linux-zen-server/drivers/gpu/drm/amd/amdkfd/kfd_process_queue_manager.c

984 lines
25 KiB
C
Raw Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* Copyright 2014-2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/slab.h>
#include <linux/list.h>
#include "kfd_device_queue_manager.h"
#include "kfd_priv.h"
#include "kfd_kernel_queue.h"
#include "amdgpu_amdkfd.h"
static inline struct process_queue_node *get_queue_by_qid(
struct process_queue_manager *pqm, unsigned int qid)
{
struct process_queue_node *pqn;
list_for_each_entry(pqn, &pqm->queues, process_queue_list) {
if ((pqn->q && pqn->q->properties.queue_id == qid) ||
(pqn->kq && pqn->kq->queue->properties.queue_id == qid))
return pqn;
}
return NULL;
}
static int assign_queue_slot_by_qid(struct process_queue_manager *pqm,
unsigned int qid)
{
if (qid >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
return -EINVAL;
if (__test_and_set_bit(qid, pqm->queue_slot_bitmap)) {
pr_err("Cannot create new queue because requested qid(%u) is in use\n", qid);
return -ENOSPC;
}
return 0;
}
static int find_available_queue_slot(struct process_queue_manager *pqm,
unsigned int *qid)
{
unsigned long found;
found = find_first_zero_bit(pqm->queue_slot_bitmap,
KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
pr_debug("The new slot id %lu\n", found);
if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
pr_info("Cannot open more queues for process with pasid 0x%x\n",
pqm->process->pasid);
return -ENOMEM;
}
set_bit(found, pqm->queue_slot_bitmap);
*qid = found;
return 0;
}
void kfd_process_dequeue_from_device(struct kfd_process_device *pdd)
{
struct kfd_dev *dev = pdd->dev;
if (pdd->already_dequeued)
return;
dev->dqm->ops.process_termination(dev->dqm, &pdd->qpd);
pdd->already_dequeued = true;
}
int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
void *gws)
{
struct kfd_dev *dev = NULL;
struct process_queue_node *pqn;
struct kfd_process_device *pdd;
struct kgd_mem *mem = NULL;
int ret;
pqn = get_queue_by_qid(pqm, qid);
if (!pqn) {
pr_err("Queue id does not match any known queue\n");
return -EINVAL;
}
if (pqn->q)
dev = pqn->q->device;
if (WARN_ON(!dev))
return -ENODEV;
pdd = kfd_get_process_device_data(dev, pqm->process);
if (!pdd) {
pr_err("Process device data doesn't exist\n");
return -EINVAL;
}
/* Only allow one queue per process can have GWS assigned */
if (gws && pdd->qpd.num_gws)
return -EBUSY;
if (!gws && pdd->qpd.num_gws == 0)
return -EINVAL;
if (gws)
ret = amdgpu_amdkfd_add_gws_to_process(pdd->process->kgd_process_info,
gws, &mem);
else
ret = amdgpu_amdkfd_remove_gws_from_process(pdd->process->kgd_process_info,
pqn->q->gws);
if (unlikely(ret))
return ret;
pqn->q->gws = mem;
pdd->qpd.num_gws = gws ? dev->adev->gds.gws_size : 0;
return pqn->q->device->dqm->ops.update_queue(pqn->q->device->dqm,
pqn->q, NULL);
}
void kfd_process_dequeue_from_all_devices(struct kfd_process *p)
{
int i;
for (i = 0; i < p->n_pdds; i++)
kfd_process_dequeue_from_device(p->pdds[i]);
}
int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p)
{
INIT_LIST_HEAD(&pqm->queues);
pqm->queue_slot_bitmap = bitmap_zalloc(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
GFP_KERNEL);
if (!pqm->queue_slot_bitmap)
return -ENOMEM;
pqm->process = p;
