linux-zen-server/drivers/gpu/drm/i915/selftests/intel_memory_region.c

1412 lines
31 KiB
C
Raw Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: MIT
/*
* Copyright © 2019 Intel Corporation
*/
#include <linux/prime_numbers.h>
#include <linux/sort.h>
#include <drm/drm_buddy.h>
#include "../i915_selftest.h"
#include "mock_drm.h"
#include "mock_gem_device.h"
#include "mock_region.h"
#include "gem/i915_gem_context.h"
#include "gem/i915_gem_lmem.h"
#include "gem/i915_gem_region.h"
#include "gem/i915_gem_ttm.h"
#include "gem/selftests/igt_gem_utils.h"
#include "gem/selftests/mock_context.h"
#include "gt/intel_engine_pm.h"
#include "gt/intel_engine_user.h"
#include "gt/intel_gt.h"
#include "gt/intel_migrate.h"
#include "i915_memcpy.h"
#include "i915_ttm_buddy_manager.h"
#include "selftests/igt_flush_test.h"
#include "selftests/i915_random.h"
static void close_objects(struct intel_memory_region *mem,
struct list_head *objects)
{
struct drm_i915_private *i915 = mem->i915;
struct drm_i915_gem_object *obj, *on;
list_for_each_entry_safe(obj, on, objects, st_link) {
i915_gem_object_lock(obj, NULL);
if (i915_gem_object_has_pinned_pages(obj))
i915_gem_object_unpin_pages(obj);
/* No polluting the memory region between tests */
__i915_gem_object_put_pages(obj);
i915_gem_object_unlock(obj);
list_del(&obj->st_link);
i915_gem_object_put(obj);
}
cond_resched();
i915_gem_drain_freed_objects(i915);
}
static int igt_mock_fill(void *arg)
{
struct intel_memory_region *mem = arg;
resource_size_t total = resource_size(&mem->region);
resource_size_t page_size;
resource_size_t rem;
unsigned long max_pages;
unsigned long page_num;
LIST_HEAD(objects);
int err = 0;
page_size = PAGE_SIZE;
max_pages = div64_u64(total, page_size);
rem = total;
for_each_prime_number_from(page_num, 1, max_pages) {
resource_size_t size = page_num * page_size;
struct drm_i915_gem_object *obj;
obj = i915_gem_object_create_region(mem, size, 0, 0);
if (IS_ERR(obj)) {
err = PTR_ERR(obj);
break;
}
err = i915_gem_object_pin_pages_unlocked(obj);
if (err) {
i915_gem_object_put(obj);
break;
}
list_add(&obj->st_link, &objects);
rem -= size;
}
if (err == -ENOMEM)
err = 0;
if (err == -ENXIO) {
if (page_num * page_size <= rem) {
pr_err("%s failed, space still left in region\n",
__func__);
err = -EINVAL;
} else {
err = 0;
}
}
close_objects(mem, &objects);
return err;
}
static struct drm_i915_gem_object *
igt_object_create(struct intel_memory_region *mem,
struct list_head *objects,
u64 size,
unsigned int flags)
{
struct drm_i915_gem_object *obj;
int err;
obj = i915_gem_object_create_region(mem, size, 0, flags);
if (IS_ERR(obj))
return obj;
err = i915_gem_object_pin_pages_unlocked(obj);
if (err)
goto put;
list_add(&obj->st_link, objects);
return obj;
put:
i915_gem_object_put(obj);
return ERR_PTR(err);
}
static void igt_object_release(struct drm_i915_gem_object *obj)
{
i915_gem_object_lock(obj, NULL);
i915_gem_object_unpin_pages(obj);
__i915_gem_object_put_pages(obj);
i915_gem_object_unlock(obj);
list_del(&obj->st_link);
i915_gem_object_put(obj);
}
static bool is_contiguous(struct drm_i915_gem_object *obj)
{
struct scatterlist *sg;
dma_addr_t addr = -1;
for (sg = obj->mm.pages->sgl; sg; sg = sg_next(sg)) {
if (addr != -1 && sg_dma_address(sg) != addr)
return false;
addr = sg_dma_address(sg) + sg_dma_len(sg);
}
return true;
}
static int igt_mock_reserve(void *arg)
{
struct intel_memory_region *mem = arg;
struct drm_i915_private *i915 = mem->i915;
resource_size_t avail = resource_size(&mem->region);
struct drm_i915_gem_object *obj;
const u32 chunk_size = SZ_32M;
u32 i, offset, count, *order;
u64 allocated, cur_avail;
I915_RND_STATE(prng);
LIST_HEAD(objects);
int err = 0;
count = avail / chunk_size;
order = i915_random_order(count, &prng);
