3,$D3
vpermq \$0x2,$H4,$D4
vpermq \$0x2,$H0,$D0
vpermq \$0x2,$H1,$D1
vpermq \$0x2,$H2,$D2
vpaddq $D3,$H3,$H3
vpaddq $D4,$H4,$H4
vpaddq $D0,$H0,$H0
vpaddq $D1,$H1,$H1
vpaddq $D2,$H2,$H2
vextracti64x4 \$0x1,$H3,%y#$D3
vextracti64x4 \$0x1,$H4,%y#$D4
vextracti64x4 \$0x1,$H0,%y#$D0
vextracti64x4 \$0x1,$H1,%y#$D1
vextracti64x4 \$0x1,$H2,%y#$D2
vpaddq $D3,$H3,${H3}{%k3}{z} # keep single qword in case
vpaddq $D4,$H4,${H4}{%k3}{z} # it's passed to .Ltail_avx2
vpaddq $D0,$H0,${H0}{%k3}{z}
vpaddq $D1,$H1,${H1}{%k3}{z}
vpaddq $D2,$H2,${H2}{%k3}{z}
___
map(s/%z/%y/,($T0,$T1,$T2,$T3,$T4, $PADBIT));
map(s/%z/%y/,($H0,$H1,$H2,$H3,$H4, $D0,$D1,$D2,$D3,$D4, $MASK));
$code.=<<___;
################################################################
# lazy reduction (interleaved with input splat)
vpsrlq \$26,$H3,$D3
vpand $MASK,$H3,$H3
vpsrldq \$6,$T0,$T2 # splat input
vpsrldq \$6,$T1,$T3
vpunpckhqdq $T1,$T0,$T4 # 4
vpaddq $D3,$H4,$H4 # h3 -> h4
vpsrlq \$26,$H0,$D0
vpand $MASK,$H0,$H0
vpunpcklqdq $T3,$T2,$T2 # 2:3
vpunpcklqdq $T1,$T0,$T0 # 0:1
vpaddq $D0,$H1,$H1 # h0 -> h1
vpsrlq \$26,$H4,$D4
vpand $MASK,$H4,$H4
vpsrlq \$26,$H1,$D1
vpand $MASK,$H1,$H1
vpsrlq \$30,$T2,$T3
vpsrlq \$4,$T2,$T2
vpaddq $D1,$H2,$H2 # h1 -> h2
vpaddq $D4,$H0,$H0
vpsllq \$2,$D4,$D4
vpsrlq \$26,$T0,$T1
vpsrlq \$40,$T4,$T4 # 4
vpaddq $D4,$H0,$H0 # h4 -> h0
vpsrlq \$26,$H2,$D2
vpand $MASK,$H2,$H2
vpand $MASK,$T2,$T2 # 2
vpand $MASK,$T0,$T0 # 0
vpaddq $D2,$H3,$H3 # h2 -> h3
vpsrlq \$26,$H0,$D0
vpand $MASK,$H0,$H0
vpaddq $H2,$T2,$H2 # accumulate input for .Ltail_avx2
vpand $MASK,$T1,$T1 # 1
vpaddq $D0,$H1,$H1 # h0 -> h1
vpsrlq \$26,$H3,$D3
vpand $MASK,$H3,$H3
vpand $MASK,$T3,$T3 # 3
vpor 32(%rcx),$T4,$T4 # padbit, yes, always
vpaddq $D3,$H4,$H4 # h3 -> h4
lea 0x90(%rsp),%rax # size optimization for .Ltail_avx2
add \$64,$len
jnz .Ltail_avx2$suffix
vpsubq $T2,$H2,$H2 # undo input accumulation
vmovd %x#$H0,`4*0-48-64`($ctx)# save partially reduced
vmovd %x#$H1,`4*1-48-64`($ctx)
vmovd %x#$H2,`4*2-48-64`($ctx)
vmovd %x#$H3,`4*3-48-64`($ctx)
vmovd %x#$H4,`4*4-48-64`($ctx)
vzeroall
___
$code.=<<___ if ($win64);
movdqa -0xb0(%r10),%xmm6
movdqa -0xa0(%r10),%xmm7
movdqa -0x90(%r10),%xmm8
movdqa -0x80(%r10),%xmm9
movdqa -0x70(%r10),%xmm10
movdqa -0x60(%r10),%xmm11
movdqa -0x50(%r10),%xmm12
movdqa -0x40(%r10),%xmm13
movdqa -0x30(%r10),%xmm14
movdqa -0x20(%r10),%xmm15
lea -8(%r10),%rsp
.Ldo_avx512_epilogue:
___
$code.=<<___ if (!$win64);
lea -8(%r10),%rsp
.cfi_def_cfa_register %rsp
___
$code.=<<___;
RET
.cfi_endproc
___
}
}
&declare_function("poly1305_blocks_avx2", 32, 4);
poly1305_blocks_avxN(0);
&end_function("poly1305_blocks_avx2");
#######################################################################
if ($avx>2) {
# On entry we have input length divisible by 64. But since inner loop
# processes 128 bytes per iteration, cases when length is not divisible
# by 128 are handled by passing tail 64 bytes to .Ltail_avx2. For this
# reason stack layout is kept identical to poly1305_blocks_avx2. If not
# for this tail, we wouldn't have to even allocate stack frame...
if($kernel) {
$code .= "#ifdef CONFIG_AS_AVX512\n";
}
&declare_function("poly1305_blocks_avx512", 32, 4);
poly1305_blocks_avxN(1);
&end_function("poly1305_blocks_avx512");
if ($kernel) {
$code .= "#endif\n";
