linux-zen-server/arch/x86/kernel/setup.c

1349 lines
35 KiB
C
Raw Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 1995 Linus Torvalds
*
* This file contains the setup_arch() code, which handles the architecture-dependent
* parts of early kernel initialization.
*/
#include <linux/acpi.h>
#include <linux/console.h>
#include <linux/crash_dump.h>
#include <linux/dma-map-ops.h>
#include <linux/dmi.h>
#include <linux/efi.h>
#include <linux/ima.h>
#include <linux/init_ohci1394_dma.h>
#include <linux/initrd.h>
#include <linux/iscsi_ibft.h>
#include <linux/memblock.h>
#include <linux/panic_notifier.h>
#include <linux/pci.h>
#include <linux/root_dev.h>
#include <linux/hugetlb.h>
#include <linux/tboot.h>
#include <linux/usb/xhci-dbgp.h>
#include <linux/static_call.h>
#include <linux/swiotlb.h>
#include <linux/random.h>
#include <uapi/linux/mount.h>
#include <xen/xen.h>
#include <asm/apic.h>
#include <asm/efi.h>
#include <asm/numa.h>
#include <asm/bios_ebda.h>
#include <asm/bugs.h>
#include <asm/cacheinfo.h>
#include <asm/cpu.h>
#include <asm/efi.h>
#include <asm/gart.h>
#include <asm/hypervisor.h>
#include <asm/io_apic.h>
#include <asm/kasan.h>
#include <asm/kaslr.h>
#include <asm/mce.h>
#include <asm/memtype.h>
#include <asm/mtrr.h>
#include <asm/realmode.h>
#include <asm/olpc_ofw.h>
#include <asm/pci-direct.h>
#include <asm/prom.h>
#include <asm/proto.h>
#include <asm/thermal.h>
#include <asm/unwind.h>
#include <asm/vsyscall.h>
#include <linux/vmalloc.h>
/*
* max_low_pfn_mapped: highest directly mapped pfn < 4 GB
* max_pfn_mapped: highest directly mapped pfn > 4 GB
*
* The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
* represented by pfn_mapped[].
*/
unsigned long max_low_pfn_mapped;
unsigned long max_pfn_mapped;
#ifdef CONFIG_DMI
RESERVE_BRK(dmi_alloc, 65536);
#endif
unsigned long _brk_start = (unsigned long)__brk_base;
unsigned long _brk_end = (unsigned long)__brk_base;
struct boot_params boot_params;
/*
* These are the four main kernel memory regions, we put them into
* the resource tree so that kdump tools and other debugging tools
* recover it:
*/
static struct resource rodata_resource = {
.name = "Kernel rodata",
.start = 0,
.end = 0,
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
};
static struct resource data_resource = {
.name = "Kernel data",
.start = 0,
.end = 0,
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
};
static struct resource code_resource = {
.name = "Kernel code",
.start = 0,
.end = 0,
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
};
static struct resource bss_resource = {
.name = "Kernel bss",
.start = 0,
.end = 0,
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
};
#ifdef CONFIG_X86_32
/* CPU data as detected by the assembly code in head_32.S */
struct cpuinfo_x86 new_cpu_data;
unsigned int def_to_bigsmp;
struct apm_info apm_info;
EXPORT_SYMBOL(apm_info);
#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
struct ist_info ist_info;
EXPORT_SYMBOL(ist_info);
#else
struct ist_info ist_info;
#endif
#endif
struct cpuinfo_x86 boot_cpu_data __read_mostly;
EXPORT_SYMBOL(boot_cpu_data);
#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
__visible unsigned long mmu_cr4_features __ro_after_init;
#else
__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
#endif
#ifdef CONFIG_IMA
static phys_addr_t ima_kexec_buffer_phys;
static size_t ima_kexec_buffer_size;
#endif
/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
int bootloader_type, bootloader_version;
/*
* Setup options
*/
struct screen_info screen_info;
EXPORT_SYMBOL(screen_info);
struct edid_info edid_info;
EXPORT_SYMBOL_GPL(edid_info);
extern int root_mountflags;
unsigned long saved_video_mode;
#define RAMDISK_IMAGE_START_MASK 0x07FF
#define RAMDISK_PROMPT_FLAG 0x8000
#define RAMDISK_LOAD_FLAG 0x4000
static char __initdata command_line[COMMAND_LINE_SIZE];
#ifdef CONFIG_CMDLINE_BOOL
static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
#endif
#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
struct edd edd;
#ifdef CONFIG_EDD_MODULE
EXPORT_SYMBOL(edd);
#endif
/**
* copy_edd() - Copy the BIOS EDD information
* from boot_params into a safe place.
