linux-zen-server/drivers/dma/tegra186-gpc-dma.c

1545 lines
43 KiB
C
Raw Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* DMA driver for NVIDIA Tegra GPC DMA controller.
*
* Copyright (c) 2014-2022, NVIDIA CORPORATION. All rights reserved.
*/
#include <linux/bitfield.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/iommu.h>
#include <linux/iopoll.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of_dma.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <dt-bindings/memory/tegra186-mc.h>
#include "virt-dma.h"
/* CSR register */
#define TEGRA_GPCDMA_CHAN_CSR 0x00
#define TEGRA_GPCDMA_CSR_ENB BIT(31)
#define TEGRA_GPCDMA_CSR_IE_EOC BIT(30)
#define TEGRA_GPCDMA_CSR_ONCE BIT(27)
#define TEGRA_GPCDMA_CSR_FC_MODE GENMASK(25, 24)
#define TEGRA_GPCDMA_CSR_FC_MODE_NO_MMIO \
FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 0)
#define TEGRA_GPCDMA_CSR_FC_MODE_ONE_MMIO \
FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 1)
#define TEGRA_GPCDMA_CSR_FC_MODE_TWO_MMIO \
FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 2)
#define TEGRA_GPCDMA_CSR_FC_MODE_FOUR_MMIO \
FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 3)
#define TEGRA_GPCDMA_CSR_DMA GENMASK(23, 21)
#define TEGRA_GPCDMA_CSR_DMA_IO2MEM_NO_FC \
FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 0)
#define TEGRA_GPCDMA_CSR_DMA_IO2MEM_FC \
FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 1)
#define TEGRA_GPCDMA_CSR_DMA_MEM2IO_NO_FC \
FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 2)
#define TEGRA_GPCDMA_CSR_DMA_MEM2IO_FC \
FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 3)
#define TEGRA_GPCDMA_CSR_DMA_MEM2MEM \
FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 4)
#define TEGRA_GPCDMA_CSR_DMA_FIXED_PAT \
FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 6)
#define TEGRA_GPCDMA_CSR_REQ_SEL_MASK GENMASK(20, 16)
#define TEGRA_GPCDMA_CSR_REQ_SEL_UNUSED \
FIELD_PREP(TEGRA_GPCDMA_CSR_REQ_SEL_MASK, 4)
#define TEGRA_GPCDMA_CSR_IRQ_MASK BIT(15)
#define TEGRA_GPCDMA_CSR_WEIGHT GENMASK(13, 10)
/* STATUS register */
#define TEGRA_GPCDMA_CHAN_STATUS 0x004
#define TEGRA_GPCDMA_STATUS_BUSY BIT(31)
#define TEGRA_GPCDMA_STATUS_ISE_EOC BIT(30)
#define TEGRA_GPCDMA_STATUS_PING_PONG BIT(28)
#define TEGRA_GPCDMA_STATUS_DMA_ACTIVITY BIT(27)
#define TEGRA_GPCDMA_STATUS_CHANNEL_PAUSE BIT(26)
#define TEGRA_GPCDMA_STATUS_CHANNEL_RX BIT(25)
#define TEGRA_GPCDMA_STATUS_CHANNEL_TX BIT(24)
#define TEGRA_GPCDMA_STATUS_IRQ_INTR_STA BIT(23)
#define TEGRA_GPCDMA_STATUS_IRQ_STA BIT(21)
#define TEGRA_GPCDMA_STATUS_IRQ_TRIG_STA BIT(20)
#define TEGRA_GPCDMA_CHAN_CSRE 0x008
#define TEGRA_GPCDMA_CHAN_CSRE_PAUSE BIT(31)
/* Source address */
#define TEGRA_GPCDMA_CHAN_SRC_PTR 0x00C
/* Destination address */
#define TEGRA_GPCDMA_CHAN_DST_PTR 0x010
/* High address pointer */
#define TEGRA_GPCDMA_CHAN_HIGH_ADDR_PTR 0x014
#define TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR GENMASK(7, 0)
#define TEGRA_GPCDMA_HIGH_ADDR_DST_PTR GENMASK(23, 16)
/* MC sequence register */
#define TEGRA_GPCDMA_CHAN_MCSEQ 0x18
#define TEGRA_GPCDMA_MCSEQ_DATA_SWAP BIT(31)
#define TEGRA_GPCDMA_MCSEQ_REQ_COUNT GENMASK(30, 25)
#define TEGRA_GPCDMA_MCSEQ_BURST GENMASK(24, 23)
#define TEGRA_GPCDMA_MCSEQ_BURST_2 \
FIELD_PREP(TEGRA_GPCDMA_MCSEQ_BURST, 0)
#define TEGRA_GPCDMA_MCSEQ_BURST_16 \
FIELD_PREP(TEGRA_GPCDMA_MCSEQ_BURST, 3)
#define TEGRA_GPCDMA_MCSEQ_WRAP1 GENMASK(22, 20)
#define TEGRA_GPCDMA_MCSEQ_WRAP0 GENMASK(19, 17)
#define TEGRA_GPCDMA_MCSEQ_WRAP_NONE 0
#define TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK GENMASK(13, 7)
#define TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK GENMASK(6, 0)
/* MMIO sequence register */
#define TEGRA_GPCDMA_CHAN_MMIOSEQ 0x01c
#define TEGRA_GPCDMA_MMIOSEQ_DBL_BUF BIT(31)
#define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH GENMASK(30, 28)
#define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_8 \
FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH, 0)
#define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_16 \
FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH, 1)
#define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_32 \
FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH, 2)
#define TEGRA_GPCDMA_MMIOSEQ_DATA_SWAP BIT(27)
#define TEGRA_GPCDMA_MMIOSEQ_BURST_SHIFT 23
#define TEGRA_GPCDMA_MMIOSEQ_BURST_MIN 2U
#define TEGRA_GPCDMA_MMIOSEQ_BURST_MAX 32U
#define TEGRA_GPCDMA_MMIOSEQ_BURST(bs) \
(GENMASK((fls(bs) - 2), 0) << TEGRA_GPCDMA_MMIOSEQ_BURST_SHIFT)
#define TEGRA_GPCDMA_MMIOSEQ_MASTER_ID GENMASK(22, 19)
#define TEGRA_GPCDMA_MMIOSEQ_WRAP_WORD GENMASK(18, 16)
#define TEGRA_GPCDMA_MMIOSEQ_MMIO_PROT GENMASK(8, 7)
/* Channel WCOUNT */
#define TEGRA_GPCDMA_CHAN_WCOUNT 0x20
/* Transfer count */
#define TEGRA_GPCDMA_CHAN_XFER_COUNT 0x24
/* DMA byte count status */
#define TEGRA_GPCDMA_CHAN_DMA_BYTE_STATUS 0x28
/* Error Status Register */
#define TEGRA_GPCDMA_CHAN_ERR_STATUS 0x30
#define TEGRA_GPCDMA_CHAN_ERR_TYPE_SHIFT 8
#define TEGRA_GPCDMA_CHAN_ERR_TYPE_MASK 0xF
#define TEGRA_GPCDMA_CHAN_ERR_TYPE(err) ( \
((err) >> TEGRA_GPCDMA_CHAN_ERR_TYPE_SHIFT) & \
TEGRA_GPCDMA_CHAN_ERR_TYPE_MASK)
#define TEGRA_DMA_BM_FIFO_FULL_ERR 0xF
#define TEGRA_DMA_PERIPH_FIFO_FULL_ERR 0xE
#define TEGRA_DMA_PERIPH_ID_ERR 0xD
#define TEGRA_DMA_STREAM_ID_ERR 0xC
#define TEGRA_DMA_MC_SLAVE_ERR 0xB
#define TEGRA_DMA_MMIO_SLAVE_ERR 0xA
/* Fixed Pattern */
#define TEGRA_GPCDMA_CHAN_FIXED_PATTERN 0x34
#define TEGRA_GPCDMA_CHAN_TZ 0x38
#define TEGRA_GPCDMA_CHAN_TZ_MMIO_PROT_1 BIT(0)
#define TEGRA_GPCDMA_CHAN_TZ_MC_PROT_1 BIT(1)
#define TEGRA_GPCDMA_CHAN_SPARE 0x3c
#define TEGRA_GPCDMA_CHAN_SPARE_EN_LEGACY_FC BIT(16)
/*
* If any burst is in flight and DMA paused then this is the time to complete
* on-flight burst and update DMA status register.