}
if (!$kernel && $avx>3) {
########################################################################
# VPMADD52 version using 2^44 radix.
#
# One can argue that base 2^52 would be more natural. Well, even though
# some operations would be more natural, one has to recognize couple of
# things. Base 2^52 doesn't provide advantage over base 2^44 if you look
# at amount of multiply-n-accumulate operations. Secondly, it makes it
# impossible to pre-compute multiples of 5 [referred to as s[]/sN in
# reference implementations], which means that more such operations
# would have to be performed in inner loop, which in turn makes critical
# path longer. In other words, even though base 2^44 reduction might
# look less elegant, overall critical path is actually shorter...
########################################################################
# Layout of opaque area is following.
#
# unsigned __int64 h[3]; # current hash value base 2^44
# unsigned __int64 s[2]; # key value*20 base 2^44
# unsigned __int64 r[3]; # key value base 2^44
# struct { unsigned __int64 r^1, r^3, r^2, r^4; } R[4];
# # r^n positions reflect
# # placement in register, not
# # memory, R[3] is R[1]*20
$code.=<<___;
.type poly1305_init_base2_44,\@function,3
.align 32
poly1305_init_base2_44:
xor %eax,%eax
mov %rax,0($ctx) # initialize hash value
mov %rax,8($ctx)
mov %rax,16($ctx)
.Linit_base2_44:
lea poly1305_blocks_vpmadd52(%rip),%r10
lea poly1305_emit_base2_44(%rip),%r11
mov \$0x0ffffffc0fffffff,%rax
mov \$0x0ffffffc0ffffffc,%rcx
and 0($inp),%rax
mov \$0x00000fffffffffff,%r8
and 8($inp),%rcx
mov \$0x00000fffffffffff,%r9
and %rax,%r8
shrd \$44,%rcx,%rax
mov %r8,40($ctx) # r0
and %r9,%rax
shr \$24,%rcx
mov %rax,48($ctx) # r1
lea (%rax,%rax,4),%rax # *5
mov %rcx,56($ctx) # r2
shl \$2,%rax # magic <<2
lea (%rcx,%rcx,4),%rcx # *5
shl \$2,%rcx # magic <<2
mov %rax,24($ctx) # s1
mov %rcx,32($ctx) # s2
movq \$-1,64($ctx) # write impossible value
___
$code.=<<___ if ($flavour !~ /elf32/);
mov %r10,0(%rdx)
mov %r11,8(%rdx)
___
$code.=<<___ if ($flavour =~ /elf32/);
mov %r10d,0(%rdx)
mov %r11d,4(%rdx)
___
$code.=<<___;
mov \$1,%eax
RET
.size poly1305_init_base2_44,.-poly1305_init_base2_44
___
{
my ($H0,$H1,$H2,$r2r1r0,$r1r0s2,$r0s2s1,$Dlo,$Dhi) = map("%ymm$_",(0..5,16,17));
my ($T0,$inp_permd,$inp_shift,$PAD) = map("%ymm$_",(18..21));
my ($reduc_mask,$reduc_rght,$reduc_left) = map("%ymm$_",(22..25));
$code.=<<___;
.type poly1305_blocks_vpmadd52,\@function,4
.align 32
poly1305_blocks_vpmadd52:
shr \$4,$len
jz .Lno_data_vpmadd52 # too short
shl \$40,$padbit
mov 64($ctx),%r8 # peek on power of the key
# if powers of the key are not calculated yet, process up to 3
# blocks with this single-block subroutine, otherwise ensure that
# length is divisible by 2 blocks and pass the rest down to next
# subroutine...
mov \$3,%rax
mov \$1,%r10
cmp \$4,$len # is input long
cmovae %r10,%rax
test %r8,%r8 # is power value impossible?
cmovns %r10,%rax
and $len,%rax # is input of favourable length?
jz .Lblocks_vpmadd52_4x
sub %rax,$len
mov \$7,%r10d
mov \$1,%r11d
kmovw %r10d,%k7
lea .L2_44_inp_permd(%rip),%r10
kmovw %r11d,%k1
vmovq $padbit,%x#$PAD
vmovdqa64 0(%r10),$inp_permd # .L2_44_inp_permd
vmovdqa64 32(%r10),$inp_shift # .L2_44_inp_shift
vpermq \$0xcf,$PAD,$PAD
vmovdqa64 64(%r10),$reduc_mask # .L2_44_mask
vmovdqu64 0($ctx),${Dlo}{%k7}{z} # load hash value
vmovdqu64 40($ctx),${r2r1r0}{%k7}{z} # load keys
vmovdqu64 32($ctx),${r1r0s2}{%k7}{z}
vmovdqu64 24($ctx),${r0s2s1}{%k7}{z}
vmovdqa64 96(%r10),$reduc_rght # .L2_44_shift_rgt
vmovdqa64 128(%r10),$reduc_left # .L2_44_shift_lft
jmp .Loop_vpmadd52
.align 32
.Loop_vpmadd52:
vmovdqu32 0($inp),%x#$T0 # load input as ----3210
lea 16($inp),$inp
vpermd $T0,$inp_permd,$T0 # ----3210 -> --322110
vpsrlvq $inp_shift,$T0,$T0
vpandq $reduc_mask,$T0,$T0
vporq $PAD,$T0,$T0
vpaddq $T0,$Dlo,$Dlo # accumulate input
vpermq \$0,$Dlo,${H0}{%k7}{z} # smash hash value
vpermq \$0b01010101,$Dlo,${H1}{%k7}{z}
vpermq \$0b10101010,$Dlo,${H2}{%k7}{z}
vpxord $Dlo,$Dlo,$Dlo
vpxord $Dhi,$Dhi,$Dhi
vpmadd52luq $r2r1r0,$H0,$Dlo
vpmadd52huq $r2r1r0,$H0,$Dhi
vpmadd52luq $r1r0s2,$H1,$Dlo
vpmadd52huq $r1r0s2,$H1,$Dhi
vpmadd52luq $r0s2s1,$H2,$Dlo
vpmadd52huq $r0s2s1,$H2,$Dhi
vpsrlvq $reduc_rght,$Dlo,$T0 # 0 in topmost qword
vpsllvq $reduc_left,$Dhi,$Dhi # 0 in topmost qword
vpandq $reduc_mask,$Dlo,$Dlo
vpaddq $T0,$Dhi,$Dhi
vpermq \$0b10010011,$Dhi,$Dhi # 0 in lowest qword
vpaddq $Dhi,$Dlo,$Dlo # note topmost qword :-)
vpsrlvq $reduc_rght,$Dlo,$T0 # 0 in topmost word
vpandq $reduc_mask,$Dlo,$Dlo
vpermq \$0b10010011,$T0,$T0
vpaddq $T0,$Dlo,$Dlo
vpermq \$0b10010011,$Dlo,${T0}{%k1}{z}
vpaddq $T0,$Dlo,$Dlo
vpsllq \$2,$T0,$T0
vpaddq $T0,$Dlo,$Dlo
dec %rax # len-=16
jnz .Loop_vpmadd52
vmovdqu64 $Dlo,0($ctx){%k7} # store hash value
test $len,$len
jnz .Lblocks_vpmadd52_4x
.Lno_data_vpmadd52:
RET
.size poly1305_blocks_vpmadd52,.-poly1305_blocks_vpmadd52
___
}
{
########################################################################
# As implied by its name 4x subroutine processes 4 blocks in parallel
# (but handles even 4*n+2 blocks lengths). It takes up to 4th key power
# and is handled in 256-bit %ymm registers.
my ($H0,$H1,$H2,$R0,$R1,$R2,$S1,$S2) = map("%ymm$_",(0..5,16,17));
my ($D0lo,$D0hi,$D1lo,$D1hi,$D2lo,$D2hi) = map("%ymm$_",(18..23));
my ($T0,$T1,$T2,$T3,$mask44,$mask42,$tmp,$PAD) = map("%ymm$_",(24..31));
$code.=<<___;
.type poly1305_blocks_vpmadd52_4x,\@function,4
.align 32
poly1305_blocks_vpmadd52_4x:
shr \$4,$len
jz .Lno_data_vpmadd52_4x # too short
shl \$40,$padbit
mov 64($ctx),%r8 # peek on power of the key
.Lblocks_vpmadd52_4x:
vpbroadcastq $padbit,$PAD
vmovdqa64 .Lx_mask44(%rip),$mask44
mov \$5,%eax
vmovdqa64 .Lx_mask42(%rip),$mask42
kmovw %eax,%k1 # used in 2x path
test %r8,%r8 # is power value impossible?
js .Linit_vpmadd52 # if it is, then init R[4]
vmovq 0($ctx),%x#$H0 # load current hash value
vmovq 8($ctx),%x#$H1
vmovq 16($ctx),%x#$H2
test \$3,$len # is length 4*n+2?
jnz .Lblocks_vpmadd52_2x_do
.Lblocks_vpmadd52_4x_do:
vpbroadcastq 64($ctx),$R0 # load 4th power of the key
vpbroadcastq 96($ctx),$R1
vpbroadcastq 128($ctx),$R2
vpbroadcastq 160($ctx),$S1
.Lblocks_vpmadd52_4x_key_loaded:
vpsllq \$2,$R2,$S2 # S2 = R2*5*4
vpaddq $R2,$S2,$S2
vpsllq \$2,$S2,$S2
test \$7,$len # is len 8*n?