*
*/
static inline void __init copy_edd(void)
{
memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
sizeof(edd.mbr_signature));
memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
edd.edd_info_nr = boot_params.eddbuf_entries;
}
#else
static inline void __init copy_edd(void)
{
}
#endif
void * __init extend_brk(size_t size, size_t align)
{
size_t mask = align - 1;
void *ret;
BUG_ON(_brk_start == 0);
BUG_ON(align & mask);
_brk_end = (_brk_end + mask) & ~mask;
BUG_ON((char *)(_brk_end + size) > __brk_limit);
ret = (void *)_brk_end;
_brk_end += size;
memset(ret, 0, size);
return ret;
}
#ifdef CONFIG_X86_32
static void __init cleanup_highmap(void)
{
}
#endif
static void __init reserve_brk(void)
{
if (_brk_end > _brk_start)
memblock_reserve(__pa_symbol(_brk_start),
_brk_end - _brk_start);
/* Mark brk area as locked down and no longer taking any
new allocations */
_brk_start = 0;
}
u64 relocated_ramdisk;
#ifdef CONFIG_BLK_DEV_INITRD
static u64 __init get_ramdisk_image(void)
{
u64 ramdisk_image = boot_params.hdr.ramdisk_image;
ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
if (ramdisk_image == 0)
ramdisk_image = phys_initrd_start;
return ramdisk_image;
}
static u64 __init get_ramdisk_size(void)
{
u64 ramdisk_size = boot_params.hdr.ramdisk_size;
ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
if (ramdisk_size == 0)
ramdisk_size = phys_initrd_size;
return ramdisk_size;
}
static void __init relocate_initrd(void)
{
/* Assume only end is not page aligned */
u64 ramdisk_image = get_ramdisk_image();
u64 ramdisk_size = get_ramdisk_size();
u64 area_size = PAGE_ALIGN(ramdisk_size);
/* We need to move the initrd down into directly mapped mem */
relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
PFN_PHYS(max_pfn_mapped));
if (!relocated_ramdisk)
panic("Cannot find place for new RAMDISK of size %lld\n",
ramdisk_size);
initrd_start = relocated_ramdisk + PAGE_OFFSET;
initrd_end = initrd_start + ramdisk_size;
printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
" [mem %#010llx-%#010llx]\n",
ramdisk_image, ramdisk_image + ramdisk_size - 1,
relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
}
static void __init early_reserve_initrd(void)
{
/* Assume only end is not page aligned */
u64 ramdisk_image = get_ramdisk_image();
u64 ramdisk_size = get_ramdisk_size();
u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
if (!boot_params.hdr.type_of_loader ||
!ramdisk_image || !ramdisk_size)
return; /* No initrd provided by bootloader */
memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
}
static void __init reserve_initrd(void)
{
/* Assume only end is not page aligned */
u64 ramdisk_image = get_ramdisk_image();
u64 ramdisk_size = get_ramdisk_size();
u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
if (!boot_params.hdr.type_of_loader ||
!ramdisk_image || !ramdisk_size)
return; /* No initrd provided by bootloader */
initrd_start = 0;
printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
ramdisk_end - 1);
if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
PFN_DOWN(ramdisk_end))) {
/* All are mapped, easy case */
initrd_start = ramdisk_image + PAGE_OFFSET;
initrd_end = initrd_start + ramdisk_size;
return;
}
relocate_initrd();
memblock_phys_free(ramdisk_image, ramdisk_end - ramdisk_image);
}
#else
static void __init early_reserve_initrd(void)
{
}
static void __init reserve_initrd(void)
{
}
#endif /* CONFIG_BLK_DEV_INITRD */
static void __init add_early_ima_buffer(u64 phys_addr)
{
#ifdef CONFIG_IMA