return 0;
}
void pqm_uninit(struct process_queue_manager *pqm)
{
struct process_queue_node *pqn, *next;
list_for_each_entry_safe(pqn, next, &pqm->queues, process_queue_list) {
if (pqn->q && pqn->q->gws)
amdgpu_amdkfd_remove_gws_from_process(pqm->process->kgd_process_info,
pqn->q->gws);
kfd_procfs_del_queue(pqn->q);
uninit_queue(pqn->q);
list_del(&pqn->process_queue_list);
kfree(pqn);
}
bitmap_free(pqm->queue_slot_bitmap);
pqm->queue_slot_bitmap = NULL;
}
static int init_user_queue(struct process_queue_manager *pqm,
struct kfd_dev *dev, struct queue **q,
struct queue_properties *q_properties,
struct file *f, struct amdgpu_bo *wptr_bo,
unsigned int qid)
{
int retval;
/* Doorbell initialized in user space*/
q_properties->doorbell_ptr = NULL;
/* let DQM handle it*/
q_properties->vmid = 0;
q_properties->queue_id = qid;
retval = init_queue(q, q_properties);
if (retval != 0)
return retval;
(*q)->device = dev;
(*q)->process = pqm->process;
if (dev->shared_resources.enable_mes) {
retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
AMDGPU_MES_GANG_CTX_SIZE,
&(*q)->gang_ctx_bo,
&(*q)->gang_ctx_gpu_addr,
&(*q)->gang_ctx_cpu_ptr,
false);
if (retval) {
pr_err("failed to allocate gang context bo\n");
goto cleanup;
}
memset((*q)->gang_ctx_cpu_ptr, 0, AMDGPU_MES_GANG_CTX_SIZE);
(*q)->wptr_bo = wptr_bo;
}
pr_debug("PQM After init queue");
return 0;
cleanup:
uninit_queue(*q);
*q = NULL;
return retval;
}
int pqm_create_queue(struct process_queue_manager *pqm,
struct kfd_dev *dev,
struct file *f,
struct queue_properties *properties,
unsigned int *qid,
struct amdgpu_bo *wptr_bo,
const struct kfd_criu_queue_priv_data *q_data,
const void *restore_mqd,
const void *restore_ctl_stack,
uint32_t *p_doorbell_offset_in_process)
{
int retval;
struct kfd_process_device *pdd;
struct queue *q;
struct process_queue_node *pqn;
struct kernel_queue *kq;
enum kfd_queue_type type = properties->type;
unsigned int max_queues = 127; /* HWS limit */
q = NULL;
kq = NULL;
pdd = kfd_get_process_device_data(dev, pqm->process);
if (!pdd) {
pr_err("Process device data doesn't exist\n");
return -1;
}
/*
* for debug process, verify that it is within the static queues limit
* currently limit is set to half of the total avail HQD slots
* If we are just about to create DIQ, the is_debug flag is not set yet
* Hence we also check the type as well
*/
if ((pdd->qpd.is_debug) || (type == KFD_QUEUE_TYPE_DIQ))
max_queues = dev->device_info.max_no_of_hqd/2;
if (pdd->qpd.queue_count >= max_queues)
return -ENOSPC;
if (q_data) {
retval = assign_queue_slot_by_qid(pqm, q_data->q_id);
*qid = q_data->q_id;
} else
retval = find_available_queue_slot(pqm, qid);
if (retval != 0)
return retval;
if (list_empty(&pdd->qpd.queues_list) &&
list_empty(&pdd->qpd.priv_queue_list))
dev->dqm->ops.register_process(dev->dqm, &pdd->qpd);
pqn = kzalloc(sizeof(*pqn), GFP_KERNEL);
if (!pqn) {
retval = -ENOMEM;
goto err_allocate_pqn;
}
switch (type) {
case KFD_QUEUE_TYPE_SDMA:
case KFD_QUEUE_TYPE_SDMA_XGMI:
/* SDMA queues are always allocated statically no matter
* which scheduler mode is used. We also do not need to
* check whether a SDMA queue can be allocated here, because
* allocate_sdma_queue() in create_queue() has the
* corresponding check logic.