jz .Lblocks_vpmadd52_8x
vmovdqu64 16*0($inp),$T2 # load data
vmovdqu64 16*2($inp),$T3
lea 16*4($inp),$inp
vpunpcklqdq $T3,$T2,$T1 # transpose data
vpunpckhqdq $T3,$T2,$T3
# at this point 64-bit lanes are ordered as 3-1-2-0
vpsrlq \$24,$T3,$T2 # splat the data
vporq $PAD,$T2,$T2
vpaddq $T2,$H2,$H2 # accumulate input
vpandq $mask44,$T1,$T0
vpsrlq \$44,$T1,$T1
vpsllq \$20,$T3,$T3
vporq $T3,$T1,$T1
vpandq $mask44,$T1,$T1
sub \$4,$len
jz .Ltail_vpmadd52_4x
jmp .Loop_vpmadd52_4x
ud2
.align 32
.Linit_vpmadd52:
vmovq 24($ctx),%x#$S1 # load key
vmovq 56($ctx),%x#$H2
vmovq 32($ctx),%x#$S2
vmovq 40($ctx),%x#$R0
vmovq 48($ctx),%x#$R1
vmovdqa $R0,$H0
vmovdqa $R1,$H1
vmovdqa $H2,$R2
mov \$2,%eax
.Lmul_init_vpmadd52:
vpxorq $D0lo,$D0lo,$D0lo
vpmadd52luq $H2,$S1,$D0lo
vpxorq $D0hi,$D0hi,$D0hi
vpmadd52huq $H2,$S1,$D0hi
vpxorq $D1lo,$D1lo,$D1lo
vpmadd52luq $H2,$S2,$D1lo
vpxorq $D1hi,$D1hi,$D1hi
vpmadd52huq $H2,$S2,$D1hi
vpxorq $D2lo,$D2lo,$D2lo
vpmadd52luq $H2,$R0,$D2lo
vpxorq $D2hi,$D2hi,$D2hi
vpmadd52huq $H2,$R0,$D2hi
vpmadd52luq $H0,$R0,$D0lo
vpmadd52huq $H0,$R0,$D0hi
vpmadd52luq $H0,$R1,$D1lo
vpmadd52huq $H0,$R1,$D1hi
vpmadd52luq $H0,$R2,$D2lo
vpmadd52huq $H0,$R2,$D2hi
vpmadd52luq $H1,$S2,$D0lo
vpmadd52huq $H1,$S2,$D0hi
vpmadd52luq $H1,$R0,$D1lo
vpmadd52huq $H1,$R0,$D1hi
vpmadd52luq $H1,$R1,$D2lo
vpmadd52huq $H1,$R1,$D2hi
################################################################
# partial reduction
vpsrlq \$44,$D0lo,$tmp
vpsllq \$8,$D0hi,$D0hi
vpandq $mask44,$D0lo,$H0
vpaddq $tmp,$D0hi,$D0hi
vpaddq $D0hi,$D1lo,$D1lo
vpsrlq \$44,$D1lo,$tmp
vpsllq \$8,$D1hi,$D1hi
vpandq $mask44,$D1lo,$H1
vpaddq $tmp,$D1hi,$D1hi
vpaddq $D1hi,$D2lo,$D2lo
vpsrlq \$42,$D2lo,$tmp
vpsllq \$10,$D2hi,$D2hi
vpandq $mask42,$D2lo,$H2
vpaddq $tmp,$D2hi,$D2hi
vpaddq $D2hi,$H0,$H0
vpsllq \$2,$D2hi,$D2hi
vpaddq $D2hi,$H0,$H0
vpsrlq \$44,$H0,$tmp # additional step
vpandq $mask44,$H0,$H0
vpaddq $tmp,$H1,$H1
dec %eax
jz .Ldone_init_vpmadd52
vpunpcklqdq $R1,$H1,$R1 # 1,2
vpbroadcastq %x#$H1,%x#$H1 # 2,2
vpunpcklqdq $R2,$H2,$R2
vpbroadcastq %x#$H2,%x#$H2
vpunpcklqdq $R0,$H0,$R0
vpbroadcastq %x#$H0,%x#$H0
vpsllq \$2,$R1,$S1 # S1 = R1*5*4
vpsllq \$2,$R2,$S2 # S2 = R2*5*4
vpaddq $R1,$S1,$S1
vpaddq $R2,$S2,$S2
vpsllq \$2,$S1,$S1
vpsllq \$2,$S2,$S2
jmp .Lmul_init_vpmadd52
ud2
.align 32
.Ldone_init_vpmadd52:
vinserti128 \$1,%x#$R1,$H1,$R1 # 1,2,3,4
vinserti128 \$1,%x#$R2,$H2,$R2
vinserti128 \$1,%x#$R0,$H0,$R0
vpermq \$0b11011000,$R1,$R1 # 1,3,2,4
vpermq \$0b11011000,$R2,$R2
vpermq \$0b11011000,$R0,$R0
vpsllq \$2,$R1,$S1 # S1 = R1*5*4
vpaddq $R1,$S1,$S1
vpsllq \$2,$S1,$S1
vmovq 0($ctx),%x#$H0 # load current hash value
vmovq 8($ctx),%x#$H1
vmovq 16($ctx),%x#$H2
test \$3,$len # is length 4*n+2?
jnz .Ldone_init_vpmadd52_2x
vmovdqu64 $R0,64($ctx) # save key powers
vpbroadcastq %x#$R0,$R0 # broadcast 4th power
vmovdqu64 $R1,96($ctx)
vpbroadcastq %x#$R1,$R1
vmovdqu64 $R2,128($ctx)
vpbroadcastq %x#$R2,$R2
vmovdqu64 $S1,160($ctx)
vpbroadcastq %x#$S1,$S1
jmp .Lblocks_vpmadd52_4x_key_loaded
ud2
.align 32
.Ldone_init_vpmadd52_2x:
vmovdqu64 $R0,64($ctx) # save key powers
vpsrldq \$8,$R0,$R0 # 0-1-0-2
vmovdqu64 $R1,96($ctx)
vpsrldq \$8,$R1,$R1
vmovdqu64 $R2,128($ctx)
vpsrldq \$8,$R2,$R2
vmovdqu64 $S1,160($ctx)
vpsrldq \$8,$S1,$S1
jmp .Lblocks_vpmadd52_2x_key_loaded
ud2
.align 32
.Lblocks_vpmadd52_2x_do:
vmovdqu64 128+8($ctx),${R2}{%k1}{z}# load 2nd and 1st key powers
vmovdqu64 160+8($ctx),${S1}{%k1}{z}
vmovdqu64 64+8($ctx),${R0}{%k1}{z}
vmovdqu64 96+8($ctx),${R1}{%k1}{z}
.Lblocks_vpmadd52_2x_key_loaded:
vmovdqu64 16*0($inp),$T2 # load data
vpxorq $T3,$T3,$T3
lea 16*2($inp),$inp
vpunpcklqdq $T3,$T2,$T1 # transpose data
vpunpckhqdq $T3,$T2,$T3
# at this point 64-bit lanes are ordered as x-1-x-0
vpsrlq \$24,$T3,$T2 # splat the data
vporq $PAD,$T2,$T2
vpaddq $T2,$H2,$H2 # accumulate input
vpandq $mask44,$T1,$T0
vpsrlq \$44,$T1,$T1
vpsllq \$20,$T3,$T3
vporq $T3,$T1,$T1
vpandq $mask44,$T1,$T1
jmp .Ltail_vpmadd52_2x
ud2
.align 32
.Loop_vpmadd52_4x:
#vpaddq $T2,$H2,$H2 # accumulate input
vpaddq $T0,$H0,$H0