*/
#define TEGRA_GPCDMA_BURST_COMPLETE_TIME 10
#define TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT 5000 /* 5 msec */
/* Channel base address offset from GPCDMA base address */
#define TEGRA_GPCDMA_CHANNEL_BASE_ADDR_OFFSET 0x10000
/* Default channel mask reserving channel0 */
#define TEGRA_GPCDMA_DEFAULT_CHANNEL_MASK 0xfffffffe
struct tegra_dma;
struct tegra_dma_channel;
/*
* tegra_dma_chip_data Tegra chip specific DMA data
* @nr_channels: Number of channels available in the controller.
* @channel_reg_size: Channel register size.
* @max_dma_count: Maximum DMA transfer count supported by DMA controller.
* @hw_support_pause: DMA HW engine support pause of the channel.
*/
struct tegra_dma_chip_data {
bool hw_support_pause;
unsigned int nr_channels;
unsigned int channel_reg_size;
unsigned int max_dma_count;
int (*terminate)(struct tegra_dma_channel *tdc);
};
/* DMA channel registers */
struct tegra_dma_channel_regs {
u32 csr;
u32 src_ptr;
u32 dst_ptr;
u32 high_addr_ptr;
u32 mc_seq;
u32 mmio_seq;
u32 wcount;
u32 fixed_pattern;
};
/*
* tegra_dma_sg_req: DMA request details to configure hardware. This
* contains the details for one transfer to configure DMA hw.
* The client's request for data transfer can be broken into multiple
* sub-transfer as per requester details and hw support. This sub transfer
* get added as an array in Tegra DMA desc which manages the transfer details.
*/
struct tegra_dma_sg_req {
unsigned int len;
struct tegra_dma_channel_regs ch_regs;
};
/*
* tegra_dma_desc: Tegra DMA descriptors which uses virt_dma_desc to
* manage client request and keep track of transfer status, callbacks
* and request counts etc.
*/
struct tegra_dma_desc {
bool cyclic;
unsigned int bytes_req;
unsigned int bytes_xfer;
unsigned int sg_idx;
unsigned int sg_count;
struct virt_dma_desc vd;
struct tegra_dma_channel *tdc;
struct tegra_dma_sg_req sg_req[];
};
/*
* tegra_dma_channel: Channel specific information
*/
struct tegra_dma_channel {
bool config_init;
char name[30];
enum dma_transfer_direction sid_dir;
int id;
int irq;
int slave_id;
struct tegra_dma *tdma;
struct virt_dma_chan vc;
struct tegra_dma_desc *dma_desc;
struct dma_slave_config dma_sconfig;
unsigned int stream_id;
unsigned long chan_base_offset;
};
/*
* tegra_dma: Tegra DMA specific information
*/
struct tegra_dma {
const struct tegra_dma_chip_data *chip_data;
unsigned long sid_m2d_reserved;
unsigned long sid_d2m_reserved;
u32 chan_mask;
void __iomem *base_addr;
struct device *dev;
struct dma_device dma_dev;
struct reset_control *rst;
struct tegra_dma_channel channels[];
};
static inline void tdc_write(struct tegra_dma_channel *tdc,
u32 reg, u32 val)
{
writel_relaxed(val, tdc->tdma->base_addr + tdc->chan_base_offset + reg);
}
static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
{
return readl_relaxed(tdc->tdma->base_addr + tdc->chan_base_offset + reg);
}
static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
{
return container_of(dc, struct tegra_dma_channel, vc.chan);
}
static inline struct tegra_dma_desc *vd_to_tegra_dma_desc(struct virt_dma_desc *vd)
{
return container_of(vd, struct tegra_dma_desc, vd);
}
static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
{
return tdc->vc.chan.device->dev;
}
static void tegra_dma_dump_chan_regs(struct tegra_dma_channel *tdc)
{
dev_dbg(tdc2dev(tdc), "DMA Channel %d name %s register dump:\n",
tdc->id, tdc->name);
dev_dbg(tdc2dev(tdc), "CSR %x STA %x CSRE %x SRC %x DST %x\n",
tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSR),
tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS),
tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSRE),
tdc_read(tdc, TEGRA_GPCDMA_CHAN_SRC_PTR),
tdc_read(tdc, TEGRA_GPCDMA_CHAN_DST_PTR)
);
dev_dbg(tdc2dev(tdc), "MCSEQ %x IOSEQ %x WCNT %x XFER %x BSTA %x\n",
tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ),
tdc_read(tdc, TEGRA_GPCDMA_CHAN_MMIOSEQ),
tdc_read(tdc, TEGRA_GPCDMA_CHAN_WCOUNT),
tdc_read(tdc, TEGRA_GPCDMA_CHAN_XFER_COUNT),
tdc_read(tdc, TEGRA_GPCDMA_CHAN_DMA_BYTE_STATUS)
);
dev_dbg(tdc2dev(tdc), "DMA ERR_STA %x\n",
tdc_read(tdc, TEGRA_GPCDMA_CHAN_ERR_STATUS));
}
static int tegra_dma_sid_reserve(struct tegra_dma_channel *tdc,
enum dma_transfer_direction direction)
{
struct tegra_dma *tdma = tdc->tdma;
int sid = tdc->slave_id;
if (!is_slave_direction(direction))
return 0;
switch (direction) {
case DMA_MEM_TO_DEV:
if (test_and_set_bit(sid, &tdma->sid_m2d_reserved)) {
dev_err(tdma->dev, "slave id already in use\n");
return -EINVAL;
}
break;
case DMA_DEV_TO_MEM:
if (test_and_set_bit(sid, &tdma->sid_d2m_reserved)) {
dev_err(tdma->dev, "slave id already in use\n");
return -EINVAL;
}
break;
default:
break;
}
tdc->sid_dir = direction;
return 0;
}
static void tegra_dma_sid_free(struct tegra_dma_channel *tdc)
{
struct tegra_dma *tdma = tdc->tdma;
int sid = tdc->slave_id;
switch (tdc->sid_dir) {
case DMA_MEM_TO_DEV:
clear_bit(sid, &tdma->sid_m2d_reserved);
