714 lines
19 KiB
C
714 lines
19 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
//
|
||
|
// Register map access API - SPI AVMM support
|
||
|
//
|
||
|
// Copyright (C) 2018-2020 Intel Corporation. All rights reserved.
|
||
|
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/regmap.h>
|
||
|
#include <linux/spi/spi.h>
|
||
|
#include <linux/swab.h>
|
||
|
|
||
|
/*
|
||
|
* This driver implements the regmap operations for a generic SPI
|
||
|
* master to access the registers of the spi slave chip which has an
|
||
|
* Avalone bus in it.
|
||
|
*
|
||
|
* The "SPI slave to Avalon Master Bridge" (spi-avmm) IP should be integrated
|
||
|
* in the spi slave chip. The IP acts as a bridge to convert encoded streams of
|
||
|
* bytes from the host to the internal register read/write on Avalon bus. In
|
||
|
* order to issue register access requests to the slave chip, the host should
|
||
|
* send formatted bytes that conform to the transfer protocol.
|
||
|
* The transfer protocol contains 3 layers: transaction layer, packet layer
|
||
|
* and physical layer.
|
||
|
*
|
||
|
* Reference Documents could be found at:
|
||
|
* https://www.intel.com/content/www/us/en/programmable/documentation/sfo1400787952932.html
|
||
|
*
|
||
|
* Chapter "SPI Slave/JTAG to Avalon Master Bridge Cores" is a general
|
||
|
* introduction to the protocol.
|
||
|
*
|
||
|
* Chapter "Avalon Packets to Transactions Converter Core" describes
|
||
|
* the transaction layer.
|
||
|
*
|
||
|
* Chapter "Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores"
|
||
|
* describes the packet layer.
|
||
|
*
|
||
|
* Chapter "Avalon-ST Serial Peripheral Interface Core" describes the
|
||
|
* physical layer.
|
||
|
*
|
||
|
*
|
||
|
* When host issues a regmap read/write, the driver will transform the request
|
||
|
* to byte stream layer by layer. It formats the register addr, value and
|
||
|
* length to the transaction layer request, then converts the request to packet
|
||
|
* layer bytes stream and then to physical layer bytes stream. Finally the
|
||
|
* driver sends the formatted byte stream over SPI bus to the slave chip.
|
||
|
*
|
||
|
* The spi-avmm IP on the slave chip decodes the byte stream and initiates
|
||
|
* register read/write on its internal Avalon bus, and then encodes the
|
||
|
* response to byte stream and sends back to host.
|
||
|
*
|
||
|
* The driver receives the byte stream, reverses the 3 layers transformation,
|
||
|
* and finally gets the response value (read out data for register read,
|
||
|
* successful written size for register write).
|
||
|
*/
|
||
|
|
||
|
#define PKT_SOP 0x7a
|
||
|
#define PKT_EOP 0x7b
|
||
|
#define PKT_CHANNEL 0x7c
|
||
|
#define PKT_ESC 0x7d
|
||
|
|
||
|
#define PHY_IDLE 0x4a
|
||
|
#define PHY_ESC 0x4d
|
||
|
|
||
|
#define TRANS_CODE_WRITE 0x0
|
||
|
#define TRANS_CODE_SEQ_WRITE 0x4
|
||
|
#define TRANS_CODE_READ 0x10
|
||
|
#define TRANS_CODE_SEQ_READ 0x14
|
||
|
#define TRANS_CODE_NO_TRANS 0x7f
|
||
|
|
||
|
#define SPI_AVMM_XFER_TIMEOUT (msecs_to_jiffies(200))
|
||
|
|
||
|
/* slave's register addr is 32 bits */
|
||
|
#define SPI_AVMM_REG_SIZE 4UL
|
||
|
/* slave's register value is 32 bits */
|
||
|
#define SPI_AVMM_VAL_SIZE 4UL
|
||
|
|
||
|
/*
|
||
|
* max rx size could be larger. But considering the buffer consuming,
|
||
|
* it is proper that we limit 1KB xfer at max.