*/
retval = init_user_queue(pqm, dev, &q, properties, f, wptr_bo, *qid);
if (retval != 0)
goto err_create_queue;
pqn->q = q;
pqn->kq = NULL;
retval = dev->dqm->ops.create_queue(dev->dqm, q, &pdd->qpd, q_data,
restore_mqd, restore_ctl_stack);
print_queue(q);
break;
case KFD_QUEUE_TYPE_COMPUTE:
/* check if there is over subscription */
if ((dev->dqm->sched_policy ==
KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION) &&
((dev->dqm->processes_count >= dev->vm_info.vmid_num_kfd) ||
(dev->dqm->active_queue_count >= get_cp_queues_num(dev->dqm)))) {
pr_debug("Over-subscription is not allowed when amdkfd.sched_policy == 1\n");
retval = -EPERM;
goto err_create_queue;
}
retval = init_user_queue(pqm, dev, &q, properties, f, wptr_bo, *qid);
if (retval != 0)
goto err_create_queue;
pqn->q = q;
pqn->kq = NULL;
retval = dev->dqm->ops.create_queue(dev->dqm, q, &pdd->qpd, q_data,
restore_mqd, restore_ctl_stack);
print_queue(q);
break;
case KFD_QUEUE_TYPE_DIQ:
kq = kernel_queue_init(dev, KFD_QUEUE_TYPE_DIQ);
if (!kq) {
retval = -ENOMEM;
goto err_create_queue;
}
kq->queue->properties.queue_id = *qid;
pqn->kq = kq;
pqn->q = NULL;
retval = dev->dqm->ops.create_kernel_queue(dev->dqm,
kq, &pdd->qpd);
break;
default:
WARN(1, "Invalid queue type %d", type);
retval = -EINVAL;
}
if (retval != 0) {
pr_err("Pasid 0x%x DQM create queue type %d failed. ret %d\n",
pqm->process->pasid, type, retval);
goto err_create_queue;
}
if (q && p_doorbell_offset_in_process)
/* Return the doorbell offset within the doorbell page
* to the caller so it can be passed up to user mode
* (in bytes).
* There are always 1024 doorbells per process, so in case
* of 8-byte doorbells, there are two doorbell pages per
* process.
*/
*p_doorbell_offset_in_process =
(q->properties.doorbell_off * sizeof(uint32_t)) &
(kfd_doorbell_process_slice(dev) - 1);
pr_debug("PQM After DQM create queue\n");
list_add(&pqn->process_queue_list, &pqm->queues);
if (q) {
pr_debug("PQM done creating queue\n");
kfd_procfs_add_queue(q);
print_queue_properties(&q->properties);
}
return retval;
err_create_queue:
uninit_queue(q);
if (kq)
kernel_queue_uninit(kq, false);
kfree(pqn);
err_allocate_pqn:
/* check if queues list is empty unregister process from device */
clear_bit(*qid, pqm->queue_slot_bitmap);
if (list_empty(&pdd->qpd.queues_list) &&
list_empty(&pdd->qpd.priv_queue_list))
dev->dqm->ops.unregister_process(dev->dqm, &pdd->qpd);
return retval;
}
int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid)
{
struct process_queue_node *pqn;
struct kfd_process_device *pdd;
struct device_queue_manager *dqm;
struct kfd_dev *dev;
int retval;
dqm = NULL;
retval = 0;
pqn = get_queue_by_qid(pqm, qid);
if (!pqn) {
pr_err("Queue id does not match any known queue\n");
return -EINVAL;
}
dev = NULL;
if (pqn->kq)
dev = pqn->kq->dev;
if (pqn->q)
dev = pqn->q->device;
if (WARN_ON(!dev))
return -ENODEV;
pdd = kfd_get_process_device_data(dev, pqm->process);
if (!pdd) {
pr_err("Process device data doesn't exist\n");
return -1;
}
if (pqn->kq) {
/* destroy kernel queue (DIQ) */
dqm = pqn->kq->dev->dqm;
dqm->ops.destroy_kernel_queue(dqm, pqn->kq, &pdd->qpd);
kernel_queue_uninit(pqn->kq, false);
}
if (pqn->q) {
kfd_procfs_del_queue(pqn->q);