break;
case DMA_DEV_TO_MEM:
clear_bit(sid, &tdma->sid_d2m_reserved);
break;
default:
break;
}
tdc->sid_dir = DMA_TRANS_NONE;
}
static void tegra_dma_desc_free(struct virt_dma_desc *vd)
{
kfree(container_of(vd, struct tegra_dma_desc, vd));
}
static int tegra_dma_slave_config(struct dma_chan *dc,
struct dma_slave_config *sconfig)
{
struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
tdc->config_init = true;
return 0;
}
static int tegra_dma_pause(struct tegra_dma_channel *tdc)
{
int ret;
u32 val;
val = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSRE);
val |= TEGRA_GPCDMA_CHAN_CSRE_PAUSE;
tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSRE, val);
/* Wait until busy bit is de-asserted */
ret = readl_relaxed_poll_timeout_atomic(tdc->tdma->base_addr +
tdc->chan_base_offset + TEGRA_GPCDMA_CHAN_STATUS,
val,
!(val & TEGRA_GPCDMA_STATUS_BUSY),
TEGRA_GPCDMA_BURST_COMPLETE_TIME,
TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT);
if (ret) {
dev_err(tdc2dev(tdc), "DMA pause timed out\n");
tegra_dma_dump_chan_regs(tdc);
}
return ret;
}
static int tegra_dma_device_pause(struct dma_chan *dc)
{
struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
unsigned long flags;
int ret;
if (!tdc->tdma->chip_data->hw_support_pause)
return -ENOSYS;
spin_lock_irqsave(&tdc->vc.lock, flags);
ret = tegra_dma_pause(tdc);
spin_unlock_irqrestore(&tdc->vc.lock, flags);
return ret;
}
static void tegra_dma_resume(struct tegra_dma_channel *tdc)
{
u32 val;
val = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSRE);
val &= ~TEGRA_GPCDMA_CHAN_CSRE_PAUSE;
tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSRE, val);
}
static int tegra_dma_device_resume(struct dma_chan *dc)
{
struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
unsigned long flags;
if (!tdc->tdma->chip_data->hw_support_pause)
return -ENOSYS;
spin_lock_irqsave(&tdc->vc.lock, flags);
tegra_dma_resume(tdc);
spin_unlock_irqrestore(&tdc->vc.lock, flags);
return 0;
}
static inline int tegra_dma_pause_noerr(struct tegra_dma_channel *tdc)
{
/* Return 0 irrespective of PAUSE status.
* This is useful to recover channels that can exit out of flush
* state when the channel is disabled.
*/
tegra_dma_pause(tdc);
return 0;
}
static void tegra_dma_disable(struct tegra_dma_channel *tdc)
{
u32 csr, status;
csr = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSR);
/* Disable interrupts */
csr &= ~TEGRA_GPCDMA_CSR_IE_EOC;
/* Disable DMA */
csr &= ~TEGRA_GPCDMA_CSR_ENB;
tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, csr);
/* Clear interrupt status if it is there */
status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS);
if (status & TEGRA_GPCDMA_STATUS_ISE_EOC) {
dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
tdc_write(tdc, TEGRA_GPCDMA_CHAN_STATUS, status);
}
}
static void tegra_dma_configure_next_sg(struct tegra_dma_channel *tdc)
{
struct tegra_dma_desc *dma_desc = tdc->dma_desc;
struct tegra_dma_channel_regs *ch_regs;
int ret;
u32 val;
dma_desc->sg_idx++;
/* Reset the sg index for cyclic transfers */
if (dma_desc->sg_idx == dma_desc->sg_count)
dma_desc->sg_idx = 0;
/* Configure next transfer immediately after DMA is busy */
ret = readl_relaxed_poll_timeout_atomic(tdc->tdma->base_addr +
tdc->chan_base_offset + TEGRA_GPCDMA_CHAN_STATUS,
val,
(val & TEGRA_GPCDMA_STATUS_BUSY), 0,
TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT);
if (ret)
return;
ch_regs = &dma_desc->sg_req[dma_desc->sg_idx].ch_regs;
tdc_write(tdc, TEGRA_GPCDMA_CHAN_WCOUNT, ch_regs->wcount);
tdc_write(tdc, TEGRA_GPCDMA_CHAN_SRC_PTR, ch_regs->src_ptr);
tdc_write(tdc, TEGRA_GPCDMA_CHAN_DST_PTR, ch_regs->dst_ptr);
tdc_write(tdc, TEGRA_GPCDMA_CHAN_HIGH_ADDR_PTR, ch_regs->high_addr_ptr);
/* Start DMA */
tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR,
ch_regs->csr | TEGRA_GPCDMA_CSR_ENB);
}
static void tegra_dma_start(struct tegra_dma_channel *tdc)
{
struct tegra_dma_desc *dma_desc = tdc->dma_desc;
struct tegra_dma_channel_regs *ch_regs;
struct virt_dma_desc *vdesc;
if (!dma_desc) {
vdesc = vchan_next_desc(&tdc->vc);
if (!vdesc)
return;
dma_desc = vd_to_tegra_dma_desc(vdesc);
list_del(&vdesc->node);
dma_desc->tdc = tdc;
tdc->dma_desc = dma_desc;
tegra_dma_resume(tdc);
}
ch_regs = &dma_desc->sg_req[dma_desc->sg_idx].ch_regs;
tdc_write(tdc, TEGRA_GPCDMA_CHAN_WCOUNT, ch_regs->wcount);
tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, 0);
tdc_write(tdc, TEGRA_GPCDMA_CHAN_SRC_PTR, ch_regs->src_ptr);
tdc_write(tdc, TEGRA_GPCDMA_CHAN_DST_PTR, ch_regs->dst_ptr);
tdc_write(tdc, TEGRA_GPCDMA_CHAN_HIGH_ADDR_PTR, ch_regs->high_addr_ptr);
tdc_write(tdc, TEGRA_GPCDMA_CHAN_FIXED_PATTERN, ch_regs->fixed_pattern);
tdc_write(tdc, TEGRA_GPCDMA_CHAN_MMIOSEQ, ch_regs->mmio_seq);
tdc_write(tdc, TEGRA_GPCDMA_CHAN_MCSEQ, ch_regs->mc_seq);
tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, ch_regs->csr);
/* Start DMA */
tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR,