|
||
|
*/
|
||
|
#define MAX_READ_CNT 256UL
|
||
|
#define MAX_WRITE_CNT 1UL
|
||
|
|
||
|
struct trans_req_header {
|
||
|
u8 code;
|
||
|
u8 rsvd;
|
||
|
__be16 size;
|
||
|
__be32 addr;
|
||
|
} __packed;
|
||
|
|
||
|
struct trans_resp_header {
|
||
|
u8 r_code;
|
||
|
u8 rsvd;
|
||
|
__be16 size;
|
||
|
} __packed;
|
||
|
|
||
|
#define TRANS_REQ_HD_SIZE (sizeof(struct trans_req_header))
|
||
|
#define TRANS_RESP_HD_SIZE (sizeof(struct trans_resp_header))
|
||
|
|
||
|
/*
|
||
|
* In transaction layer,
|
||
|
* the write request format is: Transaction request header + data
|
||
|
* the read request format is: Transaction request header
|
||
|
* the write response format is: Transaction response header
|
||
|
* the read response format is: pure data, no Transaction response header
|
||
|
*/
|
||
|
#define TRANS_WR_TX_SIZE(n) (TRANS_REQ_HD_SIZE + SPI_AVMM_VAL_SIZE * (n))
|
||
|
#define TRANS_RD_TX_SIZE TRANS_REQ_HD_SIZE
|
||
|
#define TRANS_TX_MAX TRANS_WR_TX_SIZE(MAX_WRITE_CNT)
|
||
|
|
||
|
#define TRANS_RD_RX_SIZE(n) (SPI_AVMM_VAL_SIZE * (n))
|
||
|
#define TRANS_WR_RX_SIZE TRANS_RESP_HD_SIZE
|
||
|
#define TRANS_RX_MAX TRANS_RD_RX_SIZE(MAX_READ_CNT)
|
||
|
|
||
|
/* tx & rx share one transaction layer buffer */
|
||
|
#define TRANS_BUF_SIZE ((TRANS_TX_MAX > TRANS_RX_MAX) ? \
|
||
|
TRANS_TX_MAX : TRANS_RX_MAX)
|
||
|
|
||
|
/*
|
||
|
* In tx phase, the host prepares all the phy layer bytes of a request in the
|
||
|
* phy buffer and sends them in a batch.
|
||
|
*
|
||
|
* The packet layer and physical layer defines several special chars for
|
||
|
* various purpose, when a transaction layer byte hits one of these special
|
||
|
* chars, it should be escaped. The escape rule is, "Escape char first,
|
||
|
* following the byte XOR'ed with 0x20".
|
||
|
*
|
||
|
* This macro defines the max possible length of the phy data. In the worst
|
||
|
* case, all transaction layer bytes need to be escaped (so the data length
|
||
|
* doubles), plus 4 special chars (SOP, CHANNEL, CHANNEL_NUM, EOP). Finally
|
||
|
* we should make sure the length is aligned to SPI BPW.
|
||
|
*/
|
||
|
#define PHY_TX_MAX ALIGN(2 * TRANS_TX_MAX + 4, 4)
|
||
|
|
||
|
/*
|
||
|
* Unlike tx, phy rx is affected by possible PHY_IDLE bytes from slave, the max
|
||
|
* length of the rx bit stream is unpredictable. So the driver reads the words
|
||
|
* one by one, and parses each word immediately into transaction layer buffer.
|
||
|
* Only one word length of phy buffer is used for rx.
|
||
|
*/
|
||
|
#define PHY_BUF_SIZE PHY_TX_MAX
|
||
|
|
||
|
/**
|
||
|
* struct spi_avmm_bridge - SPI slave to AVMM bus master bridge
|
||
|
*
|
||
|
* @spi: spi slave associated with this bridge.