dqm = pqn->q->device->dqm;
retval = dqm->ops.destroy_queue(dqm, &pdd->qpd, pqn->q);
if (retval) {
pr_err("Pasid 0x%x destroy queue %d failed, ret %d\n",
pqm->process->pasid,
pqn->q->properties.queue_id, retval);
if (retval != -ETIME)
goto err_destroy_queue;
}
if (pqn->q->gws) {
amdgpu_amdkfd_remove_gws_from_process(pqm->process->kgd_process_info,
pqn->q->gws);
pdd->qpd.num_gws = 0;
}
if (dev->shared_resources.enable_mes) {
amdgpu_amdkfd_free_gtt_mem(dev->adev,
pqn->q->gang_ctx_bo);
if (pqn->q->wptr_bo)
amdgpu_amdkfd_free_gtt_mem(dev->adev, pqn->q->wptr_bo);
}
uninit_queue(pqn->q);
}
list_del(&pqn->process_queue_list);
kfree(pqn);
clear_bit(qid, pqm->queue_slot_bitmap);
if (list_empty(&pdd->qpd.queues_list) &&
list_empty(&pdd->qpd.priv_queue_list))
dqm->ops.unregister_process(dqm, &pdd->qpd);
err_destroy_queue:
return retval;
}
int pqm_update_queue_properties(struct process_queue_manager *pqm,
unsigned int qid, struct queue_properties *p)
{
int retval;
struct process_queue_node *pqn;
pqn = get_queue_by_qid(pqm, qid);
if (!pqn) {
pr_debug("No queue %d exists for update operation\n", qid);
return -EFAULT;
}
pqn->q->properties.queue_address = p->queue_address;
pqn->q->properties.queue_size = p->queue_size;
pqn->q->properties.queue_percent = p->queue_percent;
pqn->q->properties.priority = p->priority;
retval = pqn->q->device->dqm->ops.update_queue(pqn->q->device->dqm,
pqn->q, NULL);
if (retval != 0)
return retval;
return 0;
}
int pqm_update_mqd(struct process_queue_manager *pqm,
unsigned int qid, struct mqd_update_info *minfo)
{
int retval;
struct process_queue_node *pqn;
pqn = get_queue_by_qid(pqm, qid);
if (!pqn) {
pr_debug("No queue %d exists for update operation\n", qid);
return -EFAULT;
}
/* ASICs that have WGPs must enforce pairwise enabled mask checks. */
if (minfo && minfo->update_flag == UPDATE_FLAG_CU_MASK && minfo->cu_mask.ptr &&
KFD_GC_VERSION(pqn->q->device) >= IP_VERSION(10, 0, 0)) {
int i;
for (i = 0; i < minfo->cu_mask.count; i += 2) {
uint32_t cu_pair = (minfo->cu_mask.ptr[i / 32] >> (i % 32)) & 0x3;
if (cu_pair && cu_pair != 0x3) {
pr_debug("CUs must be adjacent pairwise enabled.\n");
return -EINVAL;
}
}
}
retval = pqn->q->device->dqm->ops.update_queue(pqn->q->device->dqm,
pqn->q, minfo);
if (retval != 0)
return retval;
return 0;
}
struct kernel_queue *pqm_get_kernel_queue(
struct process_queue_manager *pqm,
unsigned int qid)
{
struct process_queue_node *pqn;
pqn = get_queue_by_qid(pqm, qid);
if (pqn && pqn->kq)
return pqn->kq;
return NULL;
}
struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
unsigned int qid)
{
struct process_queue_node *pqn;
pqn = get_queue_by_qid(pqm, qid);
return pqn ? pqn->q : NULL;
}
int pqm_get_wave_state(struct process_queue_manager *pqm,
unsigned int qid,
void __user *ctl_stack,
u32 *ctl_stack_used_size,
u32 *save_area_used_size)
{
struct process_queue_node *pqn;
pqn = get_queue_by_qid(pqm, qid);
if (!pqn) {
pr_debug("amdkfd: No queue %d exists for operation\n",
qid);
return -EFAULT;
}
return pqn->q->device->dqm->ops.get_wave_state(pqn->q->device->dqm,
pqn->q,
ctl_stack,
ctl_stack_used_size,
save_area_used_size);
}
static int get_queue_data_sizes(struct kfd_process_device *pdd,
struct queue *q,
uint32_t *mqd_size,