ch_regs->csr | TEGRA_GPCDMA_CSR_ENB);
}
static void tegra_dma_xfer_complete(struct tegra_dma_channel *tdc)
{
vchan_cookie_complete(&tdc->dma_desc->vd);
tegra_dma_sid_free(tdc);
tdc->dma_desc = NULL;
}
static void tegra_dma_chan_decode_error(struct tegra_dma_channel *tdc,
unsigned int err_status)
{
switch (TEGRA_GPCDMA_CHAN_ERR_TYPE(err_status)) {
case TEGRA_DMA_BM_FIFO_FULL_ERR:
dev_err(tdc->tdma->dev,
"GPCDMA CH%d bm fifo full\n", tdc->id);
break;
case TEGRA_DMA_PERIPH_FIFO_FULL_ERR:
dev_err(tdc->tdma->dev,
"GPCDMA CH%d peripheral fifo full\n", tdc->id);
break;
case TEGRA_DMA_PERIPH_ID_ERR:
dev_err(tdc->tdma->dev,
"GPCDMA CH%d illegal peripheral id\n", tdc->id);
break;
case TEGRA_DMA_STREAM_ID_ERR:
dev_err(tdc->tdma->dev,
"GPCDMA CH%d illegal stream id\n", tdc->id);
break;
case TEGRA_DMA_MC_SLAVE_ERR:
dev_err(tdc->tdma->dev,
"GPCDMA CH%d mc slave error\n", tdc->id);
break;
case TEGRA_DMA_MMIO_SLAVE_ERR:
dev_err(tdc->tdma->dev,
"GPCDMA CH%d mmio slave error\n", tdc->id);
break;
default:
dev_err(tdc->tdma->dev,
"GPCDMA CH%d security violation %x\n", tdc->id,
err_status);
}
}
static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
{
struct tegra_dma_channel *tdc = dev_id;
struct tegra_dma_desc *dma_desc = tdc->dma_desc;
struct tegra_dma_sg_req *sg_req;
u32 status;
/* Check channel error status register */
status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_ERR_STATUS);
if (status) {
tegra_dma_chan_decode_error(tdc, status);
tegra_dma_dump_chan_regs(tdc);
tdc_write(tdc, TEGRA_GPCDMA_CHAN_ERR_STATUS, 0xFFFFFFFF);
}
spin_lock(&tdc->vc.lock);
status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS);
if (!(status & TEGRA_GPCDMA_STATUS_ISE_EOC))
goto irq_done;
tdc_write(tdc, TEGRA_GPCDMA_CHAN_STATUS,
TEGRA_GPCDMA_STATUS_ISE_EOC);
if (!dma_desc)
goto irq_done;
sg_req = dma_desc->sg_req;
dma_desc->bytes_xfer += sg_req[dma_desc->sg_idx].len;
if (dma_desc->cyclic) {
vchan_cyclic_callback(&dma_desc->vd);
tegra_dma_configure_next_sg(tdc);
} else {
dma_desc->sg_idx++;
if (dma_desc->sg_idx == dma_desc->sg_count)
tegra_dma_xfer_complete(tdc);
else
tegra_dma_start(tdc);
}
irq_done:
spin_unlock(&tdc->vc.lock);
return IRQ_HANDLED;
}
static void tegra_dma_issue_pending(struct dma_chan *dc)
{
struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
unsigned long flags;
if (tdc->dma_desc)
return;
spin_lock_irqsave(&tdc->vc.lock, flags);
if (vchan_issue_pending(&tdc->vc))
tegra_dma_start(tdc);
/*
* For cyclic DMA transfers, program the second
* transfer parameters as soon as the first DMA
* transfer is started inorder for the DMA
* controller to trigger the second transfer
* with the correct parameters.
*/
if (tdc->dma_desc && tdc->dma_desc->cyclic)
tegra_dma_configure_next_sg(tdc);
spin_unlock_irqrestore(&tdc->vc.lock, flags);
}
static int tegra_dma_stop_client(struct tegra_dma_channel *tdc)
{
int ret;
u32 status, csr;
/*
* Change the client associated with the DMA channel
* to stop DMA engine from starting any more bursts for
* the given client and wait for in flight bursts to complete
*/
csr = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSR);
csr &= ~(TEGRA_GPCDMA_CSR_REQ_SEL_MASK);
csr |= TEGRA_GPCDMA_CSR_REQ_SEL_UNUSED;
tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, csr);
/* Wait for in flight data transfer to finish */
udelay(TEGRA_GPCDMA_BURST_COMPLETE_TIME);
/* If TX/RX path is still active wait till it becomes
* inactive
*/
ret = readl_relaxed_poll_timeout_atomic(tdc->tdma->base_addr +
tdc->chan_base_offset +
TEGRA_GPCDMA_CHAN_STATUS,
status,
!(status & (TEGRA_GPCDMA_STATUS_CHANNEL_TX |
TEGRA_GPCDMA_STATUS_CHANNEL_RX)),
5,
TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT);
if (ret) {
dev_err(tdc2dev(tdc), "Timeout waiting for DMA burst completion!\n");
tegra_dma_dump_chan_regs(tdc);
}
return ret;
}
static int tegra_dma_terminate_all(struct dma_chan *dc)
{
struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
unsigned long flags;
LIST_HEAD(head);
int err;
spin_lock_irqsave(&tdc->vc.lock, flags);
if (tdc->dma_desc) {
err = tdc->tdma->chip_data->terminate(tdc);
if (err) {
spin_unlock_irqrestore(&tdc->vc.lock, flags);
return err;
}
vchan_terminate_vdesc(&tdc->dma_desc->vd);
tegra_dma_disable(tdc);
tdc->dma_desc = NULL;
}
tegra_dma_sid_free(tdc);
vchan_get_all_descriptors(&tdc->vc, &head);
spin_unlock_irqrestore(&tdc->vc.lock, flags);
vchan_dma_desc_free_list(&tdc->vc, &head);
return 0;
}
static int tegra_dma_get_residual(struct tegra_dma_channel *tdc)
{
struct tegra_dma_desc *dma_desc = tdc->dma_desc;
struct tegra_dma_sg_req *sg_req = dma_desc->sg_req;
unsigned int bytes_xfer, residual;
u32 wcount = 0, status;
wcount = tdc_read(tdc, TEGRA_GPCDMA_CHAN_XFER_COUNT);
/*
* Set wcount = 0 if EOC bit is set. The transfer would have
* already completed and the CHAN_XFER_COUNT could have updated
* for the next transfer, specifically in case of cyclic transfers.