|
||
|
* @word_len: bytes of word for spi transfer.
|
||
|
* @trans_len: length of valid data in trans_buf.
|
||
|
* @phy_len: length of valid data in phy_buf.
|
||
|
* @trans_buf: the bridge buffer for transaction layer data.
|
||
|
* @phy_buf: the bridge buffer for physical layer data.
|
||
|
* @swap_words: the word swapping cb for phy data. NULL if not needed.
|
||
|
*
|
||
|
* As a device's registers are implemented on the AVMM bus address space, it
|
||
|
* requires the driver to issue formatted requests to spi slave to AVMM bus
|
||
|
* master bridge to perform register access.
|
||
|
*/
|
||
|
struct spi_avmm_bridge {
|
||
|
struct spi_device *spi;
|
||
|
unsigned char word_len;
|
||
|
unsigned int trans_len;
|
||
|
unsigned int phy_len;
|
||
|
/* bridge buffer used in translation between protocol layers */
|
||
|
char trans_buf[TRANS_BUF_SIZE];
|
||
|
char phy_buf[PHY_BUF_SIZE];
|
||
|
void (*swap_words)(void *buf, unsigned int len);
|
||
|
};
|
||
|
|
||
|
static void br_swap_words_32(void *buf, unsigned int len)
|
||
|
{
|
||
|
swab32_array(buf, len / 4);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Format transaction layer data in br->trans_buf according to the register
|
||
|
* access request, Store valid transaction layer data length in br->trans_len.
|
||
|
*/
|
||
|
static int br_trans_tx_prepare(struct spi_avmm_bridge *br, bool is_read, u32 reg,
|
||
|
u32 *wr_val, u32 count)
|
||
|
{
|
||
|
struct trans_req_header *header;
|
||
|
unsigned int trans_len;
|
||
|
u8 code;
|
||
|
__le32 *data;
|
||
|
int i;
|
||
|
|
||
|
if (is_read) {
|
||
|
if (count == 1)
|
||
|
code = TRANS_CODE_READ;
|
||
|
else
|
||
|
code = TRANS_CODE_SEQ_READ;
|
||
|
} else {
|
||
|
if (count == 1)
|
||
|
code = TRANS_CODE_WRITE;
|
||
|
else
|
||
|
code = TRANS_CODE_SEQ_WRITE;
|
||
|
}
|
||
|
|
||
|
header = (struct trans_req_header *)br->trans_buf;
|
||
|
header->code = code;
|
||
|
header->rsvd = 0;
|
||
|
header->size = cpu_to_be16((u16)count * SPI_AVMM_VAL_SIZE);
|
||
|
header->addr = cpu_to_be32(reg);
|
||
|
|
||
|
trans_len = TRANS_REQ_HD_SIZE;
|
||
|
|
||
|
if (!is_read) {
|
||
|
trans_len += SPI_AVMM_VAL_SIZE * count;
|
||
|
if (trans_len > sizeof(br->trans_buf))
|
||
|
return -ENOMEM;
|
||
|
|
||
|
data = (__le32 *)(br->trans_buf + TRANS_REQ_HD_SIZE);
|
||
|
|
||
|
for (i = 0; i < count; i++)
|
||
|
*data++ = cpu_to_le32(*wr_val++);
|
||
|
}
|
||
|
|
||
|
/* Store valid trans data length for next layer */
|
||
|
br->trans_len = trans_len;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Convert transaction layer data (in br->trans_buf) to phy layer data, store
|
||
|
* them in br->phy_buf. Pad the phy_buf aligned with SPI's BPW. Store valid phy
|
||
|
* layer data length in br->phy_len.
|
||
|
*
|
||
|
* phy_buf len should be aligned with SPI's BPW. Spare bytes should be padded
|
||
|
* with PHY_IDLE, then the slave will just drop them.
