linux-zen-server/drivers/accel/habanalabs/common/hwmon.c

935 lines
20 KiB
C
Raw Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2019 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#include "habanalabs.h"
#include <linux/pci.h>
#include <linux/hwmon.h>
#define HWMON_NR_SENSOR_TYPES (hwmon_max)
#ifdef _HAS_HWMON_HWMON_T_ENABLE
static u32 fixup_flags_legacy_fw(struct hl_device *hdev, enum hwmon_sensor_types type,
u32 cpucp_flags)
{
u32 flags;
switch (type) {
case hwmon_temp:
flags = (cpucp_flags << 1) | HWMON_T_ENABLE;
break;
case hwmon_in:
flags = (cpucp_flags << 1) | HWMON_I_ENABLE;
break;
case hwmon_curr:
flags = (cpucp_flags << 1) | HWMON_C_ENABLE;
break;
case hwmon_fan:
flags = (cpucp_flags << 1) | HWMON_F_ENABLE;
break;
case hwmon_power:
flags = (cpucp_flags << 1) | HWMON_P_ENABLE;
break;
case hwmon_pwm:
/* enable bit was here from day 1, so no need to adjust */
flags = cpucp_flags;
break;
default:
dev_err(hdev->dev, "unsupported h/w sensor type %d\n", type);
flags = cpucp_flags;
break;
}
return flags;
}
static u32 fixup_attr_legacy_fw(u32 attr)
{
return (attr - 1);
}
#else
static u32 fixup_flags_legacy_fw(struct hl_device *hdev, enum hwmon_sensor_types type,
u32 cpucp_flags)
{
return cpucp_flags;
}
static u32 fixup_attr_legacy_fw(u32 attr)
{
return attr;
}
#endif /* !_HAS_HWMON_HWMON_T_ENABLE */
static u32 adjust_hwmon_flags(struct hl_device *hdev, enum hwmon_sensor_types type, u32 cpucp_flags)
{
u32 flags, cpucp_input_val;
bool use_cpucp_enum;
use_cpucp_enum = (hdev->asic_prop.fw_app_cpu_boot_dev_sts0 &
CPU_BOOT_DEV_STS0_MAP_HWMON_EN) ? true : false;
/* If f/w is using it's own enum, we need to check if the properties values are aligned.
* If not, it means we need to adjust the values to the new format that is used in the
* kernel since 5.6 (enum values were incremented by 1 by adding a new enable value).
*/
if (use_cpucp_enum) {
switch (type) {
case hwmon_temp:
cpucp_input_val = cpucp_temp_input;
if (cpucp_input_val == hwmon_temp_input)
flags = cpucp_flags;
else
flags = (cpucp_flags << 1) | HWMON_T_ENABLE;
break;
case hwmon_in:
cpucp_input_val = cpucp_in_input;
if (cpucp_input_val == hwmon_in_input)
flags = cpucp_flags;
else
flags = (cpucp_flags << 1) | HWMON_I_ENABLE;
break;
case hwmon_curr:
cpucp_input_val = cpucp_curr_input;
if (cpucp_input_val == hwmon_curr_input)
flags = cpucp_flags;
else
flags = (cpucp_flags << 1) | HWMON_C_ENABLE;
break;
case hwmon_fan:
cpucp_input_val = cpucp_fan_input;
if (cpucp_input_val == hwmon_fan_input)
flags = cpucp_flags;
else
flags = (cpucp_flags << 1) | HWMON_F_ENABLE;
break;
case hwmon_pwm:
/* enable bit was here from day 1, so no need to adjust */
flags = cpucp_flags;
break;
case hwmon_power:
cpucp_input_val = CPUCP_POWER_INPUT;
if (cpucp_input_val == hwmon_power_input)
flags = cpucp_flags;
else
flags = (cpucp_flags << 1) | HWMON_P_ENABLE;
break;
default:
dev_err(hdev->dev, "unsupported h/w sensor type %d\n", type);
flags = cpucp_flags;
break;
}
} else {
flags = fixup_flags_legacy_fw(hdev, type, cpucp_flags);
}
return flags;
}
int hl_build_hwmon_channel_info(struct hl_device *hdev, struct cpucp_sensor *sensors_arr)
{