struct ima_setup_data *data;
data = early_memremap(phys_addr + sizeof(struct setup_data), sizeof(*data));
if (!data) {
pr_warn("setup: failed to memremap ima_setup_data entry\n");
return;
}
if (data->size) {
memblock_reserve(data->addr, data->size);
ima_kexec_buffer_phys = data->addr;
ima_kexec_buffer_size = data->size;
}
early_memunmap(data, sizeof(*data));
#else
pr_warn("Passed IMA kexec data, but CONFIG_IMA not set. Ignoring.\n");
#endif
}
#if defined(CONFIG_HAVE_IMA_KEXEC) && !defined(CONFIG_OF_FLATTREE)
int __init ima_free_kexec_buffer(void)
{
int rc;
if (!ima_kexec_buffer_size)
return -ENOENT;
rc = memblock_phys_free(ima_kexec_buffer_phys,
ima_kexec_buffer_size);
if (rc)
return rc;
ima_kexec_buffer_phys = 0;
ima_kexec_buffer_size = 0;
return 0;
}
int __init ima_get_kexec_buffer(void **addr, size_t *size)
{
if (!ima_kexec_buffer_size)
return -ENOENT;
*addr = __va(ima_kexec_buffer_phys);
*size = ima_kexec_buffer_size;
return 0;
}
#endif
static void __init parse_setup_data(void)
{
struct setup_data *data;
u64 pa_data, pa_next;
pa_data = boot_params.hdr.setup_data;
while (pa_data) {
u32 data_len, data_type;
data = early_memremap(pa_data, sizeof(*data));
data_len = data->len + sizeof(struct setup_data);
data_type = data->type;
pa_next = data->next;
early_memunmap(data, sizeof(*data));
switch (data_type) {
case SETUP_E820_EXT:
e820__memory_setup_extended(pa_data, data_len);
break;
case SETUP_DTB:
add_dtb(pa_data);
break;
case SETUP_EFI:
parse_efi_setup(pa_data, data_len);
break;
case SETUP_IMA:
add_early_ima_buffer(pa_data);
break;
case SETUP_RNG_SEED:
data = early_memremap(pa_data, data_len);
add_bootloader_randomness(data->data, data->len);
/* Zero seed for forward secrecy. */
memzero_explicit(data->data, data->len);
/* Zero length in case we find ourselves back here by accident. */
memzero_explicit(&data->len, sizeof(data->len));
early_memunmap(data, data_len);
break;
default:
break;
}
pa_data = pa_next;
}
}
static void __init memblock_x86_reserve_range_setup_data(void)
{
struct setup_indirect *indirect;
struct setup_data *data;
u64 pa_data, pa_next;
u32 len;
pa_data = boot_params.hdr.setup_data;
while (pa_data) {
data = early_memremap(pa_data, sizeof(*data));
if (!data) {
pr_warn("setup: failed to memremap setup_data entry\n");
return;
}
len = sizeof(*data);
pa_next = data->next;
memblock_reserve(pa_data, sizeof(*data) + data->len);
if (data->type == SETUP_INDIRECT) {
len += data->len;
early_memunmap(data, sizeof(*data));
data = early_memremap(pa_data, len);
if (!data) {
pr_warn("setup: failed to memremap indirect setup_data\n");
return;
}
indirect = (struct setup_indirect *)data->data;
if (indirect->type != SETUP_INDIRECT)
memblock_reserve(indirect->addr, indirect->len);
}
pa_data = pa_next;
early_memunmap(data, len);
}
}
/*
* --------- Crashkernel reservation ------------------------------
*/
/* 16M alignment for crash kernel regions */
#define CRASH_ALIGN SZ_16M
/*
* Keep the crash kernel below this limit.
*
* Earlier 32-bits kernels would limit the kernel to the low 512 MB range
* due to mapping restrictions.
*
* 64-bit kdump kernels need to be restricted to be under 64 TB, which is
* the upper limit of system RAM in 4-level paging mode. Since the kdump
* jump could be from 5-level paging to 4-level paging, the jump will fail if
* the kernel is put above 64 TB, and during the 1st kernel bootup there's
* no good way to detect the paging mode of the target kernel which will be
* loaded for dumping.