|
||
|
*
|
||
|
* The driver will not simply pad 4a at the tail. The concern is that driver
|
||
|
* will not store MISO data during tx phase, if the driver pads 4a at the tail,
|
||
|
* it is possible that if the slave is fast enough to response at the padding
|
||
|
* time. As a result these rx bytes are lost. In the following case, 7a,7c,00
|
||
|
* will lost.
|
||
|
* MOSI ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|7b| |40|4a|4a|4a| |XX|XX|...
|
||
|
* MISO ...|4a|4a|4a|4a| |4a|4a|4a|4a| |4a|4a|4a|4a| |4a|7a|7c|00| |78|56|...
|
||
|
*
|
||
|
* So the driver moves EOP and bytes after EOP to the end of the aligned size,
|
||
|
* then fill the hole with PHY_IDLE. As following:
|
||
|
* before pad ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|7b| |40|
|
||
|
* after pad ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|4a| |4a|4a|7b|40|
|
||
|
* Then if the slave will not get the entire packet before the tx phase is
|
||
|
* over, it can't responsed to anything either.
|
||
|
*/
|
||
|
static int br_pkt_phy_tx_prepare(struct spi_avmm_bridge *br)
|
||
|
{
|
||
|
char *tb, *tb_end, *pb, *pb_limit, *pb_eop = NULL;
|
||
|
unsigned int aligned_phy_len, move_size;
|
||
|
bool need_esc = false;
|
||
|
|
||
|
tb = br->trans_buf;
|
||
|
tb_end = tb + br->trans_len;
|
||
|
pb = br->phy_buf;
|
||
|
pb_limit = pb + ARRAY_SIZE(br->phy_buf);
|
||
|
|
||
|
*pb++ = PKT_SOP;
|
||
|
|
||
|
/*
|
||
|
* The driver doesn't support multiple channels so the channel number
|
||
|
* is always 0.
|
||
|
*/
|
||
|
*pb++ = PKT_CHANNEL;
|
||
|
*pb++ = 0x0;
|
||
|
|
||
|
for (; pb < pb_limit && tb < tb_end; pb++) {
|
||
|
if (need_esc) {
|
||
|
*pb = *tb++ ^ 0x20;
|
||
|
need_esc = false;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* EOP should be inserted before the last valid char */
|
||
|
if (tb == tb_end - 1 && !pb_eop) {
|
||
|
*pb = PKT_EOP;
|
||
|
pb_eop = pb;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* insert an ESCAPE char if the data value equals any special
|
||
|
* char.
|
||
|
*/
|
||
|
switch (*tb) {
|
||
|
case PKT_SOP:
|
||
|
case PKT_EOP:
|
||
|
case PKT_CHANNEL:
|
||
|
case PKT_ESC:
|
||
|
*pb = PKT_ESC;
|
||
|
need_esc = true;
|
||
|
break;
|
||
|
case PHY_IDLE:
|
||
|
case PHY_ESC:
|
||
|
*pb = PHY_ESC;
|
||
|
need_esc = true;
|
||
|
break;
|
||
|
default:
|
||
|
*pb = *tb++;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* The phy buffer is used out but transaction layer data remains */
|
||
|
if (tb < tb_end)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
/* Store valid phy data length for spi transfer */
|
||
|
br->phy_len = pb - br->phy_buf;
|
||
|
|
||
|
if (br->word_len == 1)
|
||
|
return 0;
|
||
|
|
||
|
/* Do phy buf padding if word_len > 1 byte. */
|
||
|
aligned_phy_len = ALIGN(br->phy_len, br->word_len);
|
||
|
if (aligned_phy_len > sizeof(br->phy_buf))
|
||
|
return -ENOMEM;
|
||
|
|
||
|
if (aligned_phy_len == br->phy_len)
|
||
|
return 0;
|
||
|
|
||
|
/* move EOP and bytes after EOP to the end of aligned size */
|
||
|
move_size = pb - pb_eop;
|
||
|
memmove(&br->phy_buf[aligned_phy_len - move_size], pb_eop, move_size);
|
||
|
|
||
|
/* fill the hole with PHY_IDLEs */
|
||
|
memset(pb_eop, PHY_IDLE, aligned_phy_len - br->phy_len);
|
||
|
|
||
|
/* update the phy data length */
|
||
|
br->phy_len = aligned_phy_len;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* In tx phase, the slave only returns PHY_IDLE (0x4a). So the driver will
|
||
|
* ignore rx in tx phase.