uint32_t *ctl_stack_size)
{
int ret;
ret = pqm_get_queue_checkpoint_info(&pdd->process->pqm,
q->properties.queue_id,
mqd_size,
ctl_stack_size);
if (ret)
pr_err("Failed to get queue dump info (%d)\n", ret);
return ret;
}
int kfd_process_get_queue_info(struct kfd_process *p,
uint32_t *num_queues,
uint64_t *priv_data_sizes)
{
uint32_t extra_data_sizes = 0;
struct queue *q;
int i;
int ret;
*num_queues = 0;
/* Run over all PDDs of the process */
for (i = 0; i < p->n_pdds; i++) {
struct kfd_process_device *pdd = p->pdds[i];
list_for_each_entry(q, &pdd->qpd.queues_list, list) {
if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
q->properties.type == KFD_QUEUE_TYPE_SDMA ||
q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
uint32_t mqd_size, ctl_stack_size;
*num_queues = *num_queues + 1;
ret = get_queue_data_sizes(pdd, q, &mqd_size, &ctl_stack_size);
if (ret)
return ret;
extra_data_sizes += mqd_size + ctl_stack_size;
} else {
pr_err("Unsupported queue type (%d)\n", q->properties.type);
return -EOPNOTSUPP;
}
}
}
*priv_data_sizes = extra_data_sizes +
(*num_queues * sizeof(struct kfd_criu_queue_priv_data));
return 0;
}
static int pqm_checkpoint_mqd(struct process_queue_manager *pqm,
unsigned int qid,
void *mqd,
void *ctl_stack)
{
struct process_queue_node *pqn;
pqn = get_queue_by_qid(pqm, qid);
if (!pqn) {
pr_debug("amdkfd: No queue %d exists for operation\n", qid);
return -EFAULT;
}
if (!pqn->q->device->dqm->ops.checkpoint_mqd) {
pr_err("amdkfd: queue dumping not supported on this device\n");
return -EOPNOTSUPP;
}
return pqn->q->device->dqm->ops.checkpoint_mqd(pqn->q->device->dqm,
pqn->q, mqd, ctl_stack);
}
static int criu_checkpoint_queue(struct kfd_process_device *pdd,
struct queue *q,
struct kfd_criu_queue_priv_data *q_data)
{
uint8_t *mqd, *ctl_stack;
int ret;
mqd = (void *)(q_data + 1);
ctl_stack = mqd + q_data->mqd_size;
q_data->gpu_id = pdd->user_gpu_id;
q_data->type = q->properties.type;
q_data->format = q->properties.format;
q_data->q_id = q->properties.queue_id;
q_data->q_address = q->properties.queue_address;
q_data->q_size = q->properties.queue_size;
q_data->priority = q->properties.priority;
q_data->q_percent = q->properties.queue_percent;
q_data->read_ptr_addr = (uint64_t)q->properties.read_ptr;
q_data->write_ptr_addr = (uint64_t)q->properties.write_ptr;
q_data->doorbell_id = q->doorbell_id;
q_data->sdma_id = q->sdma_id;
q_data->eop_ring_buffer_address =
q->properties.eop_ring_buffer_address;
q_data->eop_ring_buffer_size = q->properties.eop_ring_buffer_size;
q_data->ctx_save_restore_area_address =
q->properties.ctx_save_restore_area_address;
q_data->ctx_save_restore_area_size =
q->properties.ctx_save_restore_area_size;
q_data->gws = !!q->gws;
ret = pqm_checkpoint_mqd(&pdd->process->pqm, q->properties.queue_id, mqd, ctl_stack);
if (ret) {
pr_err("Failed checkpoint queue_mqd (%d)\n", ret);
return ret;
}
pr_debug("Dumping Queue: gpu_id:%x queue_id:%u\n", q_data->gpu_id, q_data->q_id);
return ret;
}
static int criu_checkpoint_queues_device(struct kfd_process_device *pdd,
uint8_t __user *user_priv,
unsigned int *q_index,
uint64_t *queues_priv_data_offset)
{
unsigned int q_private_data_size = 0;
uint8_t *q_private_data = NULL; /* Local buffer to store individual queue private data */