*/
#ifdef CONFIG_X86_32
# define CRASH_ADDR_LOW_MAX SZ_512M
# define CRASH_ADDR_HIGH_MAX SZ_512M
#else
# define CRASH_ADDR_LOW_MAX SZ_4G
# define CRASH_ADDR_HIGH_MAX SZ_64T
#endif
static int __init reserve_crashkernel_low(void)
{
#ifdef CONFIG_X86_64
unsigned long long base, low_base = 0, low_size = 0;
unsigned long low_mem_limit;
int ret;
low_mem_limit = min(memblock_phys_mem_size(), CRASH_ADDR_LOW_MAX);
/* crashkernel=Y,low */
ret = parse_crashkernel_low(boot_command_line, low_mem_limit, &low_size, &base);
if (ret) {
/*
* two parts from kernel/dma/swiotlb.c:
* -swiotlb size: user-specified with swiotlb= or default.
*
* -swiotlb overflow buffer: now hardcoded to 32k. We round it
* to 8M for other buffers that may need to stay low too. Also
* make sure we allocate enough extra low memory so that we
* don't run out of DMA buffers for 32-bit devices.
*/
low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
} else {
/* passed with crashkernel=0,low ? */
if (!low_size)
return 0;
}
low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX);
if (!low_base) {
pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
(unsigned long)(low_size >> 20));
return -ENOMEM;
}
pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (low RAM limit: %ldMB)\n",
(unsigned long)(low_size >> 20),
(unsigned long)(low_base >> 20),
(unsigned long)(low_mem_limit >> 20));
crashk_low_res.start = low_base;
crashk_low_res.end = low_base + low_size - 1;
insert_resource(&iomem_resource, &crashk_low_res);
#endif
return 0;
}
static void __init reserve_crashkernel(void)
{
unsigned long long crash_size, crash_base, total_mem;
bool high = false;
int ret;
if (!IS_ENABLED(CONFIG_KEXEC_CORE))
return;
total_mem = memblock_phys_mem_size();
/* crashkernel=XM */
ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
if (ret != 0 || crash_size <= 0) {
/* crashkernel=X,high */
ret = parse_crashkernel_high(boot_command_line, total_mem,
&crash_size, &crash_base);
if (ret != 0 || crash_size <= 0)
return;
high = true;
}
if (xen_pv_domain()) {
pr_info("Ignoring crashkernel for a Xen PV domain\n");
return;
}
/* 0 means: find the address automatically */
if (!crash_base) {
/*
* Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
* crashkernel=x,high reserves memory over 4G, also allocates
* 256M extra low memory for DMA buffers and swiotlb.
* But the extra memory is not required for all machines.
* So try low memory first and fall back to high memory
* unless "crashkernel=size[KMG],high" is specified.
*/
if (!high)
crash_base = memblock_phys_alloc_range(crash_size,
CRASH_ALIGN, CRASH_ALIGN,
CRASH_ADDR_LOW_MAX);
if (!crash_base)
crash_base = memblock_phys_alloc_range(crash_size,
CRASH_ALIGN, CRASH_ALIGN,
CRASH_ADDR_HIGH_MAX);
if (!crash_base) {
pr_info("crashkernel reservation failed - No suitable area found.\n");
return;
}
} else {
unsigned long long start;
start = memblock_phys_alloc_range(crash_size, SZ_1M, crash_base,
crash_base + crash_size);
if (start != crash_base) {
pr_info("crashkernel reservation failed - memory is in use.\n");
return;
}
}
if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
memblock_phys_free(crash_base, crash_size);
return;
}
pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
(unsigned long)(crash_size >> 20),
(unsigned long)(crash_base >> 20),
(unsigned long)(total_mem >> 20));
crashk_res.start = crash_base;
crashk_res.end = crash_base + crash_size - 1;
insert_resource(&iomem_resource, &crashk_res);
}
static struct resource standard_io_resources[] = {
{ .name = "dma1", .start = 0x00, .end = 0x1f,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "pic1", .start = 0x20, .end = 0x21,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "timer0", .start = 0x40, .end = 0x43,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "timer1", .start = 0x50, .end = 0x53,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "keyboard", .start = 0x60, .end = 0x60,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "keyboard", .start = 0x64, .end = 0x64,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "pic2", .start = 0xa0, .end = 0xa1,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "dma2", .start = 0xc0, .end = 0xdf,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "fpu", .start = 0xf0, .end = 0xff,
.flags = IORESOURCE_BUSY | IORESOURCE_IO }
};
void __init reserve_standard_io_resources(void)
{
int i;
/* request I/O space for devices used on all i[345]86 PCs */
for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
request_resource(&ioport_resource, &standard_io_resources[i]);
}
static bool __init snb_gfx_workaround_needed(void)
{
#ifdef CONFIG_PCI
int i;
u16 vendor, devid;
static const __initconst u16 snb_ids[] = {
0x0102,
0x0112,
0x0122,
0x0106,
0x0116,
0x0126,
0x010a,
};
/* Assume no if something weird is going on with PCI */
if (!early_pci_allowed())
return false;
vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
if (vendor != 0x8086)
return false;
devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
if (devid == snb_ids[i])
return true;
#endif
return false;
}
/*
* Sandy Bridge graphics has trouble with certain ranges, exclude
* them from allocation.