|
||
|
*/
|
||
|
static int br_do_tx(struct spi_avmm_bridge *br)
|
||
|
{
|
||
|
/* reorder words for spi transfer */
|
||
|
if (br->swap_words)
|
||
|
br->swap_words(br->phy_buf, br->phy_len);
|
||
|
|
||
|
/* send all data in phy_buf */
|
||
|
return spi_write(br->spi, br->phy_buf, br->phy_len);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This function read the rx byte stream from SPI word by word and convert
|
||
|
* them to transaction layer data in br->trans_buf. It also stores the length
|
||
|
* of rx transaction layer data in br->trans_len
|
||
|
*
|
||
|
* The slave may send an unknown number of PHY_IDLEs in rx phase, so we cannot
|
||
|
* prepare a fixed length buffer to receive all of the rx data in a batch. We
|
||
|
* have to read word by word and convert them to transaction layer data at
|
||
|
* once.
|
||
|
*/
|
||
|
static int br_do_rx_and_pkt_phy_parse(struct spi_avmm_bridge *br)
|
||
|
{
|
||
|
bool eop_found = false, channel_found = false, esc_found = false;
|
||
|
bool valid_word = false, last_try = false;
|
||
|
struct device *dev = &br->spi->dev;
|
||
|
char *pb, *tb_limit, *tb = NULL;
|
||
|
unsigned long poll_timeout;
|
||
|
int ret, i;
|
||
|
|
||
|
tb_limit = br->trans_buf + ARRAY_SIZE(br->trans_buf);
|
||
|
pb = br->phy_buf;
|
||
|
poll_timeout = jiffies + SPI_AVMM_XFER_TIMEOUT;
|
||
|
while (tb < tb_limit) {
|
||
|
ret = spi_read(br->spi, pb, br->word_len);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
/* reorder the word back */
|
||
|
if (br->swap_words)
|
||
|
br->swap_words(pb, br->word_len);
|
||
|
|
||
|
valid_word = false;
|
||
|
for (i = 0; i < br->word_len; i++) {
|
||
|
/* drop everything before first SOP */
|
||
|
if (!tb && pb[i] != PKT_SOP)
|
||
|
continue;
|
||
|
|
||
|
/* drop PHY_IDLE */
|
||
|
if (pb[i] == PHY_IDLE)
|
||
|
continue;
|
||
|
|
||
|
valid_word = true;
|
||
|
|
||
|
/*
|
||
|
* We don't support multiple channels, so error out if
|
||
|
* a non-zero channel number is found.
|
||
|
*/
|
||
|
if (channel_found) {
|
||
|
if (pb[i] != 0) {
|
||
|
dev_err(dev, "%s channel num != 0\n",
|
||
|
__func__);
|
||
|
return -EFAULT;
|
||
|
}
|
||
|
|
||
|
channel_found = false;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
switch (pb[i]) {
|
||
|
case PKT_SOP:
|
||
|
/*
|
||
|
* reset the parsing if a second SOP appears.
|
||
|
*/
|
||
|
tb = br->trans_buf;
|
||
|
eop_found = false;
|
||
|
channel_found = false;
|
||
|
esc_found = false;
|
||
|
break;
|
||
|
case PKT_EOP:
|
||
|
/*
|
||
|
* No special char is expected after ESC char.