if (!order)
return 0;
mem = mock_region_create(i915, 0, SZ_2G, I915_GTT_PAGE_SIZE_4K, 0, 0);
if (IS_ERR(mem)) {
pr_err("failed to create memory region\n");
err = PTR_ERR(mem);
goto out_free_order;
}
/* Reserve a bunch of ranges within the region */
for (i = 0; i < count; ++i) {
u64 start = order[i] * chunk_size;
u64 size = i915_prandom_u32_max_state(chunk_size, &prng);
/* Allow for some really big holes */
if (!size)
continue;
size = round_up(size, PAGE_SIZE);
offset = igt_random_offset(&prng, 0, chunk_size, size,
PAGE_SIZE);
err = intel_memory_region_reserve(mem, start + offset, size);
if (err) {
pr_err("%s failed to reserve range", __func__);
goto out_close;
}
/* XXX: maybe sanity check the block range here? */
avail -= size;
}
/* Try to see if we can allocate from the remaining space */
allocated = 0;
cur_avail = avail;
do {
u32 size = i915_prandom_u32_max_state(cur_avail, &prng);
size = max_t(u32, round_up(size, PAGE_SIZE), PAGE_SIZE);
obj = igt_object_create(mem, &objects, size, 0);
if (IS_ERR(obj)) {
if (PTR_ERR(obj) == -ENXIO)
break;
err = PTR_ERR(obj);
goto out_close;
}
cur_avail -= size;
allocated += size;
} while (1);
if (allocated != avail) {
pr_err("%s mismatch between allocation and free space", __func__);
err = -EINVAL;
}
out_close:
close_objects(mem, &objects);
intel_memory_region_destroy(mem);
out_free_order:
kfree(order);
return err;
}
static int igt_mock_contiguous(void *arg)
{
struct intel_memory_region *mem = arg;
struct drm_i915_gem_object *obj;
unsigned long n_objects;
LIST_HEAD(objects);
LIST_HEAD(holes);
I915_RND_STATE(prng);
resource_size_t total;
resource_size_t min;
u64 target;
int err = 0;
total = resource_size(&mem->region);
/* Min size */
obj = igt_object_create(mem, &objects, PAGE_SIZE,
I915_BO_ALLOC_CONTIGUOUS);
if (IS_ERR(obj))
return PTR_ERR(obj);
if (!is_contiguous(obj)) {
pr_err("%s min object spans disjoint sg entries\n", __func__);
err = -EINVAL;
goto err_close_objects;
}
igt_object_release(obj);
/* Max size */
obj = igt_object_create(mem, &objects, total, I915_BO_ALLOC_CONTIGUOUS);
if (IS_ERR(obj))
return PTR_ERR(obj);
if (!is_contiguous(obj)) {
pr_err("%s max object spans disjoint sg entries\n", __func__);
err = -EINVAL;
goto err_close_objects;
}
igt_object_release(obj);
/* Internal fragmentation should not bleed into the object size */
target = i915_prandom_u64_state(&prng);
div64_u64_rem(target, total, &target);
target = round_up(target, PAGE_SIZE);
target = max_t(u64, PAGE_SIZE, target);
obj = igt_object_create(mem, &objects, target,
I915_BO_ALLOC_CONTIGUOUS);
if (IS_ERR(obj))
return PTR_ERR(obj);
if (obj->base.size != target) {
pr_err("%s obj->base.size(%zx) != target(%llx)\n", __func__,
obj->base.size, target);
err = -EINVAL;
goto err_close_objects;
}
if (!is_contiguous(obj)) {
pr_err("%s object spans disjoint sg entries\n", __func__);
err = -EINVAL;
goto err_close_objects;
}
igt_object_release(obj);
/*
* Try to fragment the address space, such that half of it is free, but
* the max contiguous block size is SZ_64K.
*/
target = SZ_64K;
n_objects = div64_u64(total, target);
while (n_objects--) {
struct list_head *list;
if (n_objects % 2)
list = &holes;
else
list = &objects;
obj = igt_object_create(mem, list, target,
I915_BO_ALLOC_CONTIGUOUS);
if (IS_ERR(obj)) {
err = PTR_ERR(obj);
goto err_close_objects;
}
}
close_objects(mem, &holes);
min = target;
target = total >> 1;
/* Make sure we can still allocate all the fragmented space */
obj = igt_object_create(mem, &objects, target, 0);
if (IS_ERR(obj)) {
err = PTR_ERR(obj);
goto err_close_objects;
}
igt_object_release(obj);
/*
* Even though we have enough free space, we don't have a big enough
* contiguous block. Make sure that holds true.