struct queue *q;
int ret = 0;
list_for_each_entry(q, &pdd->qpd.queues_list, list) {
struct kfd_criu_queue_priv_data *q_data;
uint64_t q_data_size;
uint32_t mqd_size;
uint32_t ctl_stack_size;
if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE &&
q->properties.type != KFD_QUEUE_TYPE_SDMA &&
q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI) {
pr_err("Unsupported queue type (%d)\n", q->properties.type);
ret = -EOPNOTSUPP;
break;
}
ret = get_queue_data_sizes(pdd, q, &mqd_size, &ctl_stack_size);
if (ret)
break;
q_data_size = sizeof(*q_data) + mqd_size + ctl_stack_size;
/* Increase local buffer space if needed */
if (q_private_data_size < q_data_size) {
kfree(q_private_data);
q_private_data = kzalloc(q_data_size, GFP_KERNEL);
if (!q_private_data) {
ret = -ENOMEM;
break;
}
q_private_data_size = q_data_size;
}
q_data = (struct kfd_criu_queue_priv_data *)q_private_data;
/* data stored in this order: priv_data, mqd, ctl_stack */
q_data->mqd_size = mqd_size;
q_data->ctl_stack_size = ctl_stack_size;
ret = criu_checkpoint_queue(pdd, q, q_data);
if (ret)
break;
q_data->object_type = KFD_CRIU_OBJECT_TYPE_QUEUE;
ret = copy_to_user(user_priv + *queues_priv_data_offset,
q_data, q_data_size);
if (ret) {
ret = -EFAULT;
break;
}
*queues_priv_data_offset += q_data_size;
*q_index = *q_index + 1;
}
kfree(q_private_data);
return ret;
}
int kfd_criu_checkpoint_queues(struct kfd_process *p,
uint8_t __user *user_priv_data,
uint64_t *priv_data_offset)
{
int ret = 0, pdd_index, q_index = 0;
for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) {
struct kfd_process_device *pdd = p->pdds[pdd_index];
/*
* criu_checkpoint_queues_device will copy data to user and update q_index and
* queues_priv_data_offset
*/
ret = criu_checkpoint_queues_device(pdd, user_priv_data, &q_index,
priv_data_offset);
if (ret)
break;
}
return ret;
}
static void set_queue_properties_from_criu(struct queue_properties *qp,
struct kfd_criu_queue_priv_data *q_data)
{
qp->is_interop = false;
qp->queue_percent = q_data->q_percent;
qp->priority = q_data->priority;
qp->queue_address = q_data->q_address;
qp->queue_size = q_data->q_size;
qp->read_ptr = (uint32_t *) q_data->read_ptr_addr;
qp->write_ptr = (uint32_t *) q_data->write_ptr_addr;
qp->eop_ring_buffer_address = q_data->eop_ring_buffer_address;
qp->eop_ring_buffer_size = q_data->eop_ring_buffer_size;
qp->ctx_save_restore_area_address = q_data->ctx_save_restore_area_address;
qp->ctx_save_restore_area_size = q_data->ctx_save_restore_area_size;
qp->ctl_stack_size = q_data->ctl_stack_size;
qp->type = q_data->type;
qp->format = q_data->format;
}
int kfd_criu_restore_queue(struct kfd_process *p,
uint8_t __user *user_priv_ptr,
uint64_t *priv_data_offset,
uint64_t max_priv_data_size)
{
uint8_t *mqd, *ctl_stack, *q_extra_data = NULL;
struct kfd_criu_queue_priv_data *q_data;
struct kfd_process_device *pdd;
uint64_t q_extra_data_size;
struct queue_properties qp;
unsigned int queue_id;
int ret = 0;
if (*priv_data_offset + sizeof(*q_data) > max_priv_data_size)
return -EINVAL;
q_data = kmalloc(sizeof(*q_data), GFP_KERNEL);
if (!q_data)
return -ENOMEM;
ret = copy_from_user(q_data, user_priv_ptr + *priv_data_offset, sizeof(*q_data));