|
||
|
* No special char (except ESC & PHY_IDLE) is
|
||
|
* expected after EOP char.
|
||
|
*
|
||
|
* The special chars are all dropped.
|
||
|
*/
|
||
|
if (esc_found || eop_found)
|
||
|
return -EFAULT;
|
||
|
|
||
|
eop_found = true;
|
||
|
break;
|
||
|
case PKT_CHANNEL:
|
||
|
if (esc_found || eop_found)
|
||
|
return -EFAULT;
|
||
|
|
||
|
channel_found = true;
|
||
|
break;
|
||
|
case PKT_ESC:
|
||
|
case PHY_ESC:
|
||
|
if (esc_found)
|
||
|
return -EFAULT;
|
||
|
|
||
|
esc_found = true;
|
||
|
break;
|
||
|
default:
|
||
|
/* Record the normal byte in trans_buf. */
|
||
|
if (esc_found) {
|
||
|
*tb++ = pb[i] ^ 0x20;
|
||
|
esc_found = false;
|
||
|
} else {
|
||
|
*tb++ = pb[i];
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We get the last normal byte after EOP, it is
|
||
|
* time we finish. Normally the function should
|
||
|
* return here.
|
||
|
*/
|
||
|
if (eop_found) {
|
||
|
br->trans_len = tb - br->trans_buf;
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (valid_word) {
|
||
|
/* update poll timeout when we get valid word */
|
||
|
poll_timeout = jiffies + SPI_AVMM_XFER_TIMEOUT;
|
||
|
last_try = false;
|
||
|
} else {
|
||
|
/*
|
||
|
* We timeout when rx keeps invalid for some time. But
|
||
|
* it is possible we are scheduled out for long time
|
||
|
* after a spi_read. So when we are scheduled in, a SW
|
||
|
* timeout happens. But actually HW may have worked fine and
|
||
|
* has been ready long time ago. So we need to do an extra
|
||
|
* read, if we get a valid word then we could continue rx,
|
||
|
* otherwise real a HW issue happens.
|
||
|
*/
|
||
|
if (last_try)
|
||
|
return -ETIMEDOUT;
|
||
|
|
||
|
if (time_after(jiffies, poll_timeout))
|
||
|
last_try = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We have used out all transfer layer buffer but cannot find the end
|
||
|
* of the byte stream.
|
||
|
*/
|
||
|
dev_err(dev, "%s transfer buffer is full but rx doesn't end\n",
|
||
|
__func__);
|
||
|
|
||
|
return -EFAULT;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* For read transactions, the avmm bus will directly return register values
|
||
|
* without transaction response header.
|
||
|
*/
|
||
|
static int br_rd_trans_rx_parse(struct spi_avmm_bridge *br,
|
||
|
u32 *val, unsigned int expected_count)
|
||
|
{
|
||
|
unsigned int i, trans_len = br->trans_len;
|
||
|
__le32 *data;
|
||
|
|
||
|
if (expected_count * SPI_AVMM_VAL_SIZE != trans_len)
|
||
|
return -EFAULT;
|
||
|
|
||
|
data = (__le32 *)br->trans_buf;
|
||
|
for (i = 0; i < expected_count; i++)
|
||
|
*val++ = le32_to_cpu(*data++);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* For write transactions, the slave will return a transaction response
|
||
|
* header.