u32 num_sensors_for_type, flags, num_active_sensor_types = 0, arr_size = 0, *curr_arr;
u32 sensors_by_type_next_index[HWMON_NR_SENSOR_TYPES] = {0};
u32 *sensors_by_type[HWMON_NR_SENSOR_TYPES] = {NULL};
struct hwmon_channel_info **channels_info;
u32 counts[HWMON_NR_SENSOR_TYPES] = {0};
enum hwmon_sensor_types type;
int rc, i, j;
for (i = 0 ; i < CPUCP_MAX_SENSORS ; i++) {
type = le32_to_cpu(sensors_arr[i].type);
if ((type == 0) && (sensors_arr[i].flags == 0))
break;
if (type >= HWMON_NR_SENSOR_TYPES) {
dev_err(hdev->dev, "Got wrong sensor type %d from device\n", type);
return -EINVAL;
}
counts[type]++;
arr_size++;
}
for (i = 0 ; i < HWMON_NR_SENSOR_TYPES ; i++) {
if (counts[i] == 0)
continue;
num_sensors_for_type = counts[i] + 1;
dev_dbg(hdev->dev, "num_sensors_for_type %d = %d\n", i, num_sensors_for_type);
curr_arr = kcalloc(num_sensors_for_type, sizeof(*curr_arr), GFP_KERNEL);
if (!curr_arr) {
rc = -ENOMEM;
goto sensors_type_err;
}
num_active_sensor_types++;
sensors_by_type[i] = curr_arr;
}
for (i = 0 ; i < arr_size ; i++) {
type = le32_to_cpu(sensors_arr[i].type);
curr_arr = sensors_by_type[type];
flags = adjust_hwmon_flags(hdev, type, le32_to_cpu(sensors_arr[i].flags));
curr_arr[sensors_by_type_next_index[type]++] = flags;
}
channels_info = kcalloc(num_active_sensor_types + 1, sizeof(struct hwmon_channel_info *),
GFP_KERNEL);
if (!channels_info) {
rc = -ENOMEM;
goto channels_info_array_err;
}
for (i = 0 ; i < num_active_sensor_types ; i++) {
channels_info[i] = kzalloc(sizeof(*channels_info[i]), GFP_KERNEL);
if (!channels_info[i]) {
rc = -ENOMEM;
goto channel_info_err;
}
}
for (i = 0, j = 0 ; i < HWMON_NR_SENSOR_TYPES ; i++) {
if (!sensors_by_type[i])
continue;
channels_info[j]->type = i;
channels_info[j]->config = sensors_by_type[i];
j++;
}
hdev->hl_chip_info->info = (const struct hwmon_channel_info **)channels_info;
return 0;
channel_info_err:
for (i = 0 ; i < num_active_sensor_types ; i++) {
if (channels_info[i]) {
kfree(channels_info[i]->config);
kfree(channels_info[i]);
}
}
kfree(channels_info);
channels_info_array_err:
sensors_type_err:
for (i = 0 ; i < HWMON_NR_SENSOR_TYPES ; i++)
kfree(sensors_by_type[i]);
return rc;
}
static int hl_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
struct hl_device *hdev = dev_get_drvdata(dev);
bool use_cpucp_enum;
u32 cpucp_attr;
int rc;
if (!hl_device_operational(hdev, NULL))
return -ENODEV;
use_cpucp_enum = (hdev->asic_prop.fw_app_cpu_boot_dev_sts0 &
CPU_BOOT_DEV_STS0_MAP_HWMON_EN) ? true : false;
switch (type) {
case hwmon_temp:
switch (attr) {
case hwmon_temp_input:
cpucp_attr = cpucp_temp_input;
break;
case hwmon_temp_max:
cpucp_attr = cpucp_temp_max;
break;
case hwmon_temp_crit:
cpucp_attr = cpucp_temp_crit;
break;
case hwmon_temp_max_hyst:
cpucp_attr = cpucp_temp_max_hyst;
break;
case hwmon_temp_crit_hyst:
cpucp_attr = cpucp_temp_crit_hyst;
break;
case hwmon_temp_offset:
cpucp_attr = cpucp_temp_offset;
break;
case hwmon_temp_highest:
cpucp_attr = cpucp_temp_highest;
break;
default:
return -EINVAL;
}
if (use_cpucp_enum)
rc = hl_get_temperature(hdev, channel, cpucp_attr, val);
else
rc = hl_get_temperature(hdev, channel, fixup_attr_legacy_fw(attr), val);
break;
case hwmon_in:
switch (attr) {
case hwmon_in_input:
cpucp_attr = cpucp_in_input;
break;
case hwmon_in_min:
cpucp_attr = cpucp_in_min;
break;
case hwmon_in_max:
cpucp_attr = cpucp_in_max;
break;
case hwmon_in_highest:
cpucp_attr = cpucp_in_highest;
break;
default:
return -EINVAL;
}
if (use_cpucp_enum)
rc = hl_get_voltage(hdev, channel, cpucp_attr, val);
else
rc = hl_get_voltage(hdev, channel, fixup_attr_legacy_fw(attr), val);
break;
case hwmon_curr:
switch (attr) {
case hwmon_curr_input:
cpucp_attr = cpucp_curr_input;
break;
case hwmon_curr_min:
cpucp_attr = cpucp_curr_min;
break;
case hwmon_curr_max:
cpucp_attr = cpucp_curr_max;
break;
case hwmon_curr_highest:
cpucp_attr = cpucp_curr_highest;
break;
default:
return -EINVAL;
}
if (use_cpucp_enum)
rc = hl_get_current(hdev, channel, cpucp_attr, val);
else
rc = hl_get_current(hdev, channel, fixup_attr_legacy_fw(attr), val);
break;
case hwmon_fan:
switch (attr) {
case hwmon_fan_input:
cpucp_attr = cpucp_fan_input;
break;
case hwmon_fan_min:
cpucp_attr = cpucp_fan_min;
break;
case hwmon_fan_max:
cpucp_attr = cpucp_fan_max;
break;
default:
return -EINVAL;
}
if (use_cpucp_enum)
rc = hl_get_fan_speed(hdev, channel, cpucp_attr, val);
else
rc = hl_get_fan_speed(hdev, channel, fixup_attr_legacy_fw(attr), val);
break;
case hwmon_pwm:
switch (attr) {
case hwmon_pwm_input:
cpucp_attr = cpucp_pwm_input;
break;
case hwmon_pwm_enable:
cpucp_attr = cpucp_pwm_enable;
break;
default:
return -EINVAL;
}
if (use_cpucp_enum)
rc = hl_get_pwm_info(hdev, channel, cpucp_attr, val);
else
/* no need for fixup as pwm was aligned from day 1 */
rc = hl_get_pwm_info(hdev, channel, attr, val);
break;
case hwmon_power:
switch (attr) {
case hwmon_power_input:
cpucp_attr = CPUCP_POWER_INPUT;
break;
case hwmon_power_input_highest:
cpucp_attr = CPUCP_POWER_INPUT_HIGHEST;
break;
default:
return -EINVAL;
}
if (use_cpucp_enum)
rc = hl_get_power(hdev, channel, cpucp_attr, val);
else
rc = hl_get_power(hdev, channel, fixup_attr_legacy_fw(attr), val);
break;
default:
return -EINVAL;
}
return rc;
}
static int hl_write(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long val)
{
struct hl_device *hdev = dev_get_drvdata(dev);
u32 cpucp_attr;
bool use_cpucp_enum = (hdev->asic_prop.fw_app_cpu_boot_dev_sts0 &
CPU_BOOT_DEV_STS0_MAP_HWMON_EN) ? true : false;
if (!hl_device_operational(hdev, NULL))
return -ENODEV;
switch (type) {
case hwmon_temp:
switch (attr) {
case hwmon_temp_offset:
cpucp_attr = cpucp_temp_offset;
break;
case hwmon_temp_reset_history:
cpucp_attr = cpucp_temp_reset_history;
break;
default:
return -EINVAL;
}
if (use_cpucp_enum)
hl_set_temperature(hdev, channel, cpucp_attr, val);
else
hl_set_temperature(hdev, channel, fixup_attr_legacy_fw(attr), val);
break;
case hwmon_pwm:
switch (attr) {
case hwmon_pwm_input:
cpucp_attr = cpucp_pwm_input;
break;
case hwmon_pwm_enable:
cpucp_attr = cpucp_pwm_enable;
break;
default:
return -EINVAL;
}
if (use_cpucp_enum)
hl_set_pwm_info(hdev, channel, cpucp_attr, val);
else
/* no need for fixup as pwm was aligned from day 1 */
hl_set_pwm_info(hdev, channel, attr, val);
break;
case hwmon_in:
switch (attr) {
case hwmon_in_reset_history:
cpucp_attr = cpucp_in_reset_history;