vpaddq $T1,$H1,$H1
vpxorq $D0lo,$D0lo,$D0lo
vpmadd52luq $H2,$S1,$D0lo
vpxorq $D0hi,$D0hi,$D0hi
vpmadd52huq $H2,$S1,$D0hi
vpxorq $D1lo,$D1lo,$D1lo
vpmadd52luq $H2,$S2,$D1lo
vpxorq $D1hi,$D1hi,$D1hi
vpmadd52huq $H2,$S2,$D1hi
vpxorq $D2lo,$D2lo,$D2lo
vpmadd52luq $H2,$R0,$D2lo
vpxorq $D2hi,$D2hi,$D2hi
vpmadd52huq $H2,$R0,$D2hi
vmovdqu64 16*0($inp),$T2 # load data
vmovdqu64 16*2($inp),$T3
lea 16*4($inp),$inp
vpmadd52luq $H0,$R0,$D0lo
vpmadd52huq $H0,$R0,$D0hi
vpmadd52luq $H0,$R1,$D1lo
vpmadd52huq $H0,$R1,$D1hi
vpmadd52luq $H0,$R2,$D2lo
vpmadd52huq $H0,$R2,$D2hi
vpunpcklqdq $T3,$T2,$T1 # transpose data
vpunpckhqdq $T3,$T2,$T3
vpmadd52luq $H1,$S2,$D0lo
vpmadd52huq $H1,$S2,$D0hi
vpmadd52luq $H1,$R0,$D1lo
vpmadd52huq $H1,$R0,$D1hi
vpmadd52luq $H1,$R1,$D2lo
vpmadd52huq $H1,$R1,$D2hi
################################################################
# partial reduction (interleaved with data splat)
vpsrlq \$44,$D0lo,$tmp
vpsllq \$8,$D0hi,$D0hi
vpandq $mask44,$D0lo,$H0
vpaddq $tmp,$D0hi,$D0hi
vpsrlq \$24,$T3,$T2
vporq $PAD,$T2,$T2
vpaddq $D0hi,$D1lo,$D1lo
vpsrlq \$44,$D1lo,$tmp
vpsllq \$8,$D1hi,$D1hi
vpandq $mask44,$D1lo,$H1
vpaddq $tmp,$D1hi,$D1hi
vpandq $mask44,$T1,$T0
vpsrlq \$44,$T1,$T1
vpsllq \$20,$T3,$T3
vpaddq $D1hi,$D2lo,$D2lo
vpsrlq \$42,$D2lo,$tmp
vpsllq \$10,$D2hi,$D2hi
vpandq $mask42,$D2lo,$H2
vpaddq $tmp,$D2hi,$D2hi
vpaddq $T2,$H2,$H2 # accumulate input
vpaddq $D2hi,$H0,$H0
vpsllq \$2,$D2hi,$D2hi
vpaddq $D2hi,$H0,$H0
vporq $T3,$T1,$T1
vpandq $mask44,$T1,$T1
vpsrlq \$44,$H0,$tmp # additional step
vpandq $mask44,$H0,$H0
vpaddq $tmp,$H1,$H1
sub \$4,$len # len-=64
jnz .Loop_vpmadd52_4x
.Ltail_vpmadd52_4x:
vmovdqu64 128($ctx),$R2 # load all key powers
vmovdqu64 160($ctx),$S1
vmovdqu64 64($ctx),$R0
vmovdqu64 96($ctx),$R1
.Ltail_vpmadd52_2x:
vpsllq \$2,$R2,$S2 # S2 = R2*5*4
vpaddq $R2,$S2,$S2
vpsllq \$2,$S2,$S2
#vpaddq $T2,$H2,$H2 # accumulate input
vpaddq $T0,$H0,$H0
vpaddq $T1,$H1,$H1
vpxorq $D0lo,$D0lo,$D0lo
vpmadd52luq $H2,$S1,$D0lo
vpxorq $D0hi,$D0hi,$D0hi
vpmadd52huq $H2,$S1,$D0hi
vpxorq $D1lo,$D1lo,$D1lo
vpmadd52luq $H2,$S2,$D1lo
vpxorq $D1hi,$D1hi,$D1hi
vpmadd52huq $H2,$S2,$D1hi
vpxorq $D2lo,$D2lo,$D2lo
vpmadd52luq $H2,$R0,$D2lo
vpxorq $D2hi,$D2hi,$D2hi
vpmadd52huq $H2,$R0,$D2hi
vpmadd52luq $H0,$R0,$D0lo
vpmadd52huq $H0,$R0,$D0hi
vpmadd52luq $H0,$R1,$D1lo
vpmadd52huq $H0,$R1,$D1hi
vpmadd52luq $H0,$R2,$D2lo
vpmadd52huq $H0,$R2,$D2hi
vpmadd52luq $H1,$S2,$D0lo
vpmadd52huq $H1,$S2,$D0hi
vpmadd52luq $H1,$R0,$D1lo
vpmadd52huq $H1,$R0,$D1hi
vpmadd52luq $H1,$R1,$D2lo
vpmadd52huq $H1,$R1,$D2hi
################################################################
# horizontal addition
mov \$1,%eax
kmovw %eax,%k1
vpsrldq \$8,$D0lo,$T0
vpsrldq \$8,$D0hi,$H0
vpsrldq \$8,$D1lo,$T1
vpsrldq \$8,$D1hi,$H1
vpaddq $T0,$D0lo,$D0lo
vpaddq $H0,$D0hi,$D0hi
vpsrldq \$8,$D2lo,$T2
vpsrldq \$8,$D2hi,$H2
vpaddq $T1,$D1lo,$D1lo
vpaddq $H1,$D1hi,$D1hi
vpermq \$0x2,$D0lo,$T0
vpermq \$0x2,$D0hi,$H0
vpaddq $T2,$D2lo,$D2lo
vpaddq $H2,$D2hi,$D2hi
vpermq \$0x2,$D1lo,$T1
vpermq \$0x2,$D1hi,$H1
vpaddq $T0,$D0lo,${D0lo}{%k1}{z}
vpaddq $H0,$D0hi,${D0hi}{%k1}{z}
vpermq \$0x2,$D2lo,$T2
vpermq \$0x2,$D2hi,$H2
vpaddq $T1,$D1lo,${D1lo}{%k1}{z}
vpaddq $H1,$D1hi,${D1hi}{%k1}{z}
vpaddq $T2,$D2lo,${D2lo}{%k1}{z}
vpaddq $H2,$D2hi,${D2hi}{%k1}{z}
################################################################
# partial reduction
vpsrlq \$44,$D0lo,$tmp
vpsllq \$8,$D0hi,$D0hi
vpandq $mask44,$D0lo,$H0
vpaddq $tmp,$D0hi,$D0hi
vpaddq $D0hi,$D1lo,$D1lo
vpsrlq \$44,$D1lo,$tmp
vpsllq \$8,$D1hi,$D1hi
vpandq $mask44,$D1lo,$H1
vpaddq $tmp,$D1hi,$D1hi
vpaddq $D1hi,$D2lo,$D2lo
vpsrlq \$42,$D2lo,$tmp
vpsllq \$10,$D2hi,$D2hi
vpandq $mask42,$D2lo,$H2
vpaddq $tmp,$D2hi,$D2hi
vpaddq $D2hi,$H0,$H0
vpsllq \$2,$D2hi,$D2hi
vpaddq $D2hi,$H0,$H0
vpsrlq \$44,$H0,$tmp # additional step
vpandq $mask44,$H0,$H0
vpaddq $tmp,$H1,$H1
# at this point $len is
# either 4*n+2 or 0...
sub \$2,$len # len-=32
ja .Lblocks_vpmadd52_4x_do
vmovq %x#$H0,0($ctx)
vmovq %x#$H1,8($ctx)
vmovq %x#$H2,16($ctx)
vzeroall
.Lno_data_vpmadd52_4x:
RET
.size poly1305_blocks_vpmadd52_4x,.-poly1305_blocks_vpmadd52_4x
___
}
{
########################################################################
# As implied by its name 8x subroutine processes 8 blocks in parallel...
# This is intermediate version, as it's used only in cases when input
# length is either 8*n, 8*n+1 or 8*n+2...
my ($H0,$H1,$H2,$R0,$R1,$R2,$S1,$S2) = map("%ymm$_",(0..5,16,17));
my ($D0lo,$D0hi,$D1lo,$D1hi,$D2lo,$D2hi) = map("%ymm$_",(18..23));
my ($T0,$T1,$T2,$T3,$mask44,$mask42,$tmp,$PAD) = map("%ymm$_",(24..31));
my ($RR0,$RR1,$RR2,$SS1,$SS2) = map("%ymm$_",(6..10));
$code.=<<___;
.type poly1305_blocks_vpmadd52_8x,\@function,4
.align 32
poly1305_blocks_vpmadd52_8x:
shr \$4,$len
jz .Lno_data_vpmadd52_8x # too short
shl \$40,$padbit
mov 64($ctx),%r8 # peek on power of the key
vmovdqa64 .Lx_mask44(%rip),$mask44
vmovdqa64 .Lx_mask42(%rip),$mask42
test %r8,%r8 # is power value impossible?
js .Linit_vpmadd52 # if it is, then init R[4]
vmovq 0($ctx),%x#$H0 # load current hash value
vmovq 8($ctx),%x#$H1
vmovq 16($ctx),%x#$H2
.Lblocks_vpmadd52_8x:
################################################################
# fist we calculate more key powers
vmovdqu64 128($ctx),$R2 # load 1-3-2-4 powers
vmovdqu64 160($ctx),$S1
vmovdqu64 64($ctx),$R0
vmovdqu64 96($ctx),$R1
vpsllq \$2,$R2,$S2 # S2 = R2*5*4
vpaddq $R2,$S2,$S2
vpsllq \$2,$S2,$S2
vpbroadcastq %x#$R2,$RR2 # broadcast 4th power
vpbroadcastq %x#$R0,$RR0
vpbroadcastq %x#$R1,$RR1
vpxorq $D0lo,$D0lo,$D0lo
vpmadd52luq $RR2,$S1,$D0lo
vpxorq $D0hi,$D0hi,$D0hi
vpmadd52huq $RR2,$S1,$D0hi
vpxorq $D1lo,$D1lo,$D1lo
vpmadd52luq $RR2,$S2,$D1lo
vpxorq $D1hi,$D1hi,$D1hi
vpmadd52huq $RR2,$S2,$D1hi
vpxorq $D2lo,$D2lo,$D2lo
vpmadd52luq $RR2,$R0,$D2lo
vpxorq $D2hi,$D2hi,$D2hi
vpmadd52huq $RR2,$R0,$D2hi
vpmadd52luq $RR0,$R0,$D0lo
vpmadd52huq $RR0,$R0,$D0hi
vpmadd52luq $RR0,$R1,$D1lo
vpmadd52huq $RR0,$R1,$D1hi
vpmadd52luq $RR0,$R2,$D2lo
vpmadd52huq $RR0,$R2,$D2hi
vpmadd52luq $RR1,$S2,$D0lo
vpmadd52huq $RR1,$S2,$D0hi
vpmadd52luq $RR1,$R0,$D1lo
vpmadd52huq $RR1,$R0,$D1hi
vpmadd52luq $RR1,$R1,$D2lo
vpmadd52huq $RR1,$R1,$D2hi
################################################################
# partial reduction
vpsrlq \$44,$D0lo,$tmp
vpsllq \$8,$D0hi,$D0hi
vpandq $mask44,$D0lo,$RR0
vpaddq $tmp,$D0hi,$D0hi
vpaddq $D0hi,$D1lo,$D1lo
vpsrlq \$44,$D1lo,$tmp
vpsllq \$8,$D1hi,$D1hi
vpandq $mask44,$D1lo,$RR1
vpaddq $tmp,$D1hi,$D1hi
vpaddq $D1hi,$D2lo,$D2lo
vpsrlq \$42,$D2lo,$tmp
vpsllq \$10,$D2hi,$D2hi
vpandq $mask42,$D2lo,$RR2
vpaddq $tmp,$D2hi,$D2hi
vpaddq $D2hi,$RR0,$RR0
vpsllq \$2,$D2hi,$D2hi
vpaddq $D2hi,$RR0,$RR0
vpsrlq \$44,$RR0,$tmp # additional step
vpandq $mask44,$RR0,$RR0
vpaddq $tmp,$RR1,$RR1
################################################################
# At this point Rx holds 1324 powers, RRx - 5768, and the goal
# is 15263748, which reflects how data is loaded...
vpunpcklqdq $R2,$RR2,$T2 # 3748
vpunpckhqdq $R2,$RR2,$R2 # 1526
vpunpcklqdq $R0,$RR0,$T0
vpunpckhqdq $R0,$RR0,$R0
vpunpcklqdq $R1,$RR1,$T1
vpunpckhqdq $R1,$RR1,$R1
___
######## switch to %zmm
map(s/%y/%z/, $H0,$H1,$H2,$R0,$R1,$R2,$S1,$S2);
map(s/%y/%z/, $D0lo,$D0hi,$D1lo,$D1hi,$D2lo,$D2hi);
map(s/%y/%z/, $T0,$T1,$T2,$T3,$mask44,$mask42,$tmp,$PAD);
map(s/%y/%z/, $RR0,$RR1,$RR2,$SS1,$SS2);
$code.=<<___;
vshufi64x2 \$0x44,$R2,$T2,$RR2 # 15263748
vshufi64x2 \$0x44,$R0,$T0,$RR0
vshufi64x2 \$0x44,$R1,$T1,$RR1
vmovdqu64 16*0($inp),$T2 # load data
vmovdqu64 16*4($inp),$T3
lea 16*8($inp),$inp
vpsllq \$2,$RR2,$SS2 # S2 = R2*5*4
vpsllq \$2,$RR1,$SS1 # S1 = R1*5*4
vpaddq $RR2,$SS2,$SS2
vpaddq $RR1,$SS1,$SS1
vpsllq \$2,$SS2,$SS2
vpsllq \$2,$SS1,$SS1
vpbroadcastq $padbit,$PAD
vpbroadcastq %x#$mask44,$mask44
vpbroadcastq %x#$mask42,$mask42
vpbroadcastq %x#$SS1,$S1 # broadcast 8th power
vpbroadcastq %x#$SS2,$S2
vpbroadcastq %x#$RR0,$R0
vpbroadcastq %x#$RR1,$R1
vpbroadcastq %x#$RR2,$R2
vpunpcklqdq $T3,$T2,$T1 # transpose data
vpunpckhqdq $T3,$T2,$T3
# at this point 64-bit lanes are ordered as 73625140
vpsrlq \$24,$T3,$T2 # splat the data
vporq $PAD,$T2,$T2
vpaddq $T2,$H2,$H2 # accumulate input
vpandq $mask44,$T1,$T0
vpsrlq \$44,$T1,$T1
vpsllq \$20,$T3,$T3
vporq $T3,$T1,$T1
vpandq $mask44,$T1,$T1
sub \$8,$len
jz .Ltail_vpmadd52_8x
jmp .Loop_vpmadd52_8x
.align 32
.Loop_vpmadd52_8x:
#vpaddq $T2,$H2,$H2 # accumulate input
vpaddq $T0,$H0,$H0
vpaddq $T1,$H1,$H1
vpxorq $D0lo,$D0lo,$D0lo
vpmadd52luq $H2,$S1,$D0lo
vpxorq $D0hi,$D0hi,$D0hi
vpmadd52huq $H2,$S1,$D0hi
vpxorq $D1lo,$D1lo,$D1lo
vpmadd52luq $H2,$S2,$D1lo
vpxorq $D1hi,$D1hi,$D1hi
vpmadd52huq $H2,$S2,$D1hi
vpxorq $D2lo,$D2lo,$D2lo
vpmadd52luq $H2,$R0,$D2lo
vpxorq $D2hi,$D2hi,$D2hi
vpmadd52huq $H2,$R0,$D2hi
vmovdqu64 16*0($inp),$T2 # load data
vmovdqu64 16*4($inp),$T3
lea 16*8($inp),$inp
vpmadd52luq $H0,$R0,$D0lo
vpmadd52huq $H0,$R0,$D0hi
vpmadd52luq $H0,$R1,$D1lo
vpmadd52huq $H0,$R1,$D1hi
vpmadd52luq $H0,$R2,$D2lo
vpmadd52huq $H0,$R2,$D2hi
vpunpcklqdq $T3,$T2,$T1 # transpose data
vpunpckhqdq $T3,$T2,$T3
vpmadd52luq $H1,$S2,$D0lo
vpmadd52huq $H1,$S2,$D0hi
vpmadd52luq $H1,$R0,$D1lo
vpmadd52huq $H1,$R0,$D1hi
vpmadd52luq $H1,$R1,$D2lo
vpmadd52huq $H1,$R1,$D2hi
################################################################
# partial reduction (interleaved with data splat)
vpsrlq \$44,$D0lo,$tmp
vpsllq \$8,$D0hi,$D0hi
vpandq $mask44,$D0lo,$H0
vpaddq $tmp,$D0hi,$D0hi
vpsrlq \$24,$T3,$T2
vporq $PAD,$T2,$T2
vpaddq $D0hi,$D1lo,$D1lo
vpsrlq \$44,$D1lo,$tmp
vpsllq \$8,$D1hi,$D1hi
vpandq $mask44,$D1lo,$H1
vpaddq $tmp,$D1hi,$D1hi
vpandq $mask44,$T1,$T0
vpsrlq \$44,$T1,$T1
vpsllq \$20,$T3,$T3
vpaddq $D1hi,$D2lo,$D2lo
vpsrlq \$42,$D2lo,$tmp
vpsllq \$10,$D2hi,$D2hi
vpandq $mask42,$D2lo,$H2
vpaddq $tmp,$D2hi,$D2hi
vpaddq $T2,$H2,$H2 # accumulate input
vpaddq $D2hi,$H0,$H0
vpsllq \$2,$D2hi,$D2hi
vpaddq $D2hi,$H0,$H0
vporq $T3,$T1,$T1
vpandq $mask44,$T1,$T1
vpsrlq \$44,$H0,$tmp # additional step
vpandq $mask44,$H0,$H0
vpaddq $tmp,$H1,$H1
sub \$8,$len # len-=128
jnz .Loop_vpmadd52_8x
.Ltail_vpmadd52_8x:
#vpaddq $T2,$H2,$H2 # accumulate input
vpaddq $T0,$H0,$H0
vpaddq $T1,$H1,$H1
vpxorq $D0lo,$D0lo,$D0lo
vpmadd52luq $H2,$SS1,$D0lo
vpxorq $D0hi,$D0hi,$D0hi
vpmadd52huq $H2,$SS1,$D0hi
vpxorq $D1lo,$D1lo,$D1lo
vpmadd52luq $H2,$SS2,$D1lo
vpxorq $D1hi,$D1hi,$D1hi
vpmadd52huq $H2,$SS2,$D1hi
vpxorq $D2lo,$D2lo,$D2lo
vpmadd52luq $H2,$RR0,$D2lo
vpxorq $D2hi,$D2hi,$D2hi
vpmadd52huq $H2,$RR0,$D2hi
vpmadd52luq $H0,$RR0,$D0lo
vpmadd52huq $H0,$RR0,$D0hi
vpmadd52luq $H0,$RR1,$D1lo
vpmadd52huq $H0,$RR1,$D1hi
vpmadd52luq $H0,$RR2,$D2lo