|
||
|
*/
|
||
|
static int br_wr_trans_rx_parse(struct spi_avmm_bridge *br,
|
||
|
unsigned int expected_count)
|
||
|
{
|
||
|
unsigned int trans_len = br->trans_len;
|
||
|
struct trans_resp_header *resp;
|
||
|
u8 code;
|
||
|
u16 val_len;
|
||
|
|
||
|
if (trans_len != TRANS_RESP_HD_SIZE)
|
||
|
return -EFAULT;
|
||
|
|
||
|
resp = (struct trans_resp_header *)br->trans_buf;
|
||
|
|
||
|
code = resp->r_code ^ 0x80;
|
||
|
val_len = be16_to_cpu(resp->size);
|
||
|
if (!val_len || val_len != expected_count * SPI_AVMM_VAL_SIZE)
|
||
|
return -EFAULT;
|
||
|
|
||
|
/* error out if the trans code doesn't align with the val size */
|
||
|
if ((val_len == SPI_AVMM_VAL_SIZE && code != TRANS_CODE_WRITE) ||
|
||
|
(val_len > SPI_AVMM_VAL_SIZE && code != TRANS_CODE_SEQ_WRITE))
|
||
|
return -EFAULT;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int do_reg_access(void *context, bool is_read, unsigned int reg,
|
||
|
unsigned int *value, unsigned int count)
|
||
|
{
|
||
|
struct spi_avmm_bridge *br = context;
|
||
|
int ret;
|
||
|
|
||
|
/* invalidate bridge buffers first */
|
||
|
br->trans_len = 0;
|
||
|
br->phy_len = 0;
|
||
|
|
||
|
ret = br_trans_tx_prepare(br, is_read, reg, value, count);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
ret = br_pkt_phy_tx_prepare(br);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
ret = br_do_tx(br);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
ret = br_do_rx_and_pkt_phy_parse(br);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
if (is_read)
|
||
|
return br_rd_trans_rx_parse(br, value, count);
|
||
|
else
|
||
|
return br_wr_trans_rx_parse(br, count);
|
||
|
}
|
||
|
|
||
|
static int regmap_spi_avmm_gather_write(void *context,
|
||
|
const void *reg_buf, size_t reg_len,
|
||
|
const void *val_buf, size_t val_len)
|
||
|
{
|
||
|
if (reg_len != SPI_AVMM_REG_SIZE)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (!IS_ALIGNED(val_len, SPI_AVMM_VAL_SIZE))
|
||
|
return -EINVAL;
|
||
|
|
||
|
return do_reg_access(context, false, *(u32 *)reg_buf, (u32 *)val_buf,
|
||
|
val_len / SPI_AVMM_VAL_SIZE);
|
||
|
}
|
||
|
|
||
|
static int regmap_spi_avmm_write(void *context, const void *data, size_t bytes)
|
||
|
{
|
||
|
if (bytes < SPI_AVMM_REG_SIZE + SPI_AVMM_VAL_SIZE)
|
||
|
return -EINVAL;
|
||
|
|
||
|
return regmap_spi_avmm_gather_write(context, data, SPI_AVMM_REG_SIZE,
|
||
|
data + SPI_AVMM_REG_SIZE,
|
||
|
bytes - SPI_AVMM_REG_SIZE);
|
||
|
}
|
||
|
|
||
|
static int regmap_spi_avmm_read(void *context,
|
||
|
const void *reg_buf, size_t reg_len,
|
||
|
void *val_buf, size_t val_len)
|
||
|
{
|
||
|
if (reg_len != SPI_AVMM_REG_SIZE)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (!IS_ALIGNED(val_len, SPI_AVMM_VAL_SIZE))
|
||
|
return -EINVAL;
|
||
|
|
||
|
return do_reg_access(context, true, *(u32 *)reg_buf, val_buf,
|
||
|
(val_len / SPI_AVMM_VAL_SIZE));
|
||
|
}
|
||
|
|
||
|
static struct spi_avmm_bridge *
|
||
|
spi_avmm_bridge_ctx_gen(struct spi_device *spi)
|
||
|
{
|
||
|
struct spi_avmm_bridge *br;
|
||
|
|
||
|
if (!spi)
|
||
|
return ERR_PTR(-ENODEV);
|
||
|
|
||
|
/* Only support BPW == 8 or 32 now. Try 32 BPW first. */
|
||
|
spi->mode = SPI_MODE_1;
|
||
|
spi->bits_per_word = 32;
|
||
|
if (spi_setup(spi)) {
|
||
|
spi->bits_per_word = 8;
|
||
|
if (spi_setup(spi))
|
||
|
return ERR_PTR(-EINVAL);
|
||
|
}
|
||
|
|
||
|
br = kzalloc(sizeof(*br), GFP_KERNEL);
|
||
|
if (!br)
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
|
||
|
br->spi = spi;
|
||
|
br->word_len = spi->bits_per_word / 8;
|
||
|
if (br->word_len == 4) {
|
||
|
/*
|
||
|
* The protocol requires little endian byte order but MSB
|
||
|
* first. So driver needs to swap the byte order word by word
|
||
|
* if word length > 1.