*/
static void __init trim_snb_memory(void)
{
static const __initconst unsigned long bad_pages[] = {
0x20050000,
0x20110000,
0x20130000,
0x20138000,
0x40004000,
};
int i;
if (!snb_gfx_workaround_needed())
return;
printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
/*
* SandyBridge integrated graphics devices have a bug that prevents
* them from accessing certain memory ranges, namely anything below
* 1M and in the pages listed in bad_pages[] above.
*
* To avoid these pages being ever accessed by SNB gfx devices reserve
* bad_pages that have not already been reserved at boot time.
* All memory below the 1 MB mark is anyway reserved later during
* setup_arch(), so there is no need to reserve it here.
*/
for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
if (memblock_reserve(bad_pages[i], PAGE_SIZE))
printk(KERN_WARNING "failed to reserve 0x%08lx\n",
bad_pages[i]);
}
}
static void __init trim_bios_range(void)
{
/*
* A special case is the first 4Kb of memory;
* This is a BIOS owned area, not kernel ram, but generally
* not listed as such in the E820 table.
*
* This typically reserves additional memory (64KiB by default)
* since some BIOSes are known to corrupt low memory. See the
* Kconfig help text for X86_RESERVE_LOW.
*/
e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
/*
* special case: Some BIOSes report the PC BIOS
* area (640Kb -> 1Mb) as RAM even though it is not.
* take them out.
*/
e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
e820__update_table(e820_table);
}
/* called before trim_bios_range() to spare extra sanitize */
static void __init e820_add_kernel_range(void)
{
u64 start = __pa_symbol(_text);
u64 size = __pa_symbol(_end) - start;
/*
* Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
* attempt to fix it by adding the range. We may have a confused BIOS,
* or the user may have used memmap=exactmap or memmap=xxM$yyM to
* exclude kernel range. If we really are running on top non-RAM,
* we will crash later anyways.
*/
if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
return;
pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
e820__range_remove(start, size, E820_TYPE_RAM, 0);
e820__range_add(start, size, E820_TYPE_RAM);
}
static void __init early_reserve_memory(void)
{
/*
* Reserve the memory occupied by the kernel between _text and
* __end_of_kernel_reserve symbols. Any kernel sections after the
* __end_of_kernel_reserve symbol must be explicitly reserved with a
* separate memblock_reserve() or they will be discarded.
*/
memblock_reserve(__pa_symbol(_text),
(unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
/*
* The first 4Kb of memory is a BIOS owned area, but generally it is
* not listed as such in the E820 table.
*
* Reserve the first 64K of memory since some BIOSes are known to
* corrupt low memory. After the real mode trampoline is allocated the
* rest of the memory below 640k is reserved.
*
* In addition, make sure page 0 is always reserved because on
* systems with L1TF its contents can be leaked to user processes.
*/
memblock_reserve(0, SZ_64K);
early_reserve_initrd();
memblock_x86_reserve_range_setup_data();
reserve_ibft_region();
reserve_bios_regions();
trim_snb_memory();
}
/*
* Dump out kernel offset information on panic.
*/
static int
dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
{
if (kaslr_enabled()) {
pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
kaslr_offset(),
__START_KERNEL,
__START_KERNEL_map,
MODULES_VADDR-1);
} else {
pr_emerg("Kernel Offset: disabled\n");
}
return 0;
}
void x86_configure_nx(void)
{
if (boot_cpu_has(X86_FEATURE_NX))
__supported_pte_mask |= _PAGE_NX;
else
__supported_pte_mask &= ~_PAGE_NX;
}
static void __init x86_report_nx(void)
{
if (!boot_cpu_has(X86_FEATURE_NX)) {
printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
"missing in CPU!\n");
} else {
#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
printk(KERN_INFO "NX (Execute Disable) protection: active\n");
#else
/* 32bit non-PAE kernel, NX cannot be used */
printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
"cannot be enabled: non-PAE kernel!\n");
#endif
}
}
/*
* Determine if we were loaded by an EFI loader. If so, then we have also been
* passed the efi memmap, systab, etc., so we should use these data structures
* for initialization. Note, the efi init code path is determined by the
* global efi_enabled. This allows the same kernel image to be used on existing
* systems (with a traditional BIOS) as well as on EFI systems.
