linux-zen-server/drivers/gpu/drm/i915/gem/i915_gem_domain.c

755 lines
20 KiB
C
Raw Normal View History

2023-08-30 17:53:23 +02:00
/*
* SPDX-License-Identifier: MIT
*
* Copyright © 2014-2016 Intel Corporation
*/
#include "display/intel_display.h"
#include "display/intel_frontbuffer.h"
#include "gt/intel_gt.h"
#include "i915_drv.h"
#include "i915_gem_clflush.h"
#include "i915_gem_domain.h"
#include "i915_gem_gtt.h"
#include "i915_gem_ioctls.h"
#include "i915_gem_lmem.h"
#include "i915_gem_mman.h"
#include "i915_gem_object.h"
#include "i915_vma.h"
#define VTD_GUARD (168u * I915_GTT_PAGE_SIZE) /* 168 or tile-row PTE padding */
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *i915 = to_i915(obj->base.dev);
if (IS_DGFX(i915))
return false;
return !(obj->cache_level == I915_CACHE_NONE ||
obj->cache_level == I915_CACHE_WT);
}
bool i915_gem_cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *i915 = to_i915(obj->base.dev);
if (obj->cache_dirty)
return false;
if (IS_DGFX(i915))
return false;
if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
return true;
/* Currently in use by HW (display engine)? Keep flushed. */
return i915_gem_object_is_framebuffer(obj);
}
static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
struct i915_vma *vma;
assert_object_held(obj);
if (!(obj->write_domain & flush_domains))
return;
switch (obj->write_domain) {
case I915_GEM_DOMAIN_GTT:
spin_lock(&obj->vma.lock);
for_each_ggtt_vma(vma, obj) {
if (i915_vma_unset_ggtt_write(vma))
intel_gt_flush_ggtt_writes(vma->vm->gt);
}
spin_unlock(&obj->vma.lock);
i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
break;
case I915_GEM_DOMAIN_WC:
wmb();
break;
case I915_GEM_DOMAIN_CPU:
i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
break;
case I915_GEM_DOMAIN_RENDER:
if (gpu_write_needs_clflush(obj))
obj->cache_dirty = true;
break;
}
obj->write_domain = 0;
}
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
/*
* We manually flush the CPU domain so that we can override and
* force the flush for the display, and perform it asyncrhonously.
*/
flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
if (obj->cache_dirty)
i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
obj->write_domain = 0;
}
void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
if (!i915_gem_object_is_framebuffer(obj))
return;
i915_gem_object_lock(obj, NULL);
__i915_gem_object_flush_for_display(obj);
i915_gem_object_unlock(obj);
}
void i915_gem_object_flush_if_display_locked(struct drm_i915_gem_object *obj)
{
if (i915_gem_object_is_framebuffer(obj))
__i915_gem_object_flush_for_display(obj);
}
/**
* Moves a single object to the WC read, and possibly write domain.
* @obj: object to act on
* @write: ask for write access or read only
*
* This function returns when the move is complete, including waiting on
* flushes to occur.
*/
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
int ret;
assert_object_held(obj);
ret = i915_gem_object_wait(obj,
I915_WAIT_INTERRUPTIBLE |
(write ? I915_WAIT_ALL : 0),
MAX_SCHEDULE_TIMEOUT);
if (ret)
return ret;
if (obj->write_domain == I915_GEM_DOMAIN_WC)
return 0;
/* Flush and acquire obj->pages so that we are coherent through
* direct access in memory with previous cached writes through
* shmemfs and that our cache domain tracking remains valid.
* For example, if the obj->filp was moved to swap without us
* being notified and releasing the pages, we would mistakenly
* continue to assume that the obj remained out of the CPU cached
* domain.
*/
ret = i915_gem_object_pin_pages(obj);
if (ret)
return ret;
flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
/* Serialise direct access to this object with the barriers for
* coherent writes from the GPU, by effectively invalidating the
* WC domain upon first access.