|
||
|
*/
|
||
|
br->swap_words = br_swap_words_32;
|
||
|
}
|
||
|
|
||
|
return br;
|
||
|
}
|
||
|
|
||
|
static void spi_avmm_bridge_ctx_free(void *context)
|
||
|
{
|
||
|
kfree(context);
|
||
|
}
|
||
|
|
||
|
static const struct regmap_bus regmap_spi_avmm_bus = {
|
||
|
.write = regmap_spi_avmm_write,
|
||
|
.gather_write = regmap_spi_avmm_gather_write,
|
||
|
.read = regmap_spi_avmm_read,
|
||
|
.reg_format_endian_default = REGMAP_ENDIAN_NATIVE,
|
||
|
.val_format_endian_default = REGMAP_ENDIAN_NATIVE,
|
||
|
.max_raw_read = SPI_AVMM_VAL_SIZE * MAX_READ_CNT,
|
||
|
.max_raw_write = SPI_AVMM_VAL_SIZE * MAX_WRITE_CNT,
|
||
|
.free_context = spi_avmm_bridge_ctx_free,
|
||
|
};
|
||
|
|
||
|
struct regmap *__regmap_init_spi_avmm(struct spi_device *spi,
|
||
|
const struct regmap_config *config,
|
||
|
struct lock_class_key *lock_key,
|
||
|
const char *lock_name)
|
||
|
{
|
||
|
struct spi_avmm_bridge *bridge;
|
||
|
struct regmap *map;
|
||
|
|
||
|
bridge = spi_avmm_bridge_ctx_gen(spi);
|
||
|
if (IS_ERR(bridge))
|
||
|
return ERR_CAST(bridge);
|
||
|
|
||
|
map = __regmap_init(&spi->dev, ®map_spi_avmm_bus,
|
||
|
bridge, config, lock_key, lock_name);
|
||
|
if (IS_ERR(map)) {
|
||
|
spi_avmm_bridge_ctx_free(bridge);
|
||
|
return ERR_CAST(map);
|
||
|
}
|
||
|
|
||
|
return map;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(__regmap_init_spi_avmm);
|
||
|
|
||
|
struct regmap *__devm_regmap_init_spi_avmm(struct spi_device *spi,
|
||
|
const struct regmap_config *config,
|
||
|
struct lock_class_key *lock_key,
|
||
|
const char *lock_name)
|
||
|
{
|
||
|
struct spi_avmm_bridge *bridge;
|
||
|
struct regmap *map;
|
||
|
|
||
|
bridge = spi_avmm_bridge_ctx_gen(spi);
|
||
|
if (IS_ERR(bridge))
|
||
|
return ERR_CAST(bridge);
|
||
|
|
||
|
map = __devm_regmap_init(&spi->dev, ®map_spi_avmm_bus,
|
||
|
bridge, config, lock_key, lock_name);
|
||
|
if (IS_ERR(map)) {
|
||
|
spi_avmm_bridge_ctx_free(bridge);
|
||
|
return ERR_CAST(map);
|
||
|
}
|
||
|
|
||
|
return map;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(__devm_regmap_init_spi_avmm);
|
||
|
|
||
|
MODULE_LICENSE("GPL v2");
|