241 lines
6.5 KiB
C
241 lines
6.5 KiB
C
|
// SPDX-License-Identifier: MIT
|
||
|
/*
|
||
|
* Copyright © 2020 Intel Corporation
|
||
|
*/
|
||
|
|
||
|
#include "i915_drv.h"
|
||
|
#include "i915_reg.h"
|
||
|
#include "intel_gt.h"
|
||
|
#include "intel_gt_clock_utils.h"
|
||
|
#include "intel_gt_print.h"
|
||
|
#include "intel_gt_regs.h"
|
||
|
|
||
|
static u32 read_reference_ts_freq(struct intel_uncore *uncore)
|
||
|
{
|
||
|
u32 ts_override = intel_uncore_read(uncore, GEN9_TIMESTAMP_OVERRIDE);
|
||
|
u32 base_freq, frac_freq;
|
||
|
|
||
|
base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
|
||
|
GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
|
||
|
base_freq *= 1000000;
|
||
|
|
||
|
frac_freq = ((ts_override &
|
||
|
GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
|
||
|
GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
|
||
|
frac_freq = 1000000 / (frac_freq + 1);
|
||
|
|
||
|
return base_freq + frac_freq;
|
||
|
}
|
||
|
|
||
|
static u32 gen11_get_crystal_clock_freq(struct intel_uncore *uncore,
|
||
|
u32 rpm_config_reg)
|
||
|
{
|
||
|
u32 f19_2_mhz = 19200000;
|
||
|
u32 f24_mhz = 24000000;
|
||
|
u32 f25_mhz = 25000000;
|
||
|
u32 f38_4_mhz = 38400000;
|
||
|
u32 crystal_clock =
|
||
|
(rpm_config_reg & GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
|
||
|
GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
|
||
|
|
||
|
switch (crystal_clock) {
|
||
|
case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
|
||
|
return f24_mhz;
|
||
|
case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
|
||
|
return f19_2_mhz;
|
||
|
case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
|
||
|
return f38_4_mhz;
|
||
|
case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
|
||
|
return f25_mhz;
|
||
|
default:
|
||
|
MISSING_CASE(crystal_clock);
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static u32 gen11_read_clock_frequency(struct intel_uncore *uncore)
|
||
|
{
|
||
|
u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
|
||
|
u32 freq = 0;
|
||
|
|
||
|
/*
|
||
|
* Note that on gen11+, the clock frequency may be reconfigured.
|
||
|
* We do not, and we assume nobody else does.
|
||
|
*
|
||
|
* First figure out the reference frequency. There are 2 ways
|
||
|
* we can compute the frequency, either through the
|
||
|
* TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
|
||
|
* tells us which one we should use.
|
||
|
*/
|
||
|
if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
|
||
|
freq = read_reference_ts_freq(uncore);
|
||
|
} else {
|
||
|
u32 c0 = intel_uncore_read(uncore, RPM_CONFIG0);
|
||
|
|
||
|
freq = gen11_get_crystal_clock_freq(uncore, c0);
|
||
|
|
||
|
/*
|
||
|
* Now figure out how the command stream's timestamp
|
||
|
* register increments from this frequency (it might
|
||
|
* increment only every few clock cycle).
|
||
|
*/
|
||
|
freq >>= 3 - ((c0 & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
|
||
|
GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
|
||
|
}
|
||
|
|
||
|
return freq;
|
||
|
}
|
||
|
|
||
|
static u32 gen9_read_clock_frequency(struct intel_uncore *uncore)
|
||
|
{
|
||
|
u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
|
||
|
u32 freq = 0;
|
||
|
|
||
|
if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
|
||
|
freq = read_reference_ts_freq(uncore);
|
||
|
} else {
|
||
|
freq = IS_GEN9_LP(uncore->i915) ? 19200000 : 24000000;
|
||
|
|
||
|
/*
|
||
|
* Now figure out how the command stream's timestamp
|
||
|
* register increments from this frequency (it might
|
||
|
* increment only every few clock cycle).
|
||
|
*/
|
||
|
freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
|
||
|
CTC_SHIFT_PARAMETER_SHIFT);
|
||
|
}
|
||
|
|
||
|
return freq;
|
||
|
}
|
||
|
|
||
|
static u32 gen6_read_clock_frequency(struct intel_uncore *uncore)
|
||
|
{
|
||
|
/*
|
||
|
* PRMs say:
|
||
|
*
|
||
|
* "The PCU TSC counts 10ns increments; this timestamp
|
||
|
* reflects bits 38:3 of the TSC (i.e. 80ns granularity,
|
||
|
* rolling over every 1.5 hours).