if (ret) {
ret = -EFAULT;
goto exit;
}
*priv_data_offset += sizeof(*q_data);
q_extra_data_size = (uint64_t)q_data->ctl_stack_size + q_data->mqd_size;
if (*priv_data_offset + q_extra_data_size > max_priv_data_size) {
ret = -EINVAL;
goto exit;
}
q_extra_data = kmalloc(q_extra_data_size, GFP_KERNEL);
if (!q_extra_data) {
ret = -ENOMEM;
goto exit;
}
ret = copy_from_user(q_extra_data, user_priv_ptr + *priv_data_offset, q_extra_data_size);
if (ret) {
ret = -EFAULT;
goto exit;
}
*priv_data_offset += q_extra_data_size;
pdd = kfd_process_device_data_by_id(p, q_data->gpu_id);
if (!pdd) {
pr_err("Failed to get pdd\n");
ret = -EINVAL;
goto exit;
}
if (!pdd->doorbell_index &&
kfd_alloc_process_doorbells(pdd->dev, &pdd->doorbell_index) < 0) {
ret = -ENOMEM;
goto exit;
}
/* data stored in this order: mqd, ctl_stack */
mqd = q_extra_data;
ctl_stack = mqd + q_data->mqd_size;
memset(&qp, 0, sizeof(qp));
set_queue_properties_from_criu(&qp, q_data);
print_queue_properties(&qp);
ret = pqm_create_queue(&p->pqm, pdd->dev, NULL, &qp, &queue_id, NULL, q_data, mqd, ctl_stack,
NULL);
if (ret) {
pr_err("Failed to create new queue err:%d\n", ret);
goto exit;
}
if (q_data->gws)
ret = pqm_set_gws(&p->pqm, q_data->q_id, pdd->dev->gws);
exit:
if (ret)
pr_err("Failed to restore queue (%d)\n", ret);
else
pr_debug("Queue id %d was restored successfully\n", queue_id);
kfree(q_data);
return ret;
}
int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm,
unsigned int qid,
uint32_t *mqd_size,
uint32_t *ctl_stack_size)
{
struct process_queue_node *pqn;
pqn = get_queue_by_qid(pqm, qid);
if (!pqn) {
pr_debug("amdkfd: No queue %d exists for operation\n", qid);
return -EFAULT;
}
if (!pqn->q->device->dqm->ops.get_queue_checkpoint_info) {
pr_err("amdkfd: queue dumping not supported on this device\n");
return -EOPNOTSUPP;
}
pqn->q->device->dqm->ops.get_queue_checkpoint_info(pqn->q->device->dqm,
pqn->q, mqd_size,
ctl_stack_size);
return 0;
}
#if defined(CONFIG_DEBUG_FS)
int pqm_debugfs_mqds(struct seq_file *m, void *data)
{
struct process_queue_manager *pqm = data;
struct process_queue_node *pqn;
struct queue *q;
enum KFD_MQD_TYPE mqd_type;
struct mqd_manager *mqd_mgr;
int r = 0;
list_for_each_entry(pqn, &pqm->queues, process_queue_list) {
if (pqn->q) {
q = pqn->q;
switch (q->properties.type) {
case KFD_QUEUE_TYPE_SDMA:
case KFD_QUEUE_TYPE_SDMA_XGMI:
seq_printf(m, " SDMA queue on device %x\n",
q->device->id);
mqd_type = KFD_MQD_TYPE_SDMA;
break;
case KFD_QUEUE_TYPE_COMPUTE:
seq_printf(m, " Compute queue on device %x\n",
q->device->id);
mqd_type = KFD_MQD_TYPE_CP;
break;
default:
seq_printf(m,
" Bad user queue type %d on device %x\n",
q->properties.type, q->device->id);
continue;
}
mqd_mgr = q->device->dqm->mqd_mgrs[mqd_type];
} else if (pqn->kq) {
q = pqn->kq->queue;
mqd_mgr = pqn->kq->mqd_mgr;
switch (q->properties.type) {
case KFD_QUEUE_TYPE_DIQ:
seq_printf(m, " DIQ on device %x\n",
pqn->kq->dev->id);
break;
default:
seq_printf(m,
" Bad kernel queue type %d on device %x\n",
q->properties.type,
pqn->kq->dev->id);
continue;
}
} else {
seq_printf(m,
" Weird: Queue node with neither kernel nor user queue\n");
continue;
}
r = mqd_mgr->debugfs_show_mqd(m, q->mqd);
if (r != 0)
break;
}
return r;
}
#endif