break;
default:
return -EINVAL;
}
if (use_cpucp_enum)
hl_set_voltage(hdev, channel, cpucp_attr, val);
else
hl_set_voltage(hdev, channel, fixup_attr_legacy_fw(attr), val);
break;
case hwmon_curr:
switch (attr) {
case hwmon_curr_reset_history:
cpucp_attr = cpucp_curr_reset_history;
break;
default:
return -EINVAL;
}
if (use_cpucp_enum)
hl_set_current(hdev, channel, cpucp_attr, val);
else
hl_set_current(hdev, channel, fixup_attr_legacy_fw(attr), val);
break;
case hwmon_power:
switch (attr) {
case hwmon_power_reset_history:
cpucp_attr = CPUCP_POWER_RESET_INPUT_HISTORY;
break;
default:
return -EINVAL;
}
if (use_cpucp_enum)
hl_set_power(hdev, channel, cpucp_attr, val);
else
hl_set_power(hdev, channel, fixup_attr_legacy_fw(attr), val);
break;
default:
return -EINVAL;
}
return 0;
}
static umode_t hl_is_visible(const void *data, enum hwmon_sensor_types type,
u32 attr, int channel)
{
switch (type) {
case hwmon_temp:
switch (attr) {
case hwmon_temp_input:
case hwmon_temp_max:
case hwmon_temp_max_hyst:
case hwmon_temp_crit:
case hwmon_temp_crit_hyst:
case hwmon_temp_highest:
return 0444;
case hwmon_temp_offset:
return 0644;
case hwmon_temp_reset_history:
return 0200;
}
break;
case hwmon_in:
switch (attr) {
case hwmon_in_input:
case hwmon_in_min:
case hwmon_in_max:
case hwmon_in_highest:
return 0444;
case hwmon_in_reset_history:
return 0200;
}
break;
case hwmon_curr:
switch (attr) {
case hwmon_curr_input:
case hwmon_curr_min:
case hwmon_curr_max:
case hwmon_curr_highest:
return 0444;
case hwmon_curr_reset_history:
return 0200;
}
break;
case hwmon_fan:
switch (attr) {
case hwmon_fan_input:
case hwmon_fan_min:
case hwmon_fan_max:
return 0444;
}
break;
case hwmon_pwm:
switch (attr) {
case hwmon_pwm_input:
case hwmon_pwm_enable:
return 0644;
}
break;
case hwmon_power:
switch (attr) {
case hwmon_power_input:
case hwmon_power_input_highest:
return 0444;
case hwmon_power_reset_history:
return 0200;
}
break;
default:
break;
}
return 0;
}
static const struct hwmon_ops hl_hwmon_ops = {
.is_visible = hl_is_visible,
.read = hl_read,
.write = hl_write
};
int hl_get_temperature(struct hl_device *hdev,
int sensor_index, u32 attr, long *value)
{
struct cpucp_packet pkt;
u64 result;
int rc;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEMPERATURE_GET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.sensor_index = __cpu_to_le16(sensor_index);
pkt.type = __cpu_to_le16(attr);
dev_dbg(hdev->dev, "get temp, ctl 0x%x, sensor %d, type %d\n",
pkt.ctl, pkt.sensor_index, pkt.type);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
0, &result);
*value = (long) result;
if (rc) {
dev_err(hdev->dev,
"Failed to get temperature from sensor %d, error %d\n",
sensor_index, rc);
*value = 0;
}
return rc;
}
int hl_set_temperature(struct hl_device *hdev,
int sensor_index, u32 attr, long value)
{
struct cpucp_packet pkt;
int rc;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEMPERATURE_SET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.sensor_index = __cpu_to_le16(sensor_index);
pkt.type = __cpu_to_le16(attr);
pkt.value = __cpu_to_le64(value);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
0, NULL);
if (rc)