*/
do {
bool should_fail = target > min;
obj = igt_object_create(mem, &objects, target,
I915_BO_ALLOC_CONTIGUOUS);
if (should_fail != IS_ERR(obj)) {
pr_err("%s target allocation(%llx) mismatch\n",
__func__, target);
err = -EINVAL;
goto err_close_objects;
}
target >>= 1;
} while (target >= PAGE_SIZE);
err_close_objects:
list_splice_tail(&holes, &objects);
close_objects(mem, &objects);
return err;
}
static int igt_mock_splintered_region(void *arg)
{
struct intel_memory_region *mem = arg;
struct drm_i915_private *i915 = mem->i915;
struct i915_ttm_buddy_resource *res;
struct drm_i915_gem_object *obj;
struct drm_buddy *mm;
unsigned int expected_order;
LIST_HEAD(objects);
u64 size;
int err = 0;
/*
* Sanity check we can still allocate everything even if the
* mm.max_order != mm.size. i.e our starting address space size is not a
* power-of-two.
*/
size = (SZ_4G - 1) & PAGE_MASK;
mem = mock_region_create(i915, 0, size, PAGE_SIZE, 0, 0);
if (IS_ERR(mem))
return PTR_ERR(mem);
obj = igt_object_create(mem, &objects, size, 0);
if (IS_ERR(obj)) {
err = PTR_ERR(obj);
goto out_close;
}
res = to_ttm_buddy_resource(obj->mm.res);
mm = res->mm;
if (mm->size != size) {
pr_err("%s size mismatch(%llu != %llu)\n",
__func__, mm->size, size);
err = -EINVAL;
goto out_put;
}
expected_order = get_order(rounddown_pow_of_two(size));
if (mm->max_order != expected_order) {
pr_err("%s order mismatch(%u != %u)\n",
__func__, mm->max_order, expected_order);
err = -EINVAL;
goto out_put;
}
close_objects(mem, &objects);
/*
* While we should be able allocate everything without any flag
* restrictions, if we consider I915_BO_ALLOC_CONTIGUOUS then we are
* actually limited to the largest power-of-two for the region size i.e
* max_order, due to the inner workings of the buddy allocator. So make
* sure that does indeed hold true.
*/
obj = igt_object_create(mem, &objects, size, I915_BO_ALLOC_CONTIGUOUS);
if (!IS_ERR(obj)) {
pr_err("%s too large contiguous allocation was not rejected\n",
__func__);
err = -EINVAL;
goto out_close;
}
obj = igt_object_create(mem, &objects, rounddown_pow_of_two(size),
I915_BO_ALLOC_CONTIGUOUS);
if (IS_ERR(obj)) {
pr_err("%s largest possible contiguous allocation failed\n",
__func__);
err = PTR_ERR(obj);
goto out_close;
}
out_close:
close_objects(mem, &objects);
out_put:
intel_memory_region_destroy(mem);
return err;
}
#ifndef SZ_8G
#define SZ_8G BIT_ULL(33)
#endif
static int igt_mock_max_segment(void *arg)
{
struct intel_memory_region *mem = arg;
struct drm_i915_private *i915 = mem->i915;
struct i915_ttm_buddy_resource *res;
struct drm_i915_gem_object *obj;
struct drm_buddy_block *block;
struct drm_buddy *mm;
struct list_head *blocks;
struct scatterlist *sg;
I915_RND_STATE(prng);
LIST_HEAD(objects);
unsigned int max_segment;
unsigned int ps;
u64 size;
int err = 0;
/*
* While we may create very large contiguous blocks, we may need
* to break those down for consumption elsewhere. In particular,
* dma-mapping with scatterlist elements have an implicit limit of
* UINT_MAX on each element.
*/
size = SZ_8G;
ps = PAGE_SIZE;
if (i915_prandom_u64_state(&prng) & 1)
ps = SZ_64K; /* For something like DG2 */
max_segment = round_down(UINT_MAX, ps);
mem = mock_region_create(i915, 0, size, ps, 0, 0);
if (IS_ERR(mem))
return PTR_ERR(mem);
obj = igt_object_create(mem, &objects, size, 0);
if (IS_ERR(obj)) {
err = PTR_ERR(obj);
goto out_put;
}
res = to_ttm_buddy_resource(obj->mm.res);
blocks = &res->blocks;
mm = res->mm;
size = 0;
list_for_each_entry(block, blocks, link) {
if (drm_buddy_block_size(mm, block) > size)
size = drm_buddy_block_size(mm, block);
}
if (size < max_segment) {