*/
if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
mb();
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
obj->read_domains |= I915_GEM_DOMAIN_WC;
if (write) {
obj->read_domains = I915_GEM_DOMAIN_WC;
obj->write_domain = I915_GEM_DOMAIN_WC;
obj->mm.dirty = true;
}
i915_gem_object_unpin_pages(obj);
return 0;
}
/**
* Moves a single object to the GTT read, and possibly write domain.
* @obj: object to act on
* @write: ask for write access or read only
*
* This function returns when the move is complete, including waiting on
* flushes to occur.
*/
int
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
{
int ret;
assert_object_held(obj);
ret = i915_gem_object_wait(obj,
I915_WAIT_INTERRUPTIBLE |
(write ? I915_WAIT_ALL : 0),
MAX_SCHEDULE_TIMEOUT);
if (ret)
return ret;
if (obj->write_domain == I915_GEM_DOMAIN_GTT)
return 0;
/* Flush and acquire obj->pages so that we are coherent through
* direct access in memory with previous cached writes through
* shmemfs and that our cache domain tracking remains valid.
* For example, if the obj->filp was moved to swap without us
* being notified and releasing the pages, we would mistakenly
* continue to assume that the obj remained out of the CPU cached
* domain.
*/
ret = i915_gem_object_pin_pages(obj);
if (ret)
return ret;
flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
/* Serialise direct access to this object with the barriers for
* coherent writes from the GPU, by effectively invalidating the
* GTT domain upon first access.
*/
if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
mb();
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
obj->read_domains |= I915_GEM_DOMAIN_GTT;
if (write) {
struct i915_vma *vma;
obj->read_domains = I915_GEM_DOMAIN_GTT;
obj->write_domain = I915_GEM_DOMAIN_GTT;
obj->mm.dirty = true;
spin_lock(&obj->vma.lock);
for_each_ggtt_vma(vma, obj)
if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
i915_vma_set_ggtt_write(vma);
spin_unlock(&obj->vma.lock);
}
i915_gem_object_unpin_pages(obj);
return 0;
}
/**
* Changes the cache-level of an object across all VMA.
* @obj: object to act on
* @cache_level: new cache level to set for the object
*
* After this function returns, the object will be in the new cache-level
* across all GTT and the contents of the backing storage will be coherent,
* with respect to the new cache-level. In order to keep the backing storage
* coherent for all users, we only allow a single cache level to be set
* globally on the object and prevent it from being changed whilst the
* hardware is reading from the object. That is if the object is currently
* on the scanout it will be set to uncached (or equivalent display
* cache coherency) and all non-MOCS GPU access will also be uncached so
* that all direct access to the scanout remains coherent.
*/
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
enum i915_cache_level cache_level)
{
int ret;
if (obj->cache_level == cache_level)
return 0;
ret = i915_gem_object_wait(obj,
I915_WAIT_INTERRUPTIBLE |
I915_WAIT_ALL,
MAX_SCHEDULE_TIMEOUT);
if (ret)
return ret;
/* Always invalidate stale cachelines */
if (obj->cache_level != cache_level) {
i915_gem_object_set_cache_coherency(obj, cache_level);
obj->cache_dirty = true;
}
/* The cache-level will be applied when each vma is rebound. */
return i915_gem_object_unbind(obj,
I915_GEM_OBJECT_UNBIND_ACTIVE |
I915_GEM_OBJECT_UNBIND_BARRIER);
}
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_caching *args = data;
struct drm_i915_gem_object *obj;
int err = 0;
if (IS_DGFX(to_i915(dev)))
return -ENODEV;
rcu_read_lock();
obj = i915_gem_object_lookup_rcu(file, args->handle);
if (!obj) {
err = -ENOENT;
goto out;
}
switch (obj->cache_level) {
case I915_CACHE_LLC:
case I915_CACHE_L3_LLC:
args->caching = I915_CACHING_CACHED;
break;
case I915_CACHE_WT:
args->caching = I915_CACHING_DISPLAY;
break;
default:
args->caching = I915_CACHING_NONE;
break;
}
out:
rcu_read_unlock();
return err;
}
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_private *i915 = to_i915(dev);
struct drm_i915_gem_caching *args = data;
struct drm_i915_gem_object *obj;
enum i915_cache_level level;
int ret = 0;
if (IS_DGFX(i915))
return -ENODEV;
switch (args->caching) {
case I915_CACHING_NONE:
level = I915_CACHE_NONE;
break;
case I915_CACHING_CACHED:
/*
* Due to a HW issue on BXT A stepping, GPU stores via a
* snooped mapping may leave stale data in a corresponding CPU
* cacheline, whereas normally such cachelines would get
* invalidated.