vpmadd52huq $H0,$RR2,$D2hi
vpmadd52luq $H1,$SS2,$D0lo
vpmadd52huq $H1,$SS2,$D0hi
vpmadd52luq $H1,$RR0,$D1lo
vpmadd52huq $H1,$RR0,$D1hi
vpmadd52luq $H1,$RR1,$D2lo
vpmadd52huq $H1,$RR1,$D2hi
################################################################
# horizontal addition
mov \$1,%eax
kmovw %eax,%k1
vpsrldq \$8,$D0lo,$T0
vpsrldq \$8,$D0hi,$H0
vpsrldq \$8,$D1lo,$T1
vpsrldq \$8,$D1hi,$H1
vpaddq $T0,$D0lo,$D0lo
vpaddq $H0,$D0hi,$D0hi
vpsrldq \$8,$D2lo,$T2
vpsrldq \$8,$D2hi,$H2
vpaddq $T1,$D1lo,$D1lo
vpaddq $H1,$D1hi,$D1hi
vpermq \$0x2,$D0lo,$T0
vpermq \$0x2,$D0hi,$H0
vpaddq $T2,$D2lo,$D2lo
vpaddq $H2,$D2hi,$D2hi
vpermq \$0x2,$D1lo,$T1
vpermq \$0x2,$D1hi,$H1
vpaddq $T0,$D0lo,$D0lo
vpaddq $H0,$D0hi,$D0hi
vpermq \$0x2,$D2lo,$T2
vpermq \$0x2,$D2hi,$H2
vpaddq $T1,$D1lo,$D1lo
vpaddq $H1,$D1hi,$D1hi
vextracti64x4 \$1,$D0lo,%y#$T0
vextracti64x4 \$1,$D0hi,%y#$H0
vpaddq $T2,$D2lo,$D2lo
vpaddq $H2,$D2hi,$D2hi
vextracti64x4 \$1,$D1lo,%y#$T1
vextracti64x4 \$1,$D1hi,%y#$H1
vextracti64x4 \$1,$D2lo,%y#$T2
vextracti64x4 \$1,$D2hi,%y#$H2
___
######## switch back to %ymm
map(s/%z/%y/, $H0,$H1,$H2,$R0,$R1,$R2,$S1,$S2);
map(s/%z/%y/, $D0lo,$D0hi,$D1lo,$D1hi,$D2lo,$D2hi);
map(s/%z/%y/, $T0,$T1,$T2,$T3,$mask44,$mask42,$tmp,$PAD);
$code.=<<___;
vpaddq $T0,$D0lo,${D0lo}{%k1}{z}
vpaddq $H0,$D0hi,${D0hi}{%k1}{z}
vpaddq $T1,$D1lo,${D1lo}{%k1}{z}
vpaddq $H1,$D1hi,${D1hi}{%k1}{z}
vpaddq $T2,$D2lo,${D2lo}{%k1}{z}
vpaddq $H2,$D2hi,${D2hi}{%k1}{z}
################################################################
# partial reduction
vpsrlq \$44,$D0lo,$tmp
vpsllq \$8,$D0hi,$D0hi
vpandq $mask44,$D0lo,$H0
vpaddq $tmp,$D0hi,$D0hi
vpaddq $D0hi,$D1lo,$D1lo
vpsrlq \$44,$D1lo,$tmp
vpsllq \$8,$D1hi,$D1hi
vpandq $mask44,$D1lo,$H1
vpaddq $tmp,$D1hi,$D1hi
vpaddq $D1hi,$D2lo,$D2lo
vpsrlq \$42,$D2lo,$tmp
vpsllq \$10,$D2hi,$D2hi
vpandq $mask42,$D2lo,$H2
vpaddq $tmp,$D2hi,$D2hi
vpaddq $D2hi,$H0,$H0
vpsllq \$2,$D2hi,$D2hi
vpaddq $D2hi,$H0,$H0
vpsrlq \$44,$H0,$tmp # additional step
vpandq $mask44,$H0,$H0
vpaddq $tmp,$H1,$H1
################################################################
vmovq %x#$H0,0($ctx)
vmovq %x#$H1,8($ctx)
vmovq %x#$H2,16($ctx)
vzeroall
.Lno_data_vpmadd52_8x:
RET
.size poly1305_blocks_vpmadd52_8x,.-poly1305_blocks_vpmadd52_8x
___
}
$code.=<<___;
.type poly1305_emit_base2_44,\@function,3
.align 32
poly1305_emit_base2_44:
mov 0($ctx),%r8 # load hash value
mov 8($ctx),%r9
mov 16($ctx),%r10
mov %r9,%rax
shr \$20,%r9
shl \$44,%rax
mov %r10,%rcx
shr \$40,%r10
shl \$24,%rcx
add %rax,%r8
adc %rcx,%r9
adc \$0,%r10
mov %r8,%rax
add \$5,%r8 # compare to modulus
mov %r9,%rcx
adc \$0,%r9
adc \$0,%r10
shr \$2,%r10 # did 130-bit value overflow?
cmovnz %r8,%rax
cmovnz %r9,%rcx
add 0($nonce),%rax # accumulate nonce
adc 8($nonce),%rcx
mov %rax,0($mac) # write result
mov %rcx,8($mac)
RET
.size poly1305_emit_base2_44,.-poly1305_emit_base2_44
___
} } }
}
if (!$kernel)
{ # chacha20-poly1305 helpers
my ($out,$inp,$otp,$len)=$win64 ? ("%rcx","%rdx","%r8", "%r9") : # Win64 order
("%rdi","%rsi","%rdx","%rcx"); # Unix order
$code.=<<___;
.globl xor128_encrypt_n_pad
.type xor128_encrypt_n_pad,\@abi-omnipotent
.align 16
xor128_encrypt_n_pad:
sub $otp,$inp
sub $otp,$out
mov $len,%r10 # put len aside
shr \$4,$len # len / 16
jz .Ltail_enc
nop
.Loop_enc_xmm:
movdqu ($inp,$otp),%xmm0
pxor ($otp),%xmm0
movdqu %xmm0,($out,$otp)
movdqa %xmm0,($otp)
lea 16($otp),$otp
dec $len
jnz .Loop_enc_xmm
and \$15,%r10 # len % 16
jz .Ldone_enc
.Ltail_enc:
mov \$16,$len
sub %r10,$len
xor %eax,%eax
.Loop_enc_byte:
mov ($inp,$otp),%al
xor ($otp),%al
mov %al,($out,$otp)
mov %al,($otp)
lea 1($otp),$otp
dec %r10
jnz .Loop_enc_byte
xor %eax,%eax
.Loop_enc_pad:
mov %al,($otp)
lea 1($otp),$otp
dec $len
jnz .Loop_enc_pad
.Ldone_enc:
mov $otp,%rax
RET
.size xor128_encrypt_n_pad,.-xor128_encrypt_n_pad
.globl xor128_decrypt_n_pad
.type xor128_decrypt_n_pad,\@abi-omnipotent
.align 16
xor128_decrypt_n_pad:
sub $otp,$inp
sub $otp,$out
mov $len,%r10 # put len aside
shr \$4,$len # len / 16
jz .Ltail_dec
nop
.Loop_dec_xmm:
movdqu ($inp,$otp),%xmm0
movdqa ($otp),%xmm1
pxor %xmm0,%xmm1
movdqu %xmm1,($out,$otp)
movdqa %xmm0,($otp)
lea 16($otp),$otp
dec $len
jnz .Loop_dec_xmm
pxor %xmm1,%xmm1
and \$15,%r10 # len % 16
jz .Ldone_dec
.Ltail_dec:
mov \$16,$len
sub %r10,$len
xor %eax,%eax
xor %r11d,%r11d
.Loop_dec_byte:
mov ($inp,$otp),%r11b
mov ($otp),%al
xor %r11b,%al
mov %al,($out,$otp)
mov %r11b,($otp)
lea 1($otp),$otp
dec %r10
jnz .Loop_dec_byte
xor %eax,%eax
.Loop_dec_pad:
mov %al,($otp)
lea 1($otp),$otp
dec $len
jnz .Loop_dec_pad
.Ldone_dec:
mov $otp,%rax
RET
.size xor128_decrypt_n_pad,.-xor128_decrypt_n_pad
___
}
# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
# CONTEXT *context,DISPATCHER_CONTEXT *disp)
if ($win64) {
$rec="%rcx";
$frame="%rdx";
$context="%r8";
$disp="%r9";
$code.=<<___;
.extern __imp_RtlVirtualUnwind
.type se_handler,\@abi-omnipotent
.align 16
se_handler:
push %rsi
push %rdi
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
pushfq
sub \$64,%rsp
mov 120($context),%rax # pull context->Rax
mov 248($context),%rbx # pull context->Rip
mov 8($disp),%rsi # disp->ImageBase
mov 56($disp),%r11 # disp->HandlerData
mov 0(%r11),%r10d # HandlerData[0]
lea (%rsi,%r10),%r10 # prologue label
cmp %r10,%rbx # context->Rip<.Lprologue
jb .Lcommon_seh_tail
mov 152($context),%rax # pull context->Rsp
mov 4(%r11),%r10d # HandlerData[1]
lea (%rsi,%r10),%r10 # epilogue label