*/
status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS);
if (status & TEGRA_GPCDMA_STATUS_ISE_EOC)
wcount = 0;
bytes_xfer = dma_desc->bytes_xfer +
sg_req[dma_desc->sg_idx].len - (wcount * 4);
residual = dma_desc->bytes_req - (bytes_xfer % dma_desc->bytes_req);
return residual;
}
static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
struct tegra_dma_desc *dma_desc;
struct virt_dma_desc *vd;
unsigned int residual;
unsigned long flags;
enum dma_status ret;
ret = dma_cookie_status(dc, cookie, txstate);
if (ret == DMA_COMPLETE)
return ret;
spin_lock_irqsave(&tdc->vc.lock, flags);
vd = vchan_find_desc(&tdc->vc, cookie);
if (vd) {
dma_desc = vd_to_tegra_dma_desc(vd);
residual = dma_desc->bytes_req;
dma_set_residue(txstate, residual);
} else if (tdc->dma_desc && tdc->dma_desc->vd.tx.cookie == cookie) {
residual = tegra_dma_get_residual(tdc);
dma_set_residue(txstate, residual);
} else {
dev_err(tdc2dev(tdc), "cookie %d is not found\n", cookie);
}
spin_unlock_irqrestore(&tdc->vc.lock, flags);
return ret;
}
static inline int get_bus_width(struct tegra_dma_channel *tdc,
enum dma_slave_buswidth slave_bw)
{
switch (slave_bw) {
case DMA_SLAVE_BUSWIDTH_1_BYTE:
return TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_8;
case DMA_SLAVE_BUSWIDTH_2_BYTES:
return TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_16;
case DMA_SLAVE_BUSWIDTH_4_BYTES:
return TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_32;
default:
dev_err(tdc2dev(tdc), "given slave bus width is not supported\n");
return -EINVAL;
}
}
static unsigned int get_burst_size(struct tegra_dma_channel *tdc,
u32 burst_size, enum dma_slave_buswidth slave_bw,
int len)
{
unsigned int burst_mmio_width, burst_byte;
/*
* burst_size from client is in terms of the bus_width.
* convert that into words.
* If burst_size is not specified from client, then use
* len to calculate the optimum burst size
*/
burst_byte = burst_size ? burst_size * slave_bw : len;
burst_mmio_width = burst_byte / 4;
if (burst_mmio_width < TEGRA_GPCDMA_MMIOSEQ_BURST_MIN)
return 0;
burst_mmio_width = min(burst_mmio_width, TEGRA_GPCDMA_MMIOSEQ_BURST_MAX);
return TEGRA_GPCDMA_MMIOSEQ_BURST(burst_mmio_width);
}
static int get_transfer_param(struct tegra_dma_channel *tdc,
enum dma_transfer_direction direction,
u32 *apb_addr,
u32 *mmio_seq,
u32 *csr,
unsigned int *burst_size,
enum dma_slave_buswidth *slave_bw)
{
switch (direction) {
case DMA_MEM_TO_DEV:
*apb_addr = tdc->dma_sconfig.dst_addr;
*mmio_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
*burst_size = tdc->dma_sconfig.dst_maxburst;
*slave_bw = tdc->dma_sconfig.dst_addr_width;
*csr = TEGRA_GPCDMA_CSR_DMA_MEM2IO_FC;
return 0;
case DMA_DEV_TO_MEM:
*apb_addr = tdc->dma_sconfig.src_addr;
*mmio_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
*burst_size = tdc->dma_sconfig.src_maxburst;
*slave_bw = tdc->dma_sconfig.src_addr_width;
*csr = TEGRA_GPCDMA_CSR_DMA_IO2MEM_FC;
return 0;
default:
dev_err(tdc2dev(tdc), "DMA direction is not supported\n");
}
return -EINVAL;
}
static struct dma_async_tx_descriptor *
tegra_dma_prep_dma_memset(struct dma_chan *dc, dma_addr_t dest, int value,
size_t len, unsigned long flags)
{
struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
unsigned int max_dma_count = tdc->tdma->chip_data->max_dma_count;
struct tegra_dma_sg_req *sg_req;
struct tegra_dma_desc *dma_desc;
u32 csr, mc_seq;
if ((len & 3) || (dest & 3) || len > max_dma_count) {
dev_err(tdc2dev(tdc),
"DMA length/memory address is not supported\n");
return NULL;
}
/* Set DMA mode to fixed pattern */
csr = TEGRA_GPCDMA_CSR_DMA_FIXED_PAT;
/* Enable once or continuous mode */
csr |= TEGRA_GPCDMA_CSR_ONCE;
/* Enable IRQ mask */
csr |= TEGRA_GPCDMA_CSR_IRQ_MASK;
/* Enable the DMA interrupt */
if (flags & DMA_PREP_INTERRUPT)
csr |= TEGRA_GPCDMA_CSR_IE_EOC;
/* Configure default priority weight for the channel */
csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1);
mc_seq = tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
/* retain stream-id and clean rest */
mc_seq &= TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK;
/* Set the address wrapping */
mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0,
TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1,
TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
/* Program outstanding MC requests */
mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1);
/* Set burst size */
mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16;
dma_desc = kzalloc(struct_size(dma_desc, sg_req, 1), GFP_NOWAIT);
if (!dma_desc)
return NULL;
dma_desc->bytes_req = len;
dma_desc->sg_count = 1;
sg_req = dma_desc->sg_req;
sg_req[0].ch_regs.src_ptr = 0;
sg_req[0].ch_regs.dst_ptr = dest;
sg_req[0].ch_regs.high_addr_ptr =
FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (dest >> 32));
sg_req[0].ch_regs.fixed_pattern = value;
/* Word count reg takes value as (N +1) words */
sg_req[0].ch_regs.wcount = ((len - 4) >> 2);
sg_req[0].ch_regs.csr = csr;
sg_req[0].ch_regs.mmio_seq = 0;
sg_req[0].ch_regs.mc_seq = mc_seq;
sg_req[0].len = len;
dma_desc->cyclic = false;
return vchan_tx_prep(&tdc->vc, &dma_desc->vd, flags);
}
static struct dma_async_tx_descriptor *
tegra_dma_prep_dma_memcpy(struct dma_chan *dc, dma_addr_t dest,
dma_addr_t src, size_t len, unsigned long flags)
{
struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