*/
/*
* setup_arch - architecture-specific boot-time initializations
*
* Note: On x86_64, fixmaps are ready for use even before this is called.
*/
void __init setup_arch(char **cmdline_p)
{
#ifdef CONFIG_X86_32
memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
/*
* copy kernel address range established so far and switch
* to the proper swapper page table
*/
clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
initial_page_table + KERNEL_PGD_BOUNDARY,
KERNEL_PGD_PTRS);
load_cr3(swapper_pg_dir);
/*
* Note: Quark X1000 CPUs advertise PGE incorrectly and require
* a cr3 based tlb flush, so the following __flush_tlb_all()
* will not flush anything because the CPU quirk which clears
* X86_FEATURE_PGE has not been invoked yet. Though due to the
* load_cr3() above the TLB has been flushed already. The
* quirk is invoked before subsequent calls to __flush_tlb_all()
* so proper operation is guaranteed.
*/
__flush_tlb_all();
#else
printk(KERN_INFO "Command line: %s\n", boot_command_line);
boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
#endif
/*
* If we have OLPC OFW, we might end up relocating the fixmap due to
* reserve_top(), so do this before touching the ioremap area.
*/
olpc_ofw_detect();
idt_setup_early_traps();
early_cpu_init();
jump_label_init();
static_call_init();
early_ioremap_init();
setup_olpc_ofw_pgd();
ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
screen_info = boot_params.screen_info;
edid_info = boot_params.edid_info;
#ifdef CONFIG_X86_32
apm_info.bios = boot_params.apm_bios_info;
ist_info = boot_params.ist_info;
#endif
saved_video_mode = boot_params.hdr.vid_mode;
bootloader_type = boot_params.hdr.type_of_loader;
if ((bootloader_type >> 4) == 0xe) {
bootloader_type &= 0xf;
bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
}
bootloader_version = bootloader_type & 0xf;
bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
#ifdef CONFIG_BLK_DEV_RAM
rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
#endif
#ifdef CONFIG_EFI
if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
EFI32_LOADER_SIGNATURE, 4)) {
set_bit(EFI_BOOT, &efi.flags);
} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
EFI64_LOADER_SIGNATURE, 4)) {
set_bit(EFI_BOOT, &efi.flags);
set_bit(EFI_64BIT, &efi.flags);
}
#endif
x86_init.oem.arch_setup();
/*
* Do some memory reservations *before* memory is added to memblock, so
* memblock allocations won't overwrite it.
*
* After this point, everything still needed from the boot loader or
* firmware or kernel text should be early reserved or marked not RAM in
* e820. All other memory is free game.
*
* This call needs to happen before e820__memory_setup() which calls the
* xen_memory_setup() on Xen dom0 which relies on the fact that those
* early reservations have happened already.
*/
early_reserve_memory();
iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
e820__memory_setup();
parse_setup_data();
copy_edd();
if (!boot_params.hdr.root_flags)
root_mountflags &= ~MS_RDONLY;
setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end);
code_resource.start = __pa_symbol(_text);
code_resource.end = __pa_symbol(_etext)-1;
rodata_resource.start = __pa_symbol(__start_rodata);
rodata_resource.end = __pa_symbol(__end_rodata)-1;
data_resource.start = __pa_symbol(_sdata);
data_resource.end = __pa_symbol(_edata)-1;
bss_resource.start = __pa_symbol(__bss_start);
bss_resource.end = __pa_symbol(__bss_stop)-1;
#ifdef CONFIG_CMDLINE_BOOL
#ifdef CONFIG_CMDLINE_OVERRIDE
strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
#else
if (builtin_cmdline[0]) {
/* append boot loader cmdline to builtin */
strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
}
#endif
#endif
strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
*cmdline_p = command_line;
/*
* x86_configure_nx() is called before parse_early_param() to detect
* whether hardware doesn't support NX (so that the early EHCI debug
* console setup can safely call set_fixmap()).
