linux-zen-server/arch/x86/crypto/sha1_ssse3_glue.c

351 lines
8.2 KiB
C
Raw Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Cryptographic API.
*
* Glue code for the SHA1 Secure Hash Algorithm assembler implementation using
* Supplemental SSE3 instructions.
*
* This file is based on sha1_generic.c
*
* Copyright (c) Alan Smithee.
* Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk>
* Copyright (c) Jean-Francois Dive <jef@linuxbe.org>
* Copyright (c) Mathias Krause <minipli@googlemail.com>
* Copyright (c) Chandramouli Narayanan <mouli@linux.intel.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <crypto/internal/hash.h>
#include <crypto/internal/simd.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/types.h>
#include <crypto/sha1.h>
#include <crypto/sha1_base.h>
#include <asm/simd.h>
static int sha1_update(struct shash_desc *desc, const u8 *data,
unsigned int len, sha1_block_fn *sha1_xform)
{
struct sha1_state *sctx = shash_desc_ctx(desc);
if (!crypto_simd_usable() ||
(sctx->count % SHA1_BLOCK_SIZE) + len < SHA1_BLOCK_SIZE)
return crypto_sha1_update(desc, data, len);
/*
* Make sure struct sha1_state begins directly with the SHA1
* 160-bit internal state, as this is what the asm functions expect.
*/
BUILD_BUG_ON(offsetof(struct sha1_state, state) != 0);
kernel_fpu_begin();
sha1_base_do_update(desc, data, len, sha1_xform);
kernel_fpu_end();
return 0;
}
static int sha1_finup(struct shash_desc *desc, const u8 *data,
unsigned int len, u8 *out, sha1_block_fn *sha1_xform)
{
if (!crypto_simd_usable())
return crypto_sha1_finup(desc, data, len, out);
kernel_fpu_begin();
if (len)
sha1_base_do_update(desc, data, len, sha1_xform);
sha1_base_do_finalize(desc, sha1_xform);
kernel_fpu_end();
return sha1_base_finish(desc, out);
}
asmlinkage void sha1_transform_ssse3(struct sha1_state *state,
const u8 *data, int blocks);
static int sha1_ssse3_update(struct shash_desc *desc, const u8 *data,
unsigned int len)
{
return sha1_update(desc, data, len, sha1_transform_ssse3);
}
static int sha1_ssse3_finup(struct shash_desc *desc, const u8 *data,
unsigned int len, u8 *out)
{
return sha1_finup(desc, data, len, out, sha1_transform_ssse3);
}
/* Add padding and return the message digest. */
static int sha1_ssse3_final(struct shash_desc *desc, u8 *out)
{
return sha1_ssse3_finup(desc, NULL, 0, out);
}
static struct shash_alg sha1_ssse3_alg = {
.digestsize = SHA1_DIGEST_SIZE,
.init = sha1_base_init,
.update = sha1_ssse3_update,
.final = sha1_ssse3_final,
.finup = sha1_ssse3_finup,
.descsize = sizeof(struct sha1_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-ssse3",
.cra_priority = 150,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
};
static int register_sha1_ssse3(void)
{
if (boot_cpu_has(X86_FEATURE_SSSE3))
return crypto_register_shash(&sha1_ssse3_alg);
return 0;
}
static void unregister_sha1_ssse3(void)
{
if (boot_cpu_has(X86_FEATURE_SSSE3))
crypto_unregister_shash(&sha1_ssse3_alg);
}
asmlinkage void sha1_transform_avx(struct sha1_state *state,
const u8 *data, int blocks);
static int sha1_avx_update(struct shash_desc *desc, const u8 *data,
unsigned int len)
{
return sha1_update(desc, data, len, sha1_transform_avx);
}
static int sha1_avx_finup(struct shash_desc *desc, const u8 *data,
unsigned int len, u8 *out)
{
return sha1_finup(desc, data, len, out, sha1_transform_avx);
}
static int sha1_avx_final(struct shash_desc *desc, u8 *out)
{
return sha1_avx_finup(desc, NULL, 0, out);
}
static struct shash_alg sha1_avx_alg = {
.digestsize = SHA1_DIGEST_SIZE,
.init = sha1_base_init,
.update = sha1_avx_update,
.final = sha1_avx_final,
.finup = sha1_avx_finup,
.descsize = sizeof(struct sha1_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-avx",
.cra_priority = 160,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
};
static bool avx_usable(void)
{
if (!cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM, NULL)) {
if (boot_cpu_has(X86_FEATURE_AVX))
pr_info("AVX detected but unusable.\n");