|
||
|
*/
|
||
|
return 12500000;
|
||
|
}
|
||
|
|
||
|
static u32 gen5_read_clock_frequency(struct intel_uncore *uncore)
|
||
|
{
|
||
|
/*
|
||
|
* 63:32 increments every 1000 ns
|
||
|
* 31:0 mbz
|
||
|
*/
|
||
|
return 1000000000 / 1000;
|
||
|
}
|
||
|
|
||
|
static u32 g4x_read_clock_frequency(struct intel_uncore *uncore)
|
||
|
{
|
||
|
/*
|
||
|
* 63:20 increments every 1/4 ns
|
||
|
* 19:0 mbz
|
||
|
*
|
||
|
* -> 63:32 increments every 1024 ns
|
||
|
*/
|
||
|
return 1000000000 / 1024;
|
||
|
}
|
||
|
|
||
|
static u32 gen4_read_clock_frequency(struct intel_uncore *uncore)
|
||
|
{
|
||
|
/*
|
||
|
* PRMs say:
|
||
|
*
|
||
|
* "The value in this register increments once every 16
|
||
|
* hclks." (through the “Clocking Configuration”
|
||
|
* (“CLKCFG”) MCHBAR register)
|
||
|
*
|
||
|
* Testing on actual hardware has shown there is no /16.
|
||
|
*/
|
||
|
return RUNTIME_INFO(uncore->i915)->rawclk_freq * 1000;
|
||
|
}
|
||
|
|
||
|
static u32 read_clock_frequency(struct intel_uncore *uncore)
|
||
|
{
|
||
|
if (GRAPHICS_VER(uncore->i915) >= 11)
|
||
|
return gen11_read_clock_frequency(uncore);
|
||
|
else if (GRAPHICS_VER(uncore->i915) >= 9)
|
||
|
return gen9_read_clock_frequency(uncore);
|
||
|
else if (GRAPHICS_VER(uncore->i915) >= 6)
|
||
|
return gen6_read_clock_frequency(uncore);
|
||
|
else if (GRAPHICS_VER(uncore->i915) == 5)
|
||
|
return gen5_read_clock_frequency(uncore);
|
||
|
else if (IS_G4X(uncore->i915))
|
||
|
return g4x_read_clock_frequency(uncore);
|
||
|
else if (GRAPHICS_VER(uncore->i915) == 4)
|
||
|
return gen4_read_clock_frequency(uncore);
|
||
|
else
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void intel_gt_init_clock_frequency(struct intel_gt *gt)
|
||
|
{
|
||
|
gt->clock_frequency = read_clock_frequency(gt->uncore);
|
||
|
|
||
|
/* Icelake appears to use another fixed frequency for CTX_TIMESTAMP */
|
||
|
if (GRAPHICS_VER(gt->i915) == 11)
|
||
|
gt->clock_period_ns = NSEC_PER_SEC / 13750000;
|
||
|
else if (gt->clock_frequency)
|
||
|
gt->clock_period_ns = intel_gt_clock_interval_to_ns(gt, 1);
|
||
|
|
||
|
GT_TRACE(gt,
|
||
|
"Using clock frequency: %dkHz, period: %dns, wrap: %lldms\n",
|
||
|
gt->clock_frequency / 1000,
|
||
|
gt->clock_period_ns,
|
||
|
div_u64(mul_u32_u32(gt->clock_period_ns, S32_MAX),
|
||
|
USEC_PER_SEC));
|
||
|
}
|
||
|
|
||
|
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
|
||
|
void intel_gt_check_clock_frequency(const struct intel_gt *gt)
|
||
|
{
|
||
|
if (gt->clock_frequency != read_clock_frequency(gt->uncore)) {
|
||
|
gt_err(gt, "GT clock frequency changed, was %uHz, now %uHz!\n",
|
||
|
gt->clock_frequency,
|
||
|
read_clock_frequency(gt->uncore));
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static u64 div_u64_roundup(u64 nom, u32 den)
|
||
|
{
|
||
|
return div_u64(nom + den - 1, den);
|
||
|
}
|
||
|
|
||
|
u64 intel_gt_clock_interval_to_ns(const struct intel_gt *gt, u64 count)
|
||
|
{
|
||
|
return div_u64_roundup(count * NSEC_PER_SEC, gt->clock_frequency);
|
||
|
}
|
||
|
|
||
|
u64 intel_gt_pm_interval_to_ns(const struct intel_gt *gt, u64 count)
|
||
|
{
|
||
|
return intel_gt_clock_interval_to_ns(gt, 16 * count);
|
||
|
}
|
||
|
|
||
|
u64 intel_gt_ns_to_clock_interval(const struct intel_gt *gt, u64 ns)
|
||
|
{
|
||
|
return div_u64_roundup(gt->clock_frequency * ns, NSEC_PER_SEC);
|
||
|
}
|
||
|
|
||
|
u64 intel_gt_ns_to_pm_interval(const struct intel_gt *gt, u64 ns)
|
||
|
{
|
||
|
u64 val;
|
||
|
|
||
|
/*
|
||
|
* Make these a multiple of magic 25 to avoid SNB (eg. Dell XPS
|
||
|
* 8300) freezing up around GPU hangs. Looks as if even
|
||
|
* scheduling/timer interrupts start misbehaving if the RPS
|
||
|
* EI/thresholds are "bad", leading to a very sluggish or even
|
||
|
* frozen machine.
|
||
|
*/
|
||
|
val = div_u64_roundup(intel_gt_ns_to_clock_interval(gt, ns), 16);
|
||
|
if (GRAPHICS_VER(gt->i915) == 6)
|
||
|
val = div_u64_roundup(val, 25) * 25;
|
||
|
|
||
|
return val;
|
||
|
}
|