linux-zen-server/drivers/gpu/drm/msm/dsi/phy/dsi_phy_28nm.c

823 lines
25 KiB
C
Raw Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2015, The Linux Foundation. All rights reserved.
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include "dsi_phy.h"
#include "dsi.xml.h"
#include "dsi_phy_28nm.xml.h"
/*
* DSI PLL 28nm - clock diagram (eg: DSI0):
*
* dsi0analog_postdiv_clk
* | dsi0indirect_path_div2_clk
* | |
* +------+ | +----+ | |\ dsi0byte_mux
* dsi0vco_clk --o--| DIV1 |--o--| /2 |--o--| \ |
* | +------+ +----+ | m| | +----+
* | | u|--o--| /4 |-- dsi0pllbyte
* | | x| +----+
* o--------------------------| /
* | |/
* | +------+
* o----------| DIV3 |------------------------- dsi0pll
* +------+
*/
#define POLL_MAX_READS 10
#define POLL_TIMEOUT_US 50
#define VCO_REF_CLK_RATE 19200000
#define VCO_MIN_RATE 350000000
#define VCO_MAX_RATE 750000000
/* v2.0.0 28nm LP implementation */
#define DSI_PHY_28NM_QUIRK_PHY_LP BIT(0)
#define LPFR_LUT_SIZE 10
struct lpfr_cfg {
unsigned long vco_rate;
u32 resistance;
};
/* Loop filter resistance: */
static const struct lpfr_cfg lpfr_lut[LPFR_LUT_SIZE] = {
{ 479500000, 8 },
{ 480000000, 11 },
{ 575500000, 8 },
{ 576000000, 12 },
{ 610500000, 8 },
{ 659500000, 9 },
{ 671500000, 10 },
{ 672000000, 14 },
{ 708500000, 10 },
{ 750000000, 11 },
};
struct pll_28nm_cached_state {
unsigned long vco_rate;
u8 postdiv3;
u8 postdiv1;
u8 byte_mux;
};
struct dsi_pll_28nm {
struct clk_hw clk_hw;
struct msm_dsi_phy *phy;
struct pll_28nm_cached_state cached_state;
};
#define to_pll_28nm(x) container_of(x, struct dsi_pll_28nm, clk_hw)
static bool pll_28nm_poll_for_ready(struct dsi_pll_28nm *pll_28nm,
u32 nb_tries, u32 timeout_us)
{
bool pll_locked = false;
u32 val;
while (nb_tries--) {
val = dsi_phy_read(pll_28nm->phy->pll_base + REG_DSI_28nm_PHY_PLL_STATUS);
pll_locked = !!(val & DSI_28nm_PHY_PLL_STATUS_PLL_RDY);
if (pll_locked)
break;
udelay(timeout_us);
}
DBG("DSI PLL is %slocked", pll_locked ? "" : "*not* ");
return pll_locked;
}
static void pll_28nm_software_reset(struct dsi_pll_28nm *pll_28nm)
{
void __iomem *base = pll_28nm->phy->pll_base;
/*
* Add HW recommended delays after toggling the software
* reset bit off and back on.
*/
dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_TEST_CFG,
DSI_28nm_PHY_PLL_TEST_CFG_PLL_SW_RESET, 1);
dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_TEST_CFG, 0x00, 1);
}
/*
* Clock Callbacks
*/
static int dsi_pll_28nm_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw);
struct device *dev = &pll_28nm->phy->pdev->dev;
void __iomem *base = pll_28nm->phy->pll_base;
unsigned long div_fbx1000, gen_vco_clk;
u32 refclk_cfg, frac_n_mode, frac_n_value;
u32 sdm_cfg0, sdm_cfg1, sdm_cfg2, sdm_cfg3;
u32 cal_cfg10, cal_cfg11;
u32 rem;
int i;
VERB("rate=%lu, parent's=%lu", rate, parent_rate);
/* Force postdiv2 to be div-4 */
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_POSTDIV2_CFG, 3);
/* Configure the Loop filter resistance */
for (i = 0; i < LPFR_LUT_SIZE; i++)
if (rate <= lpfr_lut[i].vco_rate)
break;
if (i == LPFR_LUT_SIZE) {
DRM_DEV_ERROR(dev, "unable to get loop filter resistance. vco=%lu\n",
rate);
return -EINVAL;
}
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_LPFR_CFG, lpfr_lut[i].resistance);
/* Loop filter capacitance values : c1 and c2 */
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_LPFC1_CFG, 0x70);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_LPFC2_CFG, 0x15);
rem = rate % VCO_REF_CLK_RATE;
if (rem) {
refclk_cfg = DSI_28nm_PHY_PLL_REFCLK_CFG_DBLR;
frac_n_mode = 1;
div_fbx1000 = rate / (VCO_REF_CLK_RATE / 500);
gen_vco_clk = div_fbx1000 * (VCO_REF_CLK_RATE / 500);
} else {
refclk_cfg = 0x0;
frac_n_mode = 0;
div_fbx1000 = rate / (VCO_REF_CLK_RATE / 1000);
gen_vco_clk = div_fbx1000 * (VCO_REF_CLK_RATE / 1000);
}
DBG("refclk_cfg = %d", refclk_cfg);
rem = div_fbx1000 % 1000;
frac_n_value = (rem << 16) / 1000;
DBG("div_fb = %lu", div_fbx1000);
DBG("frac_n_value = %d", frac_n_value);
DBG("Generated VCO Clock: %lu", gen_vco_clk);
rem = 0;
sdm_cfg1 = dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG1);
sdm_cfg1 &= ~DSI_28nm_PHY_PLL_SDM_CFG1_DC_OFFSET__MASK;
if (frac_n_mode) {
sdm_cfg0 = 0x0;
sdm_cfg0 |= DSI_28nm_PHY_PLL_SDM_CFG0_BYP_DIV(0);
sdm_cfg1 |= DSI_28nm_PHY_PLL_SDM_CFG1_DC_OFFSET(