pr_err("%s: Failed to create a huge contiguous block [> %u], largest block %lld\n",
__func__, max_segment, size);
err = -EINVAL;
goto out_close;
}
for (sg = obj->mm.pages->sgl; sg; sg = sg_next(sg)) {
dma_addr_t daddr = sg_dma_address(sg);
if (sg->length > max_segment) {
pr_err("%s: Created an oversized scatterlist entry, %u > %u\n",
__func__, sg->length, max_segment);
err = -EINVAL;
goto out_close;
}
if (!IS_ALIGNED(daddr, ps)) {
pr_err("%s: Created an unaligned scatterlist entry, addr=%pa, ps=%u\n",
__func__, &daddr, ps);
err = -EINVAL;
goto out_close;
}
}
out_close:
close_objects(mem, &objects);
out_put:
intel_memory_region_destroy(mem);
return err;
}
static u64 igt_object_mappable_total(struct drm_i915_gem_object *obj)
{
struct intel_memory_region *mr = obj->mm.region;
struct i915_ttm_buddy_resource *bman_res =
to_ttm_buddy_resource(obj->mm.res);
struct drm_buddy *mm = bman_res->mm;
struct drm_buddy_block *block;
u64 total;
total = 0;
list_for_each_entry(block, &bman_res->blocks, link) {
u64 start = drm_buddy_block_offset(block);
u64 end = start + drm_buddy_block_size(mm, block);
if (start < mr->io_size)
total += min_t(u64, end, mr->io_size) - start;
}
return total;
}
static int igt_mock_io_size(void *arg)
{
struct intel_memory_region *mr = arg;
struct drm_i915_private *i915 = mr->i915;
struct drm_i915_gem_object *obj;
u64 mappable_theft_total;
u64 io_size;
u64 total;
u64 ps;
u64 rem;
u64 size;
I915_RND_STATE(prng);
LIST_HEAD(objects);
int err = 0;
ps = SZ_4K;
if (i915_prandom_u64_state(&prng) & 1)
ps = SZ_64K; /* For something like DG2 */
div64_u64_rem(i915_prandom_u64_state(&prng), SZ_8G, &total);
total = round_down(total, ps);
total = max_t(u64, total, SZ_1G);
div64_u64_rem(i915_prandom_u64_state(&prng), total - ps, &io_size);
io_size = round_down(io_size, ps);
io_size = max_t(u64, io_size, SZ_256M); /* 256M seems to be the common lower limit */
pr_info("%s with ps=%llx, io_size=%llx, total=%llx\n",
__func__, ps, io_size, total);
mr = mock_region_create(i915, 0, total, ps, 0, io_size);
if (IS_ERR(mr)) {
err = PTR_ERR(mr);
goto out_err;
}
mappable_theft_total = 0;
rem = total - io_size;
do {
div64_u64_rem(i915_prandom_u64_state(&prng), rem, &size);
size = round_down(size, ps);
size = max(size, ps);
obj = igt_object_create(mr, &objects, size,
I915_BO_ALLOC_GPU_ONLY);
if (IS_ERR(obj)) {
pr_err("%s TOPDOWN failed with rem=%llx, size=%llx\n",
__func__, rem, size);
err = PTR_ERR(obj);
goto out_close;
}
mappable_theft_total += igt_object_mappable_total(obj);
rem -= size;
} while (rem);
pr_info("%s mappable theft=(%lluMiB/%lluMiB), total=%lluMiB\n",
__func__,
(u64)mappable_theft_total >> 20,
(u64)io_size >> 20,
(u64)total >> 20);
/*
* Even if we allocate all of the non-mappable portion, we should still
* be able to dip into the mappable portion.
*/
obj = igt_object_create(mr, &objects, io_size,
I915_BO_ALLOC_GPU_ONLY);
if (IS_ERR(obj)) {
pr_err("%s allocation unexpectedly failed\n", __func__);
err = PTR_ERR(obj);
goto out_close;
}
close_objects(mr, &objects);
rem = io_size;
do {
div64_u64_rem(i915_prandom_u64_state(&prng), rem, &size);
size = round_down(size, ps);
size = max(size, ps);
obj = igt_object_create(mr, &objects, size, 0);
if (IS_ERR(obj)) {
pr_err("%s MAPPABLE failed with rem=%llx, size=%llx\n",
__func__, rem, size);
err = PTR_ERR(obj);
goto out_close;
}
if (igt_object_mappable_total(obj) != size) {
pr_err("%s allocation is not mappable(size=%llx)\n",
__func__, size);
err = -EINVAL;
goto out_close;
}
rem -= size;
} while (rem);
/*
* We assume CPU access is required by default, which should result in a
* failure here, even though the non-mappable portion is free.