cmp %r10,%rbx # context->Rip>=.Lepilogue
jae .Lcommon_seh_tail
lea 48(%rax),%rax
mov -8(%rax),%rbx
mov -16(%rax),%rbp
mov -24(%rax),%r12
mov -32(%rax),%r13
mov -40(%rax),%r14
mov -48(%rax),%r15
mov %rbx,144($context) # restore context->Rbx
mov %rbp,160($context) # restore context->Rbp
mov %r12,216($context) # restore context->R12
mov %r13,224($context) # restore context->R13
mov %r14,232($context) # restore context->R14
mov %r15,240($context) # restore context->R14
jmp .Lcommon_seh_tail
.size se_handler,.-se_handler
.type avx_handler,\@abi-omnipotent
.align 16
avx_handler:
push %rsi
push %rdi
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
pushfq
sub \$64,%rsp
mov 120($context),%rax # pull context->Rax
mov 248($context),%rbx # pull context->Rip
mov 8($disp),%rsi # disp->ImageBase
mov 56($disp),%r11 # disp->HandlerData
mov 0(%r11),%r10d # HandlerData[0]
lea (%rsi,%r10),%r10 # prologue label
cmp %r10,%rbx # context->Rip<prologue label
jb .Lcommon_seh_tail
mov 152($context),%rax # pull context->Rsp
mov 4(%r11),%r10d # HandlerData[1]
lea (%rsi,%r10),%r10 # epilogue label
cmp %r10,%rbx # context->Rip>=epilogue label
jae .Lcommon_seh_tail
mov 208($context),%rax # pull context->R11
lea 0x50(%rax),%rsi
lea 0xf8(%rax),%rax
lea 512($context),%rdi # &context.Xmm6
mov \$20,%ecx
.long 0xa548f3fc # cld; rep movsq
.Lcommon_seh_tail:
mov 8(%rax),%rdi
mov 16(%rax),%rsi
mov %rax,152($context) # restore context->Rsp
mov %rsi,168($context) # restore context->Rsi
mov %rdi,176($context) # restore context->Rdi
mov 40($disp),%rdi # disp->ContextRecord
mov $context,%rsi # context
mov \$154,%ecx # sizeof(CONTEXT)
.long 0xa548f3fc # cld; rep movsq
mov $disp,%rsi
xor %ecx,%ecx # arg1, UNW_FLAG_NHANDLER
mov 8(%rsi),%rdx # arg2, disp->ImageBase
mov 0(%rsi),%r8 # arg3, disp->ControlPc
mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
mov 40(%rsi),%r10 # disp->ContextRecord
lea 56(%rsi),%r11 # &disp->HandlerData
lea 24(%rsi),%r12 # &disp->EstablisherFrame
mov %r10,32(%rsp) # arg5
mov %r11,40(%rsp) # arg6
mov %r12,48(%rsp) # arg7
mov %rcx,56(%rsp) # arg8, (NULL)
call *__imp_RtlVirtualUnwind(%rip)
mov \$1,%eax # ExceptionContinueSearch
add \$64,%rsp
popfq
pop %r15
pop %r14
pop %r13
pop %r12
pop %rbp
pop %rbx
pop %rdi
pop %rsi
RET
.size avx_handler,.-avx_handler
.section .pdata
.align 4
.rva .LSEH_begin_poly1305_init_x86_64
.rva .LSEH_end_poly1305_init_x86_64
.rva .LSEH_info_poly1305_init_x86_64
.rva .LSEH_begin_poly1305_blocks_x86_64
.rva .LSEH_end_poly1305_blocks_x86_64
.rva .LSEH_info_poly1305_blocks_x86_64
.rva .LSEH_begin_poly1305_emit_x86_64
.rva .LSEH_end_poly1305_emit_x86_64
.rva .LSEH_info_poly1305_emit_x86_64
___
$code.=<<___ if ($avx);
.rva .LSEH_begin_poly1305_blocks_avx
.rva .Lbase2_64_avx
.rva .LSEH_info_poly1305_blocks_avx_1
.rva .Lbase2_64_avx
.rva .Leven_avx
.rva .LSEH_info_poly1305_blocks_avx_2
.rva .Leven_avx
.rva .LSEH_end_poly1305_blocks_avx
.rva .LSEH_info_poly1305_blocks_avx_3
.rva .LSEH_begin_poly1305_emit_avx
.rva .LSEH_end_poly1305_emit_avx
.rva .LSEH_info_poly1305_emit_avx
___
$code.=<<___ if ($avx>1);
.rva .LSEH_begin_poly1305_blocks_avx2
.rva .Lbase2_64_avx2
.rva .LSEH_info_poly1305_blocks_avx2_1
.rva .Lbase2_64_avx2
.rva .Leven_avx2
.rva .LSEH_info_poly1305_blocks_avx2_2
.rva .Leven_avx2
.rva .LSEH_end_poly1305_blocks_avx2
.rva .LSEH_info_poly1305_blocks_avx2_3
___
$code.=<<___ if ($avx>2);
.rva .LSEH_begin_poly1305_blocks_avx512
.rva .LSEH_end_poly1305_blocks_avx512
.rva .LSEH_info_poly1305_blocks_avx512
___
$code.=<<___;
.section .xdata
.align 8
.LSEH_info_poly1305_init_x86_64:
.byte 9,0,0,0
.rva se_handler
.rva .LSEH_begin_poly1305_init_x86_64,.LSEH_begin_poly1305_init_x86_64
.LSEH_info_poly1305_blocks_x86_64:
.byte 9,0,0,0
.rva se_handler
.rva .Lblocks_body,.Lblocks_epilogue
.LSEH_info_poly1305_emit_x86_64:
.byte 9,0,0,0
.rva se_handler
.rva .LSEH_begin_poly1305_emit_x86_64,.LSEH_begin_poly1305_emit_x86_64
___
$code.=<<___ if ($avx);
.LSEH_info_poly1305_blocks_avx_1:
.byte 9,0,0,0
.rva se_handler
.rva .Lblocks_avx_body,.Lblocks_avx_epilogue # HandlerData[]
.LSEH_info_poly1305_blocks_avx_2:
.byte 9,0,0,0
.rva se_handler
.rva .Lbase2_64_avx_body,.Lbase2_64_avx_epilogue # HandlerData[]
.LSEH_info_poly1305_blocks_avx_3:
.byte 9,0,0,0
.rva avx_handler
.rva .Ldo_avx_body,.Ldo_avx_epilogue # HandlerData[]
.LSEH_info_poly1305_emit_avx:
.byte 9,0,0,0
.rva se_handler
.rva .LSEH_begin_poly1305_emit_avx,.LSEH_begin_poly1305_emit_avx
___
$code.=<<___ if ($avx>1);
.LSEH_info_poly1305_blocks_avx2_1:
.byte 9,0,0,0
.rva se_handler
.rva .Lblocks_avx2_body,.Lblocks_avx2_epilogue # HandlerData[]
.LSEH_info_poly1305_blocks_avx2_2:
.byte 9,0,0,0
.rva se_handler
.rva .Lbase2_64_avx2_body,.Lbase2_64_avx2_epilogue # HandlerData[]
.LSEH_info_poly1305_blocks_avx2_3:
.byte 9,0,0,0
.rva avx_handler
.rva .Ldo_avx2_body,.Ldo_avx2_epilogue # HandlerData[]
___
$code.=<<___ if ($avx>2);
.LSEH_info_poly1305_blocks_avx512:
.byte 9,0,0,0
.rva avx_handler
.rva .Ldo_avx512_body,.Ldo_avx512_epilogue # HandlerData[]
___
}
open SELF,$0;
while(<SELF>) {
next if (/^#!/);
last if (!s/^#/\/\// and !/^$/);
print;
}
close SELF;
foreach (split('\n',$code)) {
s/\`([^\`]*)\`/eval($1)/ge;
s/%r([a-z]+)#d/%e$1/g;
s/%r([0-9]+)#d/%r$1d/g;
s/%x#%[yz]/%x/g or s/%y#%z/%y/g or s/%z#%[yz]/%z/g;
if ($kernel) {
s/(^\.type.*),[0-9]+$/\1/;
s/(^\.type.*),\@abi-omnipotent+$/\1,\@function/;
next if /^\.cfi.*/;
}
print $_,"\n";
}
close STDOUT;