(u32)(((div_fbx1000 / 1000) & 0x3f) - 1));
sdm_cfg3 = frac_n_value >> 8;
sdm_cfg2 = frac_n_value & 0xff;
} else {
sdm_cfg0 = DSI_28nm_PHY_PLL_SDM_CFG0_BYP;
sdm_cfg0 |= DSI_28nm_PHY_PLL_SDM_CFG0_BYP_DIV(
(u32)(((div_fbx1000 / 1000) & 0x3f) - 1));
sdm_cfg1 |= DSI_28nm_PHY_PLL_SDM_CFG1_DC_OFFSET(0);
sdm_cfg2 = 0;
sdm_cfg3 = 0;
}
DBG("sdm_cfg0=%d", sdm_cfg0);
DBG("sdm_cfg1=%d", sdm_cfg1);
DBG("sdm_cfg2=%d", sdm_cfg2);
DBG("sdm_cfg3=%d", sdm_cfg3);
cal_cfg11 = (u32)(gen_vco_clk / (256 * 1000000));
cal_cfg10 = (u32)((gen_vco_clk % (256 * 1000000)) / 1000000);
DBG("cal_cfg10=%d, cal_cfg11=%d", cal_cfg10, cal_cfg11);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CHGPUMP_CFG, 0x02);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG3, 0x2b);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG4, 0x06);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x0d);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG1, sdm_cfg1);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG2,
DSI_28nm_PHY_PLL_SDM_CFG2_FREQ_SEED_7_0(sdm_cfg2));
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG3,
DSI_28nm_PHY_PLL_SDM_CFG3_FREQ_SEED_15_8(sdm_cfg3));
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG4, 0x00);
/* Add hardware recommended delay for correct PLL configuration */
if (pll_28nm->phy->cfg->quirks & DSI_PHY_28NM_QUIRK_PHY_LP)
udelay(1000);
else
udelay(1);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_REFCLK_CFG, refclk_cfg);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_PWRGEN_CFG, 0x00);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_VCOLPF_CFG, 0x31);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG0, sdm_cfg0);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG0, 0x12);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG6, 0x30);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG7, 0x00);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG8, 0x60);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG9, 0x00);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG10, cal_cfg10 & 0xff);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG11, cal_cfg11 & 0xff);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_EFUSE_CFG, 0x20);
return 0;
}
static int dsi_pll_28nm_clk_is_enabled(struct clk_hw *hw)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw);
return pll_28nm_poll_for_ready(pll_28nm, POLL_MAX_READS,
POLL_TIMEOUT_US);
}
static unsigned long dsi_pll_28nm_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw);
void __iomem *base = pll_28nm->phy->pll_base;
u32 sdm0, doubler, sdm_byp_div;
u32 sdm_dc_off, sdm_freq_seed, sdm2, sdm3;
u32 ref_clk = VCO_REF_CLK_RATE;
unsigned long vco_rate;
VERB("parent_rate=%lu", parent_rate);
/* Check to see if the ref clk doubler is enabled */
doubler = dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_REFCLK_CFG) &
DSI_28nm_PHY_PLL_REFCLK_CFG_DBLR;
ref_clk += (doubler * VCO_REF_CLK_RATE);
/* see if it is integer mode or sdm mode */
sdm0 = dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG0);
if (sdm0 & DSI_28nm_PHY_PLL_SDM_CFG0_BYP) {
/* integer mode */
sdm_byp_div = FIELD(
dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG0),
DSI_28nm_PHY_PLL_SDM_CFG0_BYP_DIV) + 1;
vco_rate = ref_clk * sdm_byp_div;
} else {
/* sdm mode */
sdm_dc_off = FIELD(
dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG1),
DSI_28nm_PHY_PLL_SDM_CFG1_DC_OFFSET);
DBG("sdm_dc_off = %d", sdm_dc_off);
sdm2 = FIELD(dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG2),
DSI_28nm_PHY_PLL_SDM_CFG2_FREQ_SEED_7_0);
sdm3 = FIELD(dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG3),
DSI_28nm_PHY_PLL_SDM_CFG3_FREQ_SEED_15_8);
sdm_freq_seed = (sdm3 << 8) | sdm2;
DBG("sdm_freq_seed = %d", sdm_freq_seed);
vco_rate = (ref_clk * (sdm_dc_off + 1)) +
mult_frac(ref_clk, sdm_freq_seed, BIT(16));
DBG("vco rate = %lu", vco_rate);
}
DBG("returning vco rate = %lu", vco_rate);
return vco_rate;
}
static int _dsi_pll_28nm_vco_prepare_hpm(struct dsi_pll_28nm *pll_28nm)
{
struct device *dev = &pll_28nm->phy->pdev->dev;
void __iomem *base = pll_28nm->phy->pll_base;
u32 max_reads = 5, timeout_us = 100;
bool locked;
u32 val;
int i;
DBG("id=%d", pll_28nm->phy->id);
pll_28nm_software_reset(pll_28nm);
/*
* PLL power up sequence.