return false;
}
return true;
}
static int register_sha1_avx(void)
{
if (avx_usable())
return crypto_register_shash(&sha1_avx_alg);
return 0;
}
static void unregister_sha1_avx(void)
{
if (avx_usable())
crypto_unregister_shash(&sha1_avx_alg);
}
#define SHA1_AVX2_BLOCK_OPTSIZE 4 /* optimal 4*64 bytes of SHA1 blocks */
asmlinkage void sha1_transform_avx2(struct sha1_state *state,
const u8 *data, int blocks);
static bool avx2_usable(void)
{
if (avx_usable() && boot_cpu_has(X86_FEATURE_AVX2)
&& boot_cpu_has(X86_FEATURE_BMI1)
&& boot_cpu_has(X86_FEATURE_BMI2))
return true;
return false;
}
static void sha1_apply_transform_avx2(struct sha1_state *state,
const u8 *data, int blocks)
{
/* Select the optimal transform based on data block size */
if (blocks >= SHA1_AVX2_BLOCK_OPTSIZE)
sha1_transform_avx2(state, data, blocks);
else
sha1_transform_avx(state, data, blocks);
}
static int sha1_avx2_update(struct shash_desc *desc, const u8 *data,
unsigned int len)
{
return sha1_update(desc, data, len, sha1_apply_transform_avx2);
}
static int sha1_avx2_finup(struct shash_desc *desc, const u8 *data,
unsigned int len, u8 *out)
{
return sha1_finup(desc, data, len, out, sha1_apply_transform_avx2);
}
static int sha1_avx2_final(struct shash_desc *desc, u8 *out)
{
return sha1_avx2_finup(desc, NULL, 0, out);
}
static struct shash_alg sha1_avx2_alg = {
.digestsize = SHA1_DIGEST_SIZE,
.init = sha1_base_init,
.update = sha1_avx2_update,
.final = sha1_avx2_final,
.finup = sha1_avx2_finup,
.descsize = sizeof(struct sha1_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-avx2",
.cra_priority = 170,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
};
static int register_sha1_avx2(void)
{
if (avx2_usable())
return crypto_register_shash(&sha1_avx2_alg);
return 0;
}
static void unregister_sha1_avx2(void)
{
if (avx2_usable())
crypto_unregister_shash(&sha1_avx2_alg);
}
#ifdef CONFIG_AS_SHA1_NI
asmlinkage void sha1_ni_transform(struct sha1_state *digest, const u8 *data,
int rounds);
static int sha1_ni_update(struct shash_desc *desc, const u8 *data,
unsigned int len)
{
return sha1_update(desc, data, len, sha1_ni_transform);
}
static int sha1_ni_finup(struct shash_desc *desc, const u8 *data,
unsigned int len, u8 *out)
{
return sha1_finup(desc, data, len, out, sha1_ni_transform);
}
static int sha1_ni_final(struct shash_desc *desc, u8 *out)
{
return sha1_ni_finup(desc, NULL, 0, out);
}
static struct shash_alg sha1_ni_alg = {
.digestsize = SHA1_DIGEST_SIZE,
.init = sha1_base_init,
.update = sha1_ni_update,
.final = sha1_ni_final,
.finup = sha1_ni_finup,
.descsize = sizeof(struct sha1_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-ni",
.cra_priority = 250,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
};
static int register_sha1_ni(void)
{
if (boot_cpu_has(X86_FEATURE_SHA_NI))
return crypto_register_shash(&sha1_ni_alg);
return 0;
}
static void unregister_sha1_ni(void)
{
if (boot_cpu_has(X86_FEATURE_SHA_NI))
crypto_unregister_shash(&sha1_ni_alg);
}
#else
static inline int register_sha1_ni(void) { return 0; }
static inline void unregister_sha1_ni(void) { }
#endif
static int __init sha1_ssse3_mod_init(void)
{
if (register_sha1_ssse3())
goto fail;
if (register_sha1_avx()) {
unregister_sha1_ssse3();
goto fail;
}
if (register_sha1_avx2()) {
unregister_sha1_avx();
unregister_sha1_ssse3();
goto fail;
}
if (register_sha1_ni()) {
unregister_sha1_avx2();
unregister_sha1_avx();
unregister_sha1_ssse3();
goto fail;
}
return 0;
fail:
return -ENODEV;
}
static void __exit sha1_ssse3_mod_fini(void)
{
unregister_sha1_ni();
unregister_sha1_avx2();
unregister_sha1_avx();
unregister_sha1_ssse3();
}
module_init(sha1_ssse3_mod_init);
module_exit(sha1_ssse3_mod_fini);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm, Supplemental SSE3 accelerated");
MODULE_ALIAS_CRYPTO("sha1");
MODULE_ALIAS_CRYPTO("sha1-ssse3");
MODULE_ALIAS_CRYPTO("sha1-avx");
MODULE_ALIAS_CRYPTO("sha1-avx2");
#ifdef CONFIG_AS_SHA1_NI
MODULE_ALIAS_CRYPTO("sha1-ni");
#endif