dev_err(hdev->dev,
"Failed to set temperature of sensor %d, error %d\n",
sensor_index, rc);
return rc;
}
int hl_get_voltage(struct hl_device *hdev,
int sensor_index, u32 attr, long *value)
{
struct cpucp_packet pkt;
u64 result;
int rc;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_VOLTAGE_GET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.sensor_index = __cpu_to_le16(sensor_index);
pkt.type = __cpu_to_le16(attr);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
0, &result);
*value = (long) result;
if (rc) {
dev_err(hdev->dev,
"Failed to get voltage from sensor %d, error %d\n",
sensor_index, rc);
*value = 0;
}
return rc;
}
int hl_get_current(struct hl_device *hdev,
int sensor_index, u32 attr, long *value)
{
struct cpucp_packet pkt;
u64 result;
int rc;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_CURRENT_GET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.sensor_index = __cpu_to_le16(sensor_index);
pkt.type = __cpu_to_le16(attr);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
0, &result);
*value = (long) result;
if (rc) {
dev_err(hdev->dev,
"Failed to get current from sensor %d, error %d\n",
sensor_index, rc);
*value = 0;
}
return rc;
}
int hl_get_fan_speed(struct hl_device *hdev,
int sensor_index, u32 attr, long *value)
{
struct cpucp_packet pkt;
u64 result;
int rc;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_FAN_SPEED_GET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.sensor_index = __cpu_to_le16(sensor_index);
pkt.type = __cpu_to_le16(attr);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
0, &result);
*value = (long) result;
if (rc) {
dev_err(hdev->dev,
"Failed to get fan speed from sensor %d, error %d\n",
sensor_index, rc);
*value = 0;
}
return rc;
}
int hl_get_pwm_info(struct hl_device *hdev,
int sensor_index, u32 attr, long *value)
{
struct cpucp_packet pkt;
u64 result;
int rc;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_PWM_GET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.sensor_index = __cpu_to_le16(sensor_index);
pkt.type = __cpu_to_le16(attr);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
0, &result);
*value = (long) result;
if (rc) {
dev_err(hdev->dev,
"Failed to get pwm info from sensor %d, error %d\n",
sensor_index, rc);
*value = 0;
}
return rc;
}
void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr,
long value)
{
struct cpucp_packet pkt;
int rc;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_PWM_SET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.sensor_index = __cpu_to_le16(sensor_index);
pkt.type = __cpu_to_le16(attr);
pkt.value = cpu_to_le64(value);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
0, NULL);
if (rc)
dev_err(hdev->dev,
"Failed to set pwm info to sensor %d, error %d\n",
sensor_index, rc);
}
int hl_set_voltage(struct hl_device *hdev,
int sensor_index, u32 attr, long value)
{
struct cpucp_packet pkt;
int rc;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_VOLTAGE_SET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.sensor_index = __cpu_to_le16(sensor_index);
pkt.type = __cpu_to_le16(attr);
pkt.value = __cpu_to_le64(value);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