*/
if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
return -ENODEV;
level = I915_CACHE_LLC;
break;
case I915_CACHING_DISPLAY:
level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
break;
default:
return -EINVAL;
}
obj = i915_gem_object_lookup(file, args->handle);
if (!obj)
return -ENOENT;
/*
* The caching mode of proxy object is handled by its generator, and
* not allowed to be changed by userspace.
*/
if (i915_gem_object_is_proxy(obj)) {
/*
* Silently allow cached for userptr; the vulkan driver
* sets all objects to cached
*/
if (!i915_gem_object_is_userptr(obj) ||
args->caching != I915_CACHING_CACHED)
ret = -ENXIO;
goto out;
}
ret = i915_gem_object_lock_interruptible(obj, NULL);
if (ret)
goto out;
ret = i915_gem_object_set_cache_level(obj, level);
i915_gem_object_unlock(obj);
out:
i915_gem_object_put(obj);
return ret;
}
/*
* Prepare buffer for display plane (scanout, cursors, etc). Can be called from
* an uninterruptible phase (modesetting) and allows any flushes to be pipelined
* (for pageflips). We only flush the caches while preparing the buffer for
* display, the callers are responsible for frontbuffer flush.
*/
struct i915_vma *
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
struct i915_gem_ww_ctx *ww,
u32 alignment,
const struct i915_gtt_view *view,
unsigned int flags)
{
struct drm_i915_private *i915 = to_i915(obj->base.dev);
struct i915_vma *vma;
int ret;
/* Frame buffer must be in LMEM */
if (HAS_LMEM(i915) && !i915_gem_object_is_lmem(obj))
return ERR_PTR(-EINVAL);
/*
* The display engine is not coherent with the LLC cache on gen6. As
* a result, we make sure that the pinning that is about to occur is
* done with uncached PTEs. This is lowest common denominator for all
* chipsets.
*
* However for gen6+, we could do better by using the GFDT bit instead
* of uncaching, which would allow us to flush all the LLC-cached data
* with that bit in the PTE to main memory with just one PIPE_CONTROL.
*/
ret = i915_gem_object_set_cache_level(obj,
HAS_WT(i915) ?
I915_CACHE_WT : I915_CACHE_NONE);
if (ret)
return ERR_PTR(ret);
/* VT-d may overfetch before/after the vma, so pad with scratch */
if (intel_scanout_needs_vtd_wa(i915)) {
unsigned int guard = VTD_GUARD;
if (i915_gem_object_is_tiled(obj))
guard = max(guard,
i915_gem_object_get_tile_row_size(obj));
flags |= PIN_OFFSET_GUARD | guard;
}
/*
* As the user may map the buffer once pinned in the display plane
* (e.g. libkms for the bootup splash), we have to ensure that we
* always use map_and_fenceable for all scanout buffers. However,
* it may simply be too big to fit into mappable, in which case
* put it anyway and hope that userspace can cope (but always first
* try to preserve the existing ABI).