struct tegra_dma_sg_req *sg_req;
struct tegra_dma_desc *dma_desc;
unsigned int max_dma_count;
u32 csr, mc_seq;
max_dma_count = tdc->tdma->chip_data->max_dma_count;
if ((len & 3) || (src & 3) || (dest & 3) || len > max_dma_count) {
dev_err(tdc2dev(tdc),
"DMA length/memory address is not supported\n");
return NULL;
}
/* Set DMA mode to memory to memory transfer */
csr = TEGRA_GPCDMA_CSR_DMA_MEM2MEM;
/* Enable once or continuous mode */
csr |= TEGRA_GPCDMA_CSR_ONCE;
/* Enable IRQ mask */
csr |= TEGRA_GPCDMA_CSR_IRQ_MASK;
/* Enable the DMA interrupt */
if (flags & DMA_PREP_INTERRUPT)
csr |= TEGRA_GPCDMA_CSR_IE_EOC;
/* Configure default priority weight for the channel */
csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1);
mc_seq = tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
/* retain stream-id and clean rest */
mc_seq &= (TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK) |
(TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK);
/* Set the address wrapping */
mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0,
TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1,
TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
/* Program outstanding MC requests */
mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1);
/* Set burst size */
mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16;
dma_desc = kzalloc(struct_size(dma_desc, sg_req, 1), GFP_NOWAIT);
if (!dma_desc)
return NULL;
dma_desc->bytes_req = len;
dma_desc->sg_count = 1;
sg_req = dma_desc->sg_req;
sg_req[0].ch_regs.src_ptr = src;
sg_req[0].ch_regs.dst_ptr = dest;
sg_req[0].ch_regs.high_addr_ptr =
FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR, (src >> 32));
sg_req[0].ch_regs.high_addr_ptr |=
FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (dest >> 32));
/* Word count reg takes value as (N +1) words */
sg_req[0].ch_regs.wcount = ((len - 4) >> 2);
sg_req[0].ch_regs.csr = csr;
sg_req[0].ch_regs.mmio_seq = 0;
sg_req[0].ch_regs.mc_seq = mc_seq;
sg_req[0].len = len;
dma_desc->cyclic = false;
return vchan_tx_prep(&tdc->vc, &dma_desc->vd, flags);
}
static struct dma_async_tx_descriptor *
tegra_dma_prep_slave_sg(struct dma_chan *dc, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction direction,
unsigned long flags, void *context)
{
struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
unsigned int max_dma_count = tdc->tdma->chip_data->max_dma_count;
enum dma_slave_buswidth slave_bw = DMA_SLAVE_BUSWIDTH_UNDEFINED;
u32 csr, mc_seq, apb_ptr = 0, mmio_seq = 0;
struct tegra_dma_sg_req *sg_req;
struct tegra_dma_desc *dma_desc;
struct scatterlist *sg;
u32 burst_size;
unsigned int i;
int ret;
if (!tdc->config_init) {
dev_err(tdc2dev(tdc), "DMA channel is not configured\n");
return NULL;
}
if (sg_len < 1) {
dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
return NULL;
}
ret = tegra_dma_sid_reserve(tdc, direction);
if (ret)
return NULL;
ret = get_transfer_param(tdc, direction, &apb_ptr, &mmio_seq, &csr,
&burst_size, &slave_bw);
if (ret < 0)
return NULL;
/* Enable once or continuous mode */
csr |= TEGRA_GPCDMA_CSR_ONCE;
/* Program the slave id in requestor select */
csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_REQ_SEL_MASK, tdc->slave_id);
/* Enable IRQ mask */
csr |= TEGRA_GPCDMA_CSR_IRQ_MASK;
/* Configure default priority weight for the channel*/
csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1);
/* Enable the DMA interrupt */
if (flags & DMA_PREP_INTERRUPT)
csr |= TEGRA_GPCDMA_CSR_IE_EOC;
mc_seq = tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
/* retain stream-id and clean rest */
mc_seq &= TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK;
/* Set the address wrapping on both MC and MMIO side */
mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0,
TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1,
TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
mmio_seq |= FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_WRAP_WORD, 1);
/* Program 2 MC outstanding requests by default. */
mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1);
/* Setting MC burst size depending on MMIO burst size */
if (burst_size == 64)
mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16;
else
mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_2;
dma_desc = kzalloc(struct_size(dma_desc, sg_req, sg_len), GFP_NOWAIT);
if (!dma_desc)
return NULL;
dma_desc->sg_count = sg_len;
sg_req = dma_desc->sg_req;
/* Make transfer requests */
for_each_sg(sgl, sg, sg_len, i) {
u32 len;
dma_addr_t mem;
mem = sg_dma_address(sg);
len = sg_dma_len(sg);
if ((len & 3) || (mem & 3) || len > max_dma_count) {
dev_err(tdc2dev(tdc),
"DMA length/memory address is not supported\n");
kfree(dma_desc);
return NULL;
}
mmio_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
dma_desc->bytes_req += len;
if (direction == DMA_MEM_TO_DEV) {
sg_req[i].ch_regs.src_ptr = mem;
sg_req[i].ch_regs.dst_ptr = apb_ptr;
sg_req[i].ch_regs.high_addr_ptr =
FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR, (mem >> 32));
} else if (direction == DMA_DEV_TO_MEM) {
sg_req[i].ch_regs.src_ptr = apb_ptr;
sg_req[i].ch_regs.dst_ptr = mem;
sg_req[i].ch_regs.high_addr_ptr =
FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (mem >> 32));
}
/*
* Word count register takes input in words. Writing a value
* of N into word count register means a req of (N+1) words.