*/
obj = igt_object_create(mr, &objects, ps, 0);
if (!IS_ERR(obj)) {
pr_err("%s allocation unexpectedly succeeded\n", __func__);
err = -EINVAL;
goto out_close;
}
out_close:
close_objects(mr, &objects);
intel_memory_region_destroy(mr);
out_err:
if (err == -ENOMEM)
err = 0;
return err;
}
static int igt_gpu_write_dw(struct intel_context *ce,
struct i915_vma *vma,
u32 dword,
u32 value)
{
return igt_gpu_fill_dw(ce, vma, dword * sizeof(u32),
vma->size >> PAGE_SHIFT, value);
}
static int igt_cpu_check(struct drm_i915_gem_object *obj, u32 dword, u32 val)
{
unsigned long n = obj->base.size >> PAGE_SHIFT;
u32 *ptr;
int err;
err = i915_gem_object_wait(obj, 0, MAX_SCHEDULE_TIMEOUT);
if (err)
return err;
ptr = i915_gem_object_pin_map(obj, I915_MAP_WC);
if (IS_ERR(ptr))
return PTR_ERR(ptr);
ptr += dword;
while (n--) {
if (*ptr != val) {
pr_err("base[%u]=%08x, val=%08x\n",
dword, *ptr, val);
err = -EINVAL;
break;
}
ptr += PAGE_SIZE / sizeof(*ptr);
}
i915_gem_object_unpin_map(obj);
return err;
}
static int igt_gpu_write(struct i915_gem_context *ctx,
struct drm_i915_gem_object *obj)
{
struct i915_gem_engines *engines;
struct i915_gem_engines_iter it;
struct i915_address_space *vm;
struct intel_context *ce;
I915_RND_STATE(prng);
IGT_TIMEOUT(end_time);
unsigned int count;
struct i915_vma *vma;
int *order;
int i, n;
int err = 0;
GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
n = 0;
count = 0;
for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
count++;
if (!intel_engine_can_store_dword(ce->engine))
continue;
vm = ce->vm;
n++;
}
i915_gem_context_unlock_engines(ctx);
if (!n)
return 0;
order = i915_random_order(count * count, &prng);
if (!order)
return -ENOMEM;
vma = i915_vma_instance(obj, vm, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto out_free;
}
err = i915_vma_pin(vma, 0, 0, PIN_USER);
if (err)
goto out_free;
i = 0;
engines = i915_gem_context_lock_engines(ctx);
do {
u32 rng = prandom_u32_state(&prng);
u32 dword = offset_in_page(rng) / 4;
ce = engines->engines[order[i] % engines->num_engines];
i = (i + 1) % (count * count);
if (!ce || !intel_engine_can_store_dword(ce->engine))
continue;
err = igt_gpu_write_dw(ce, vma, dword, rng);
if (err)
break;
i915_gem_object_lock(obj, NULL);
err = igt_cpu_check(obj, dword, rng);
i915_gem_object_unlock(obj);
if (err)
break;
} while (!__igt_timeout(end_time, NULL));
i915_gem_context_unlock_engines(ctx);
out_free:
kfree(order);
if (err == -ENOMEM)
err = 0;
return err;
}
static int igt_lmem_create(void *arg)
{
struct drm_i915_private *i915 = arg;
struct drm_i915_gem_object *obj;
int err = 0;
obj = i915_gem_object_create_lmem(i915, PAGE_SIZE, 0);
if (IS_ERR(obj))
return PTR_ERR(obj);
err = i915_gem_object_pin_pages_unlocked(obj);
if (err)
goto out_put;
i915_gem_object_unpin_pages(obj);
out_put:
i915_gem_object_put(obj);
return err;
}
static int igt_lmem_create_with_ps(void *arg)
{
struct drm_i915_private *i915 = arg;
int err = 0;
u32 ps;
for (ps = PAGE_SIZE; ps <= SZ_1G; ps <<= 1) {
struct drm_i915_gem_object *obj;
dma_addr_t daddr;
obj = __i915_gem_object_create_lmem_with_ps(i915, ps, ps, 0);
if (IS_ERR(obj)) {
err = PTR_ERR(obj);
if (err == -ENXIO || err == -E2BIG) {
pr_info("%s not enough lmem for ps(%u) err=%d\n",
__func__, ps, err);
err = 0;
}
break;
}
if (obj->base.size != ps) {
pr_err("%s size(%zu) != ps(%u)\n",
__func__, obj->base.size, ps);
err = -EINVAL;
goto out_put;
}
i915_gem_object_lock(obj, NULL);
err = i915_gem_object_pin_pages(obj);
if (err) {
if (err == -ENXIO || err == -E2BIG || err == -ENOMEM) {
pr_info("%s not enough lmem for ps(%u) err=%d\n",
__func__, ps, err);
err = 0;
}
goto out_put;
}
daddr = i915_gem_object_get_dma_address(obj, 0);
if (!IS_ALIGNED(daddr, ps)) {
pr_err("%s daddr(%pa) not aligned with ps(%u)\n",
__func__, &daddr, ps);
err = -EINVAL;
goto out_unpin;
}
out_unpin:
i915_gem_object_unpin_pages(obj);
__i915_gem_object_put_pages(obj);
out_put:
i915_gem_object_unlock(obj);
i915_gem_object_put(obj);
if (err)
break;
}
return err;
}
static int igt_lmem_create_cleared_cpu(void *arg)
{
struct drm_i915_private *i915 = arg;
I915_RND_STATE(prng);
IGT_TIMEOUT(end_time);
u32 size, i;
int err;
i915_gem_drain_freed_objects(i915);
size = max_t(u32, PAGE_SIZE, i915_prandom_u32_max_state(SZ_32M, &prng));
size = round_up(size, PAGE_SIZE);
i = 0;
do {
struct drm_i915_gem_object *obj;
unsigned int flags;
u32 dword, val;
void *vaddr;
/*
* Alternate between cleared and uncleared allocations, while
* also dirtying the pages each time to check that the pages are
* always cleared if requested, since we should get some overlap
* of the underlying pages, if not all, since we are the only
* user.