*/
x86_configure_nx();
parse_early_param();
if (efi_enabled(EFI_BOOT))
efi_memblock_x86_reserve_range();
#ifdef CONFIG_MEMORY_HOTPLUG
/*
* Memory used by the kernel cannot be hot-removed because Linux
* cannot migrate the kernel pages. When memory hotplug is
* enabled, we should prevent memblock from allocating memory
* for the kernel.
*
* ACPI SRAT records all hotpluggable memory ranges. But before
* SRAT is parsed, we don't know about it.
*
* The kernel image is loaded into memory at very early time. We
* cannot prevent this anyway. So on NUMA system, we set any
* node the kernel resides in as un-hotpluggable.
*
* Since on modern servers, one node could have double-digit
* gigabytes memory, we can assume the memory around the kernel
* image is also un-hotpluggable. So before SRAT is parsed, just
* allocate memory near the kernel image to try the best to keep
* the kernel away from hotpluggable memory.
*/
if (movable_node_is_enabled())
memblock_set_bottom_up(true);
#endif
x86_report_nx();
if (acpi_mps_check()) {
#ifdef CONFIG_X86_LOCAL_APIC
disable_apic = 1;
#endif
setup_clear_cpu_cap(X86_FEATURE_APIC);
}
e820__reserve_setup_data();
e820__finish_early_params();
if (efi_enabled(EFI_BOOT))
efi_init();
dmi_setup();
/*
* VMware detection requires dmi to be available, so this
* needs to be done after dmi_setup(), for the boot CPU.
*/
init_hypervisor_platform();
tsc_early_init();
x86_init.resources.probe_roms();
/* after parse_early_param, so could debug it */
insert_resource(&iomem_resource, &code_resource);
insert_resource(&iomem_resource, &rodata_resource);
insert_resource(&iomem_resource, &data_resource);
insert_resource(&iomem_resource, &bss_resource);
e820_add_kernel_range();
trim_bios_range();
#ifdef CONFIG_X86_32
if (ppro_with_ram_bug()) {
e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
E820_TYPE_RESERVED);
e820__update_table(e820_table);
printk(KERN_INFO "fixed physical RAM map:\n");
e820__print_table("bad_ppro");
}
#else
early_gart_iommu_check();
#endif
/*
* partially used pages are not usable - thus
* we are rounding upwards:
*/
max_pfn = e820__end_of_ram_pfn();
/* update e820 for memory not covered by WB MTRRs */
cache_bp_init();
if (mtrr_trim_uncached_memory(max_pfn))
max_pfn = e820__end_of_ram_pfn();
max_possible_pfn = max_pfn;
/*
* Define random base addresses for memory sections after max_pfn is
* defined and before each memory section base is used.
*/
kernel_randomize_memory();
#ifdef CONFIG_X86_32
/* max_low_pfn get updated here */
find_low_pfn_range();
#else
check_x2apic();
/* How many end-of-memory variables you have, grandma! */
/* need this before calling reserve_initrd */
if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
max_low_pfn = e820__end_of_low_ram_pfn();
else
max_low_pfn = max_pfn;
high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
#endif
/*
* Find and reserve possible boot-time SMP configuration:
*/
find_smp_config();
early_alloc_pgt_buf();
/*
* Need to conclude brk, before e820__memblock_setup()
* it could use memblock_find_in_range, could overlap with
* brk area.
*/
reserve_brk();
cleanup_highmap();
memblock_set_current_limit(ISA_END_ADDRESS);
e820__memblock_setup();
/*
* Needs to run after memblock setup because it needs the physical
* memory size.
*/
sev_setup_arch();
efi_fake_memmap();
efi_find_mirror();
efi_esrt_init();
efi_mokvar_table_init();
/*
* The EFI specification says that boot service code won't be
* called after ExitBootServices(). This is, in fact, a lie.
*/
efi_reserve_boot_services();
/* preallocate 4k for mptable mpc */
e820__memblock_alloc_reserved_mpc_new();
#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
setup_bios_corruption_check();
#endif
#ifdef CONFIG_X86_32
printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
(max_pfn_mapped<<PAGE_SHIFT) - 1);
#endif
/*
* Find free memory for the real mode trampoline and place it there. If
* there is not enough free memory under 1M, on EFI-enabled systems
* there will be additional attempt to reclaim the memory for the real
* mode trampoline at efi_free_boot_services().