*/
vma = ERR_PTR(-ENOSPC);
if ((flags & PIN_MAPPABLE) == 0 &&
(!view || view->type == I915_GTT_VIEW_NORMAL))
vma = i915_gem_object_ggtt_pin_ww(obj, ww, view, 0, alignment,
flags | PIN_MAPPABLE |
PIN_NONBLOCK);
if (IS_ERR(vma) && vma != ERR_PTR(-EDEADLK))
vma = i915_gem_object_ggtt_pin_ww(obj, ww, view, 0,
alignment, flags);
if (IS_ERR(vma))
return vma;
vma->display_alignment = max(vma->display_alignment, alignment);
i915_vma_mark_scanout(vma);
i915_gem_object_flush_if_display_locked(obj);
return vma;
}
/**
* Moves a single object to the CPU read, and possibly write domain.
* @obj: object to act on
* @write: requesting write or read-only access
*
* This function returns when the move is complete, including waiting on
* flushes to occur.
*/
int
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
{
int ret;
assert_object_held(obj);
ret = i915_gem_object_wait(obj,
I915_WAIT_INTERRUPTIBLE |
(write ? I915_WAIT_ALL : 0),
MAX_SCHEDULE_TIMEOUT);
if (ret)
return ret;
flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
/* Flush the CPU cache if it's still invalid. */
if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
obj->read_domains |= I915_GEM_DOMAIN_CPU;
}
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
/* If we're writing through the CPU, then the GPU read domains will
* need to be invalidated at next use.
*/
if (write)
__start_cpu_write(obj);
return 0;
}
/**
* Called when user space prepares to use an object with the CPU, either
* through the mmap ioctl's mapping or a GTT mapping.
* @dev: drm device
* @data: ioctl data blob
* @file: drm file
*/
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_set_domain *args = data;
struct drm_i915_gem_object *obj;
u32 read_domains = args->read_domains;
u32 write_domain = args->write_domain;
int err;
if (IS_DGFX(to_i915(dev)))
return -ENODEV;
/* Only handle setting domains to types used by the CPU. */
if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
return -EINVAL;
/*
* Having something in the write domain implies it's in the read
* domain, and only that read domain. Enforce that in the request.
*/
if (write_domain && read_domains != write_domain)
return -EINVAL;
if (!read_domains)
return 0;
obj = i915_gem_object_lookup(file, args->handle);
if (!obj)
return -ENOENT;
/*
* Try to flush the object off the GPU without holding the lock.
* We will repeat the flush holding the lock in the normal manner
* to catch cases where we are gazumped.
*/
err = i915_gem_object_wait(obj,
I915_WAIT_INTERRUPTIBLE |
I915_WAIT_PRIORITY |
(write_domain ? I915_WAIT_ALL : 0),
MAX_SCHEDULE_TIMEOUT);
if (err)
goto out;
if (i915_gem_object_is_userptr(obj)) {
/*
* Try to grab userptr pages, iris uses set_domain to check
* userptr validity
*/
err = i915_gem_object_userptr_validate(obj);
if (!err)
err = i915_gem_object_wait(obj,
I915_WAIT_INTERRUPTIBLE |
I915_WAIT_PRIORITY |
(write_domain ? I915_WAIT_ALL : 0),
MAX_SCHEDULE_TIMEOUT);
goto out;
}
/*
* Proxy objects do not control access to the backing storage, ergo
* they cannot be used as a means to manipulate the cache domain
* tracking for that backing storage. The proxy object is always
* considered to be outside of any cache domain.
*/
if (i915_gem_object_is_proxy(obj)) {
err = -ENXIO;
goto out;
}
err = i915_gem_object_lock_interruptible(obj, NULL);
if (err)
goto out;
/*
* Flush and acquire obj->pages so that we are coherent through
* direct access in memory with previous cached writes through
* shmemfs and that our cache domain tracking remains valid.
* For example, if the obj->filp was moved to swap without us
* being notified and releasing the pages, we would mistakenly
* continue to assume that the obj remained out of the CPU cached
* domain.