*/
flags = I915_BO_ALLOC_CPU_CLEAR;
if (i & 1)
flags = 0;
obj = i915_gem_object_create_lmem(i915, size, flags);
if (IS_ERR(obj))
return PTR_ERR(obj);
i915_gem_object_lock(obj, NULL);
err = i915_gem_object_pin_pages(obj);
if (err)
goto out_put;
dword = i915_prandom_u32_max_state(PAGE_SIZE / sizeof(u32),
&prng);
if (flags & I915_BO_ALLOC_CPU_CLEAR) {
err = igt_cpu_check(obj, dword, 0);
if (err) {
pr_err("%s failed with size=%u, flags=%u\n",
__func__, size, flags);
goto out_unpin;
}
}
vaddr = i915_gem_object_pin_map(obj, I915_MAP_WC);
if (IS_ERR(vaddr)) {
err = PTR_ERR(vaddr);
goto out_unpin;
}
val = prandom_u32_state(&prng);
memset32(vaddr, val, obj->base.size / sizeof(u32));
i915_gem_object_flush_map(obj);
i915_gem_object_unpin_map(obj);
out_unpin:
i915_gem_object_unpin_pages(obj);
__i915_gem_object_put_pages(obj);
out_put:
i915_gem_object_unlock(obj);
i915_gem_object_put(obj);
if (err)
break;
++i;
} while (!__igt_timeout(end_time, NULL));
pr_info("%s completed (%u) iterations\n", __func__, i);
return err;
}
static int igt_lmem_write_gpu(void *arg)
{
struct drm_i915_private *i915 = arg;
struct drm_i915_gem_object *obj;
struct i915_gem_context *ctx;
struct file *file;
I915_RND_STATE(prng);
u32 sz;
int err;
file = mock_file(i915);
if (IS_ERR(file))
return PTR_ERR(file);
ctx = live_context(i915, file);
if (IS_ERR(ctx)) {
err = PTR_ERR(ctx);
goto out_file;
}
sz = round_up(prandom_u32_state(&prng) % SZ_32M, PAGE_SIZE);
obj = i915_gem_object_create_lmem(i915, sz, 0);
if (IS_ERR(obj)) {
err = PTR_ERR(obj);
goto out_file;
}
err = i915_gem_object_pin_pages_unlocked(obj);
if (err)
goto out_put;
err = igt_gpu_write(ctx, obj);
if (err)
pr_err("igt_gpu_write failed(%d)\n", err);
i915_gem_object_unpin_pages(obj);
out_put:
i915_gem_object_put(obj);
out_file:
fput(file);
return err;
}
static struct intel_engine_cs *
random_engine_class(struct drm_i915_private *i915,
unsigned int class,
struct rnd_state *prng)
{
struct intel_engine_cs *engine;
unsigned int count;
count = 0;
for (engine = intel_engine_lookup_user(i915, class, 0);
engine && engine->uabi_class == class;
engine = rb_entry_safe(rb_next(&engine->uabi_node),
typeof(*engine), uabi_node))
count++;
count = i915_prandom_u32_max_state(count, prng);
return intel_engine_lookup_user(i915, class, count);
}
static int igt_lmem_write_cpu(void *arg)
{
struct drm_i915_private *i915 = arg;
struct drm_i915_gem_object *obj;
I915_RND_STATE(prng);
IGT_TIMEOUT(end_time);
u32 bytes[] = {
0, /* rng placeholder */
sizeof(u32),
sizeof(u64),
64, /* cl */
PAGE_SIZE,
PAGE_SIZE - sizeof(u32),
PAGE_SIZE - sizeof(u64),
PAGE_SIZE - 64,
};
struct intel_engine_cs *engine;
struct i915_request *rq;
u32 *vaddr;
u32 sz;
u32 i;
int *order;
int count;
int err;
engine = random_engine_class(i915, I915_ENGINE_CLASS_COPY, &prng);
if (!engine)
return 0;
pr_info("%s: using %s\n", __func__, engine->name);
sz = round_up(prandom_u32_state(&prng) % SZ_32M, PAGE_SIZE);
sz = max_t(u32, 2 * PAGE_SIZE, sz);
obj = i915_gem_object_create_lmem(i915, sz, I915_BO_ALLOC_CONTIGUOUS);
if (IS_ERR(obj))
return PTR_ERR(obj);
vaddr = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC);
if (IS_ERR(vaddr)) {
err = PTR_ERR(vaddr);
goto out_put;
}
i915_gem_object_lock(obj, NULL);
err = dma_resv_reserve_fences(obj->base.resv, 1);
if (err) {
i915_gem_object_unlock(obj);
goto out_put;
}
/* Put the pages into a known state -- from the gpu for added fun */