*
* Unconditionally reserve the entire first 1M of RAM because BIOSes
* are known to corrupt low memory and several hundred kilobytes are not
* worth complex detection what memory gets clobbered. Windows does the
* same thing for very similar reasons.
*
* Moreover, on machines with SandyBridge graphics or in setups that use
* crashkernel the entire 1M is reserved anyway.
*/
x86_platform.realmode_reserve();
init_mem_mapping();
idt_setup_early_pf();
/*
* Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
* with the current CR4 value. This may not be necessary, but
* auditing all the early-boot CR4 manipulation would be needed to
* rule it out.
*
* Mask off features that don't work outside long mode (just
* PCIDE for now).
*/
mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
memblock_set_current_limit(get_max_mapped());
/*
* NOTE: On x86-32, only from this point on, fixmaps are ready for use.
*/
#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
if (init_ohci1394_dma_early)
init_ohci1394_dma_on_all_controllers();
#endif
/* Allocate bigger log buffer */
setup_log_buf(1);
if (efi_enabled(EFI_BOOT)) {
switch (boot_params.secure_boot) {
case efi_secureboot_mode_disabled:
pr_info("Secure boot disabled\n");
break;
case efi_secureboot_mode_enabled:
pr_info("Secure boot enabled\n");
break;
default:
pr_info("Secure boot could not be determined\n");
break;
}
}
reserve_initrd();
acpi_table_upgrade();
/* Look for ACPI tables and reserve memory occupied by them. */
acpi_boot_table_init();
vsmp_init();
io_delay_init();
early_platform_quirks();
early_acpi_boot_init();
initmem_init();
dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
if (boot_cpu_has(X86_FEATURE_GBPAGES))
hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
/*
* Reserve memory for crash kernel after SRAT is parsed so that it
* won't consume hotpluggable memory.
*/
reserve_crashkernel();
memblock_find_dma_reserve();
if (!early_xdbc_setup_hardware())
early_xdbc_register_console();
x86_init.paging.pagetable_init();
kasan_init();
/*
* Sync back kernel address range.
*
* FIXME: Can the later sync in setup_cpu_entry_areas() replace
* this call?
*/
sync_initial_page_table();
tboot_probe();
map_vsyscall();
generic_apic_probe();
early_quirks();
/*
* Read APIC and some other early information from ACPI tables.
*/
acpi_boot_init();
x86_dtb_init();
/*
* get boot-time SMP configuration:
*/
get_smp_config();
/*
* Systems w/o ACPI and mptables might not have it mapped the local
* APIC yet, but prefill_possible_map() might need to access it.
*/
init_apic_mappings();
prefill_possible_map();
init_cpu_to_node();
init_gi_nodes();
io_apic_init_mappings();
x86_init.hyper.guest_late_init();
e820__reserve_resources();
e820__register_nosave_regions(max_pfn);
x86_init.resources.reserve_resources();
e820__setup_pci_gap();
#ifdef CONFIG_VT
#if defined(CONFIG_VGA_CONSOLE)
if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
conswitchp = &vga_con;
#endif
#endif
x86_init.oem.banner();
x86_init.timers.wallclock_init();
/*
* This needs to run before setup_local_APIC() which soft-disables the
* local APIC temporarily and that masks the thermal LVT interrupt,
* leading to softlockups on machines which have configured SMI
* interrupt delivery.
*/
therm_lvt_init();
mcheck_init();
register_refined_jiffies(CLOCK_TICK_RATE);
#ifdef CONFIG_EFI
if (efi_enabled(EFI_BOOT))
efi_apply_memmap_quirks();
#endif
unwind_init();
}
#ifdef CONFIG_X86_32
static struct resource video_ram_resource = {
.name = "Video RAM area",
.start = 0xa0000,
.end = 0xbffff,
.flags = IORESOURCE_BUSY | IORESOURCE_MEM
};
void __init i386_reserve_resources(void)
{
request_resource(&iomem_resource, &video_ram_resource);
reserve_standard_io_resources();
}
#endif /* CONFIG_X86_32 */
static struct notifier_block kernel_offset_notifier = {
.notifier_call = dump_kernel_offset
};
static int __init register_kernel_offset_dumper(void)
{
atomic_notifier_chain_register(&panic_notifier_list,
&kernel_offset_notifier);
return 0;
}
__initcall(register_kernel_offset_dumper);