0, NULL);
if (rc)
dev_err(hdev->dev,
"Failed to set voltage of sensor %d, error %d\n",
sensor_index, rc);
return rc;
}
int hl_set_current(struct hl_device *hdev,
int sensor_index, u32 attr, long value)
{
struct cpucp_packet pkt;
int rc;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_CURRENT_SET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.sensor_index = __cpu_to_le16(sensor_index);
pkt.type = __cpu_to_le16(attr);
pkt.value = __cpu_to_le64(value);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
0, NULL);
if (rc)
dev_err(hdev->dev,
"Failed to set current of sensor %d, error %d\n",
sensor_index, rc);
return rc;
}
int hl_set_power(struct hl_device *hdev,
int sensor_index, u32 attr, long value)
{
struct cpucp_packet pkt;
struct asic_fixed_properties *prop = &hdev->asic_prop;
int rc;
memset(&pkt, 0, sizeof(pkt));
if (prop->use_get_power_for_reset_history)
pkt.ctl = cpu_to_le32(CPUCP_PACKET_POWER_GET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
else
pkt.ctl = cpu_to_le32(CPUCP_PACKET_POWER_SET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.sensor_index = __cpu_to_le16(sensor_index);
pkt.type = __cpu_to_le16(attr);
pkt.value = __cpu_to_le64(value);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
0, NULL);
if (rc)
dev_err(hdev->dev,
"Failed to set power of sensor %d, error %d\n",
sensor_index, rc);
return rc;
}
int hl_get_power(struct hl_device *hdev,
int sensor_index, u32 attr, long *value)
{
struct cpucp_packet pkt;
u64 result;
int rc;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_POWER_GET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.sensor_index = __cpu_to_le16(sensor_index);
pkt.type = __cpu_to_le16(attr);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
0, &result);
*value = (long) result;
if (rc) {
dev_err(hdev->dev,
"Failed to get power of sensor %d, error %d\n",
sensor_index, rc);
*value = 0;
}
return rc;
}
int hl_hwmon_init(struct hl_device *hdev)
{
struct device *dev = hdev->pdev ? &hdev->pdev->dev : hdev->dev;
struct asic_fixed_properties *prop = &hdev->asic_prop;
int rc;
if ((hdev->hwmon_initialized) || !(hdev->cpu_queues_enable))
return 0;
if (hdev->hl_chip_info->info) {
hdev->hl_chip_info->ops = &hl_hwmon_ops;
hdev->hwmon_dev = hwmon_device_register_with_info(dev,
prop->cpucp_info.card_name, hdev,
hdev->hl_chip_info, NULL);
if (IS_ERR(hdev->hwmon_dev)) {
rc = PTR_ERR(hdev->hwmon_dev);
dev_err(hdev->dev,
"Unable to register hwmon device: %d\n", rc);
return rc;
}
dev_info(hdev->dev, "%s: add sensors information\n",
dev_name(hdev->hwmon_dev));
hdev->hwmon_initialized = true;
} else {
dev_info(hdev->dev, "no available sensors\n");
}
return 0;
}
void hl_hwmon_fini(struct hl_device *hdev)
{
if (!hdev->hwmon_initialized)
return;
hwmon_device_unregister(hdev->hwmon_dev);
}
void hl_hwmon_release_resources(struct hl_device *hdev)
{
const struct hwmon_channel_info **channel_info_arr;
int i = 0;
if (!hdev->hl_chip_info->info)
return;
channel_info_arr = hdev->hl_chip_info->info;
while (channel_info_arr[i]) {
kfree(channel_info_arr[i]->config);
kfree(channel_info_arr[i]);
i++;
}
kfree(channel_info_arr);
hdev->hl_chip_info->info = NULL;
}