*/
err = i915_gem_object_pin_pages(obj);
if (err)
goto out_unlock;
/*
* Already in the desired write domain? Nothing for us to do!
*
* We apply a little bit of cunning here to catch a broader set of
* no-ops. If obj->write_domain is set, we must be in the same
* obj->read_domains, and only that domain. Therefore, if that
* obj->write_domain matches the request read_domains, we are
* already in the same read/write domain and can skip the operation,
* without having to further check the requested write_domain.
*/
if (READ_ONCE(obj->write_domain) == read_domains)
goto out_unpin;
if (read_domains & I915_GEM_DOMAIN_WC)
err = i915_gem_object_set_to_wc_domain(obj, write_domain);
else if (read_domains & I915_GEM_DOMAIN_GTT)
err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
else
err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
out_unpin:
i915_gem_object_unpin_pages(obj);
out_unlock:
i915_gem_object_unlock(obj);
if (!err && write_domain)
i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
out:
i915_gem_object_put(obj);
return err;
}
/*
* Pins the specified object's pages and synchronizes the object with
* GPU accesses. Sets needs_clflush to non-zero if the caller should
* flush the object from the CPU cache.
*/
int i915_gem_object_prepare_read(struct drm_i915_gem_object *obj,
unsigned int *needs_clflush)
{
int ret;
*needs_clflush = 0;
if (!i915_gem_object_has_struct_page(obj))
return -ENODEV;
assert_object_held(obj);
ret = i915_gem_object_wait(obj,
I915_WAIT_INTERRUPTIBLE,
MAX_SCHEDULE_TIMEOUT);
if (ret)
return ret;
ret = i915_gem_object_pin_pages(obj);
if (ret)
return ret;
if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
!static_cpu_has(X86_FEATURE_CLFLUSH)) {
ret = i915_gem_object_set_to_cpu_domain(obj, false);
if (ret)
goto err_unpin;
else
goto out;
}
flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
/* If we're not in the cpu read domain, set ourself into the gtt
* read domain and manually flush cachelines (if required). This
* optimizes for the case when the gpu will dirty the data
* anyway again before the next pread happens.
*/
if (!obj->cache_dirty &&
!(obj->read_domains & I915_GEM_DOMAIN_CPU))
*needs_clflush = CLFLUSH_BEFORE;
out:
/* return with the pages pinned */
return 0;
err_unpin:
i915_gem_object_unpin_pages(obj);
return ret;
}
int i915_gem_object_prepare_write(struct drm_i915_gem_object *obj,
unsigned int *needs_clflush)
{
int ret;
*needs_clflush = 0;
if (!i915_gem_object_has_struct_page(obj))
return -ENODEV;
assert_object_held(obj);
ret = i915_gem_object_wait(obj,
I915_WAIT_INTERRUPTIBLE |
I915_WAIT_ALL,
MAX_SCHEDULE_TIMEOUT);
if (ret)
return ret;
ret = i915_gem_object_pin_pages(obj);
if (ret)
return ret;
if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
!static_cpu_has(X86_FEATURE_CLFLUSH)) {
ret = i915_gem_object_set_to_cpu_domain(obj, true);
if (ret)
goto err_unpin;
else
goto out;
}
flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
/* If we're not in the cpu write domain, set ourself into the
* gtt write domain and manually flush cachelines (as required).
* This optimizes for the case when the gpu will use the data
* right away and we therefore have to clflush anyway.
*/
if (!obj->cache_dirty) {
*needs_clflush |= CLFLUSH_AFTER;
/*
* Same trick applies to invalidate partially written
* cachelines read before writing.
*/
if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
*needs_clflush |= CLFLUSH_BEFORE;
}
out:
i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
obj->mm.dirty = true;
/* return with the pages pinned */
return 0;
err_unpin:
i915_gem_object_unpin_pages(obj);
return ret;
}