intel_engine_pm_get(engine);
err = intel_context_migrate_clear(engine->gt->migrate.context, NULL,
obj->mm.pages->sgl, I915_CACHE_NONE,
true, 0xdeadbeaf, &rq);
if (rq) {
dma_resv_add_fence(obj->base.resv, &rq->fence,
DMA_RESV_USAGE_WRITE);
i915_request_put(rq);
}
intel_engine_pm_put(engine);
if (!err)
err = i915_gem_object_set_to_wc_domain(obj, true);
i915_gem_object_unlock(obj);
if (err)
goto out_unpin;
count = ARRAY_SIZE(bytes);
order = i915_random_order(count * count, &prng);
if (!order) {
err = -ENOMEM;
goto out_unpin;
}
/* A random multiple of u32, picked between [64, PAGE_SIZE - 64] */
bytes[0] = igt_random_offset(&prng, 64, PAGE_SIZE - 64, 0, sizeof(u32));
GEM_BUG_ON(!IS_ALIGNED(bytes[0], sizeof(u32)));
i = 0;
do {
u32 offset;
u32 align;
u32 dword;
u32 size;
u32 val;
size = bytes[order[i] % count];
i = (i + 1) % (count * count);
align = bytes[order[i] % count];
i = (i + 1) % (count * count);
align = max_t(u32, sizeof(u32), rounddown_pow_of_two(align));
offset = igt_random_offset(&prng, 0, obj->base.size,
size, align);
val = prandom_u32_state(&prng);
memset32(vaddr + offset / sizeof(u32), val ^ 0xdeadbeaf,
size / sizeof(u32));
/*
* Sample random dw -- don't waste precious time reading every
* single dw.
*/
dword = igt_random_offset(&prng, offset,
offset + size,
sizeof(u32), sizeof(u32));
dword /= sizeof(u32);
if (vaddr[dword] != (val ^ 0xdeadbeaf)) {
pr_err("%s vaddr[%u]=%u, val=%u, size=%u, align=%u, offset=%u\n",
__func__, dword, vaddr[dword], val ^ 0xdeadbeaf,
size, align, offset);
err = -EINVAL;
break;
}
} while (!__igt_timeout(end_time, NULL));
out_unpin:
i915_gem_object_unpin_map(obj);
out_put:
i915_gem_object_put(obj);
return err;
}
static const char *repr_type(u32 type)
{
switch (type) {
case I915_MAP_WB:
return "WB";
case I915_MAP_WC:
return "WC";
}
return "";
}
static struct drm_i915_gem_object *
create_region_for_mapping(struct intel_memory_region *mr, u64 size, u32 type,
void **out_addr)
{
struct drm_i915_gem_object *obj;
void *addr;
obj = i915_gem_object_create_region(mr, size, 0, 0);
if (IS_ERR(obj)) {
if (PTR_ERR(obj) == -ENOSPC) /* Stolen memory */
return ERR_PTR(-ENODEV);
return obj;
}
addr = i915_gem_object_pin_map_unlocked(obj, type);
if (IS_ERR(addr)) {
i915_gem_object_put(obj);
if (PTR_ERR(addr) == -ENXIO)
return ERR_PTR(-ENODEV);
return addr;
}
*out_addr = addr;
return obj;
}
static int wrap_ktime_compare(const void *A, const void *B)
{
const ktime_t *a = A, *b = B;
return ktime_compare(*a, *b);
}
static void igt_memcpy_long(void *dst, const void *src, size_t size)
{
unsigned long *tmp = dst;
const unsigned long *s = src;
size = size / sizeof(unsigned long);
while (size--)
*tmp++ = *s++;
}
static inline void igt_memcpy(void *dst, const void *src, size_t size)
{
memcpy(dst, src, size);
}
static inline void igt_memcpy_from_wc(void *dst, const void *src, size_t size)
{
i915_memcpy_from_wc(dst, src, size);
}
static int _perf_memcpy(struct intel_memory_region *src_mr,
struct intel_memory_region *dst_mr,
u64 size, u32 src_type, u32 dst_type)
{
struct drm_i915_private *i915 = src_mr->i915;
const struct {
const char *name;
void (*copy)(void *dst, const void *src, size_t size);
bool skip;
} tests[] = {
{
"memcpy",
igt_memcpy,
},
{
"memcpy_long",
igt_memcpy_long,
},
{
"memcpy_from_wc",
igt_memcpy_from_wc,
!i915_has_memcpy_from_wc(),
},
};
struct drm_i915_gem_object *src, *dst;
void *src_addr, *dst_addr;