*/
sg_req[i].ch_regs.wcount = ((len - 4) >> 2);
sg_req[i].ch_regs.csr = csr;
sg_req[i].ch_regs.mmio_seq = mmio_seq;
sg_req[i].ch_regs.mc_seq = mc_seq;
sg_req[i].len = len;
}
dma_desc->cyclic = false;
return vchan_tx_prep(&tdc->vc, &dma_desc->vd, flags);
}
static struct dma_async_tx_descriptor *
tegra_dma_prep_dma_cyclic(struct dma_chan *dc, dma_addr_t buf_addr, size_t buf_len,
size_t period_len, enum dma_transfer_direction direction,
unsigned long flags)
{
enum dma_slave_buswidth slave_bw = DMA_SLAVE_BUSWIDTH_UNDEFINED;
u32 csr, mc_seq, apb_ptr = 0, mmio_seq = 0, burst_size;
unsigned int max_dma_count, len, period_count, i;
struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
struct tegra_dma_desc *dma_desc;
struct tegra_dma_sg_req *sg_req;
dma_addr_t mem = buf_addr;
int ret;
if (!buf_len || !period_len) {
dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
return NULL;
}
if (!tdc->config_init) {
dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
return NULL;
}
ret = tegra_dma_sid_reserve(tdc, direction);
if (ret)
return NULL;
/*
* We only support cycle transfer when buf_len is multiple of
* period_len.
*/
if (buf_len % period_len) {
dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
return NULL;
}
len = period_len;
max_dma_count = tdc->tdma->chip_data->max_dma_count;
if ((len & 3) || (buf_addr & 3) || len > max_dma_count) {
dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
return NULL;
}
ret = get_transfer_param(tdc, direction, &apb_ptr, &mmio_seq, &csr,
&burst_size, &slave_bw);
if (ret < 0)
return NULL;
/* Enable once or continuous mode */
csr &= ~TEGRA_GPCDMA_CSR_ONCE;
/* Program the slave id in requestor select */
csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_REQ_SEL_MASK, tdc->slave_id);
/* Enable IRQ mask */
csr |= TEGRA_GPCDMA_CSR_IRQ_MASK;
/* Configure default priority weight for the channel*/
csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1);
/* Enable the DMA interrupt */
if (flags & DMA_PREP_INTERRUPT)
csr |= TEGRA_GPCDMA_CSR_IE_EOC;
mmio_seq |= FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_WRAP_WORD, 1);
mc_seq = tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
/* retain stream-id and clean rest */
mc_seq &= TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK;
/* Set the address wrapping on both MC and MMIO side */
mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0,
TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1,
TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
/* Program 2 MC outstanding requests by default. */
mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1);
/* Setting MC burst size depending on MMIO burst size */
if (burst_size == 64)
mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16;
else
mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_2;
period_count = buf_len / period_len;
dma_desc = kzalloc(struct_size(dma_desc, sg_req, period_count),
GFP_NOWAIT);
if (!dma_desc)
return NULL;
dma_desc->bytes_req = buf_len;
dma_desc->sg_count = period_count;
sg_req = dma_desc->sg_req;
/* Split transfer equal to period size */
for (i = 0; i < period_count; i++) {
mmio_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
if (direction == DMA_MEM_TO_DEV) {
sg_req[i].ch_regs.src_ptr = mem;
sg_req[i].ch_regs.dst_ptr = apb_ptr;
sg_req[i].ch_regs.high_addr_ptr =
FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR, (mem >> 32));
} else if (direction == DMA_DEV_TO_MEM) {
sg_req[i].ch_regs.src_ptr = apb_ptr;
sg_req[i].ch_regs.dst_ptr = mem;
sg_req[i].ch_regs.high_addr_ptr =
FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (mem >> 32));
}
/*
* Word count register takes input in words. Writing a value
* of N into word count register means a req of (N+1) words.
*/
sg_req[i].ch_regs.wcount = ((len - 4) >> 2);
sg_req[i].ch_regs.csr = csr;
sg_req[i].ch_regs.mmio_seq = mmio_seq;
sg_req[i].ch_regs.mc_seq = mc_seq;
sg_req[i].len = len;
mem += len;
}
dma_desc->cyclic = true;
return vchan_tx_prep(&tdc->vc, &dma_desc->vd, flags);
}
static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
{
struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
int ret;
ret = request_irq(tdc->irq, tegra_dma_isr, 0, tdc->name, tdc);
if (ret) {
dev_err(tdc2dev(tdc), "request_irq failed for %s\n", tdc->name);
return ret;
}
dma_cookie_init(&tdc->vc.chan);
tdc->config_init = false;
return 0;
}
static void tegra_dma_chan_synchronize(struct dma_chan *dc)
{
struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
synchronize_irq(tdc->irq);
vchan_synchronize(&tdc->vc);
}
static void tegra_dma_free_chan_resources(struct dma_chan *dc)
{
struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
tegra_dma_terminate_all(dc);
synchronize_irq(tdc->irq);
tasklet_kill(&tdc->vc.task);
tdc->config_init = false;
tdc->slave_id = -1;
tdc->sid_dir = DMA_TRANS_NONE;
free_irq(tdc->irq, tdc);
vchan_free_chan_resources(&tdc->vc);
}
static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
struct of_dma *ofdma)
{
struct tegra_dma *tdma = ofdma->of_dma_data;
struct tegra_dma_channel *tdc;
struct dma_chan *chan;
chan = dma_get_any_slave_channel(&tdma->dma_dev);
if (!chan)
return NULL;
tdc = to_tegra_dma_chan(chan);
tdc->slave_id = dma_spec->args[0];
return chan;
}
static const struct tegra_dma_chip_data tegra186_dma_chip_data = {
.nr_channels = 32,
.channel_reg_size = SZ_64K,
.max_dma_count = SZ_1G,
.hw_support_pause = false,
.terminate = tegra_dma_stop_client,
};
static const struct tegra_dma_chip_data tegra194_dma_chip_data = {
.nr_channels = 32,
.channel_reg_size = SZ_64K,
.max_dma_count = SZ_1G,
.hw_support_pause = true,
.terminate = tegra_dma_pause,
};
static const struct tegra_dma_chip_data tegra234_dma_chip_data = {
.nr_channels = 32,
.channel_reg_size = SZ_64K,
.max_dma_count = SZ_1G,
.hw_support_pause = true,
.terminate = tegra_dma_pause_noerr,
};