int ret = 0;
int i;
src = create_region_for_mapping(src_mr, size, src_type, &src_addr);
if (IS_ERR(src)) {
ret = PTR_ERR(src);
goto out;
}
dst = create_region_for_mapping(dst_mr, size, dst_type, &dst_addr);
if (IS_ERR(dst)) {
ret = PTR_ERR(dst);
goto out_unpin_src;
}
for (i = 0; i < ARRAY_SIZE(tests); ++i) {
ktime_t t[5];
int pass;
if (tests[i].skip)
continue;
for (pass = 0; pass < ARRAY_SIZE(t); pass++) {
ktime_t t0, t1;
t0 = ktime_get();
tests[i].copy(dst_addr, src_addr, size);
t1 = ktime_get();
t[pass] = ktime_sub(t1, t0);
}
sort(t, ARRAY_SIZE(t), sizeof(*t), wrap_ktime_compare, NULL);
if (t[0] <= 0) {
/* ignore the impossible to protect our sanity */
pr_debug("Skipping %s src(%s, %s) -> dst(%s, %s) %14s %4lluKiB copy, unstable measurement [%lld, %lld]\n",
__func__,
src_mr->name, repr_type(src_type),
dst_mr->name, repr_type(dst_type),
tests[i].name, size >> 10,
t[0], t[4]);
continue;
}
pr_info("%s src(%s, %s) -> dst(%s, %s) %14s %4llu KiB copy: %5lld MiB/s\n",
__func__,
src_mr->name, repr_type(src_type),
dst_mr->name, repr_type(dst_type),
tests[i].name, size >> 10,
div64_u64(mul_u32_u32(4 * size,
1000 * 1000 * 1000),
t[1] + 2 * t[2] + t[3]) >> 20);
cond_resched();
}
i915_gem_object_unpin_map(dst);
i915_gem_object_put(dst);
out_unpin_src:
i915_gem_object_unpin_map(src);
i915_gem_object_put(src);
i915_gem_drain_freed_objects(i915);
out:
if (ret == -ENODEV)
ret = 0;
return ret;
}
static int perf_memcpy(void *arg)
{
struct drm_i915_private *i915 = arg;
static const u32 types[] = {
I915_MAP_WB,
I915_MAP_WC,
};
static const u32 sizes[] = {
SZ_4K,
SZ_64K,
SZ_4M,
};
struct intel_memory_region *src_mr, *dst_mr;
int src_id, dst_id;
int i, j, k;
int ret;
for_each_memory_region(src_mr, i915, src_id) {
for_each_memory_region(dst_mr, i915, dst_id) {
for (i = 0; i < ARRAY_SIZE(sizes); ++i) {
for (j = 0; j < ARRAY_SIZE(types); ++j) {
for (k = 0; k < ARRAY_SIZE(types); ++k) {
ret = _perf_memcpy(src_mr,
dst_mr,
sizes[i],
types[j],
types[k]);
if (ret)
return ret;
}
}
}
}
}
return 0;
}
int intel_memory_region_mock_selftests(void)
{
static const struct i915_subtest tests[] = {
SUBTEST(igt_mock_reserve),
SUBTEST(igt_mock_fill),
SUBTEST(igt_mock_contiguous),
SUBTEST(igt_mock_splintered_region),
SUBTEST(igt_mock_max_segment),
SUBTEST(igt_mock_io_size),
};
struct intel_memory_region *mem;
struct drm_i915_private *i915;
int err;
i915 = mock_gem_device();
if (!i915)
return -ENOMEM;
mem = mock_region_create(i915, 0, SZ_2G, I915_GTT_PAGE_SIZE_4K, 0, 0);
if (IS_ERR(mem)) {
pr_err("failed to create memory region\n");
err = PTR_ERR(mem);
goto out_unref;
}
err = i915_subtests(tests, mem);
intel_memory_region_destroy(mem);
out_unref:
mock_destroy_device(i915);
return err;
}
int intel_memory_region_live_selftests(struct drm_i915_private *i915)
{
static const struct i915_subtest tests[] = {
SUBTEST(igt_lmem_create),
SUBTEST(igt_lmem_create_with_ps),
SUBTEST(igt_lmem_create_cleared_cpu),
SUBTEST(igt_lmem_write_cpu),
SUBTEST(igt_lmem_write_gpu),
};
if (!HAS_LMEM(i915)) {
pr_info("device lacks LMEM support, skipping\n");
return 0;
}
if (intel_gt_is_wedged(to_gt(i915)))
return 0;
return i915_live_subtests(tests, i915);
}
int intel_memory_region_perf_selftests(struct drm_i915_private *i915)
{
static const struct i915_subtest tests[] = {
SUBTEST(perf_memcpy),
};
if (intel_gt_is_wedged(to_gt(i915)))
return 0;
return i915_live_subtests(tests, i915);
}