static const struct of_device_id tegra_dma_of_match[] = {
{
.compatible = "nvidia,tegra186-gpcdma",
.data = &tegra186_dma_chip_data,
}, {
.compatible = "nvidia,tegra194-gpcdma",
.data = &tegra194_dma_chip_data,
}, {
.compatible = "nvidia,tegra234-gpcdma",
.data = &tegra234_dma_chip_data,
}, {
},
};
MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
static int tegra_dma_program_sid(struct tegra_dma_channel *tdc, int stream_id)
{
unsigned int reg_val = tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
reg_val &= ~(TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK);
reg_val &= ~(TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK);
reg_val |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK, stream_id);
reg_val |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK, stream_id);
tdc_write(tdc, TEGRA_GPCDMA_CHAN_MCSEQ, reg_val);
return 0;
}
static int tegra_dma_probe(struct platform_device *pdev)
{
const struct tegra_dma_chip_data *cdata = NULL;
struct iommu_fwspec *iommu_spec;
unsigned int stream_id, i;
struct tegra_dma *tdma;
int ret;
cdata = of_device_get_match_data(&pdev->dev);
tdma = devm_kzalloc(&pdev->dev,
struct_size(tdma, channels, cdata->nr_channels),
GFP_KERNEL);
if (!tdma)
return -ENOMEM;
tdma->dev = &pdev->dev;
tdma->chip_data = cdata;
platform_set_drvdata(pdev, tdma);
tdma->base_addr = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(tdma->base_addr))
return PTR_ERR(tdma->base_addr);
tdma->rst = devm_reset_control_get_exclusive(&pdev->dev, "gpcdma");
if (IS_ERR(tdma->rst)) {
return dev_err_probe(&pdev->dev, PTR_ERR(tdma->rst),
"Missing controller reset\n");
}
reset_control_reset(tdma->rst);
tdma->dma_dev.dev = &pdev->dev;
iommu_spec = dev_iommu_fwspec_get(&pdev->dev);
if (!iommu_spec) {
dev_err(&pdev->dev, "Missing iommu stream-id\n");
return -EINVAL;
}
stream_id = iommu_spec->ids[0] & 0xffff;
ret = device_property_read_u32(&pdev->dev, "dma-channel-mask",
&tdma->chan_mask);
if (ret) {
dev_warn(&pdev->dev,
"Missing dma-channel-mask property, using default channel mask %#x\n",
TEGRA_GPCDMA_DEFAULT_CHANNEL_MASK);
tdma->chan_mask = TEGRA_GPCDMA_DEFAULT_CHANNEL_MASK;
}
INIT_LIST_HEAD(&tdma->dma_dev.channels);
for (i = 0; i < cdata->nr_channels; i++) {
struct tegra_dma_channel *tdc = &tdma->channels[i];
/* Check for channel mask */
if (!(tdma->chan_mask & BIT(i)))
continue;
tdc->irq = platform_get_irq(pdev, i);
if (tdc->irq < 0)
return tdc->irq;
tdc->chan_base_offset = TEGRA_GPCDMA_CHANNEL_BASE_ADDR_OFFSET +
i * cdata->channel_reg_size;
snprintf(tdc->name, sizeof(tdc->name), "gpcdma.%d", i);
tdc->tdma = tdma;
tdc->id = i;
tdc->slave_id = -1;
vchan_init(&tdc->vc, &tdma->dma_dev);
tdc->vc.desc_free = tegra_dma_desc_free;
/* program stream-id for this channel */
tegra_dma_program_sid(tdc, stream_id);
tdc->stream_id = stream_id;
}
dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
dma_cap_set(DMA_MEMCPY, tdma->dma_dev.cap_mask);
dma_cap_set(DMA_MEMSET, tdma->dma_dev.cap_mask);
dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
/*
* Only word aligned transfers are supported. Set the copy
* alignment shift.
*/
tdma->dma_dev.copy_align = 2;
tdma->dma_dev.fill_align = 2;
tdma->dma_dev.device_alloc_chan_resources =
tegra_dma_alloc_chan_resources;
tdma->dma_dev.device_free_chan_resources =
tegra_dma_free_chan_resources;
tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
tdma->dma_dev.device_prep_dma_memcpy = tegra_dma_prep_dma_memcpy;
tdma->dma_dev.device_prep_dma_memset = tegra_dma_prep_dma_memset;
tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
tdma->dma_dev.device_config = tegra_dma_slave_config;
tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
tdma->dma_dev.device_pause = tegra_dma_device_pause;
tdma->dma_dev.device_resume = tegra_dma_device_resume;
tdma->dma_dev.device_synchronize = tegra_dma_chan_synchronize;
tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
ret = dma_async_device_register(&tdma->dma_dev);
if (ret < 0) {
dev_err_probe(&pdev->dev, ret,
"GPC DMA driver registration failed\n");
return ret;
}
ret = of_dma_controller_register(pdev->dev.of_node,
tegra_dma_of_xlate, tdma);
if (ret < 0) {
dev_err_probe(&pdev->dev, ret,
"GPC DMA OF registration failed\n");
dma_async_device_unregister(&tdma->dma_dev);
return ret;
}
dev_info(&pdev->dev, "GPC DMA driver register %lu channels\n",
hweight_long(tdma->chan_mask));
return 0;
}
static int tegra_dma_remove(struct platform_device *pdev)
{
struct tegra_dma *tdma = platform_get_drvdata(pdev);
of_dma_controller_free(pdev->dev.of_node);
dma_async_device_unregister(&tdma->dma_dev);
return 0;
}
static int __maybe_unused tegra_dma_pm_suspend(struct device *dev)
{
struct tegra_dma *tdma = dev_get_drvdata(dev);
unsigned int i;
for (i = 0; i < tdma->chip_data->nr_channels; i++) {
struct tegra_dma_channel *tdc = &tdma->channels[i];
if (!(tdma->chan_mask & BIT(i)))
continue;
if (tdc->dma_desc) {
dev_err(tdma->dev, "channel %u busy\n", i);
return -EBUSY;
}
}
return 0;
}
static int __maybe_unused tegra_dma_pm_resume(struct device *dev)
{
struct tegra_dma *tdma = dev_get_drvdata(dev);
unsigned int i;
reset_control_reset(tdma->rst);
for (i = 0; i < tdma->chip_data->nr_channels; i++) {
struct tegra_dma_channel *tdc = &tdma->channels[i];
if (!(tdma->chan_mask & BIT(i)))
continue;
tegra_dma_program_sid(tdc, tdc->stream_id);
}
return 0;
}
static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_pm_suspend, tegra_dma_pm_resume)
};
static struct platform_driver tegra_dma_driver = {
.driver = {
.name = "tegra-gpcdma",
.pm = &tegra_dma_dev_pm_ops,
.of_match_table = tegra_dma_of_match,
},
.probe = tegra_dma_probe,
.remove = tegra_dma_remove,
};
module_platform_driver(tegra_dma_driver);
MODULE_DESCRIPTION("NVIDIA Tegra GPC DMA Controller driver");
MODULE_AUTHOR("Pavan Kunapuli <pkunapuli@nvidia.com>");
MODULE_AUTHOR("Rajesh Gumasta <rgumasta@nvidia.com>");
MODULE_LICENSE("GPL");