* Add necessary delays recommended by hardware.
*/
val = DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRDN_B;
dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 1);
val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRGEN_PWRDN_B;
dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 200);
val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B;
dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500);
val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_ENABLE;
dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 600);
for (i = 0; i < 2; i++) {
/* DSI Uniphy lock detect setting */
dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2,
0x0c, 100);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x0d);
/* poll for PLL ready status */
locked = pll_28nm_poll_for_ready(pll_28nm, max_reads,
timeout_us);
if (locked)
break;
pll_28nm_software_reset(pll_28nm);
/*
* PLL power up sequence.
* Add necessary delays recommended by hardware.
*/
val = DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRDN_B;
dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 1);
val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRGEN_PWRDN_B;
dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 200);
val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B;
dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 250);
val &= ~DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B;
dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 200);
val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B;
dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500);
val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_ENABLE;
dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 600);
}
if (unlikely(!locked))
DRM_DEV_ERROR(dev, "DSI PLL lock failed\n");
else
DBG("DSI PLL Lock success");
return locked ? 0 : -EINVAL;
}
static int dsi_pll_28nm_vco_prepare_hpm(struct clk_hw *hw)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw);
int i, ret;
if (unlikely(pll_28nm->phy->pll_on))
return 0;
for (i = 0; i < 3; i++) {
ret = _dsi_pll_28nm_vco_prepare_hpm(pll_28nm);
if (!ret) {
pll_28nm->phy->pll_on = true;
return 0;
}
}
return ret;
}
static int dsi_pll_28nm_vco_prepare_lp(struct clk_hw *hw)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw);
struct device *dev = &pll_28nm->phy->pdev->dev;
void __iomem *base = pll_28nm->phy->pll_base;
bool locked;
u32 max_reads = 10, timeout_us = 50;
u32 val;
DBG("id=%d", pll_28nm->phy->id);
if (unlikely(pll_28nm->phy->pll_on))
return 0;
pll_28nm_software_reset(pll_28nm);
/*
* PLL power up sequence.
* Add necessary delays recommended by hardware.
*/
dsi_phy_write_ndelay(base + REG_DSI_28nm_PHY_PLL_CAL_CFG1, 0x34, 500);
val = DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRDN_B;
dsi_phy_write_ndelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500);
val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRGEN_PWRDN_B;
dsi_phy_write_ndelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500);
val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B |
DSI_28nm_PHY_PLL_GLB_CFG_PLL_ENABLE;
dsi_phy_write_ndelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500);
/* DSI PLL toggle lock detect setting */
dsi_phy_write_ndelay(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x04, 500);
dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x05, 512);
locked = pll_28nm_poll_for_ready(pll_28nm, max_reads, timeout_us);
if (unlikely(!locked)) {
DRM_DEV_ERROR(dev, "DSI PLL lock failed\n");
return -EINVAL;
}
DBG("DSI PLL lock success");
pll_28nm->phy->pll_on = true;
return 0;
}
static void dsi_pll_28nm_vco_unprepare(struct clk_hw *hw)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw);
DBG("id=%d", pll_28nm->phy->id);
if (unlikely(!pll_28nm->phy->pll_on))
return;
dsi_phy_write(pll_28nm->phy->pll_base + REG_DSI_28nm_PHY_PLL_GLB_CFG, 0x00);
pll_28nm->phy->pll_on = false;
}
static long dsi_pll_28nm_clk_round_rate(struct clk_hw *hw,
unsigned long rate, unsigned long *parent_rate)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw);
if (rate < pll_28nm->phy->cfg->min_pll_rate)
return pll_28nm->phy->cfg->min_pll_rate;
else if (rate > pll_28nm->phy->cfg->max_pll_rate)
return pll_28nm->phy->cfg->max_pll_rate;
else
return rate;
}
static const struct clk_ops clk_ops_dsi_pll_28nm_vco_hpm = {
.round_rate = dsi_pll_28nm_clk_round_rate,
.set_rate = dsi_pll_28nm_clk_set_rate,
.recalc_rate = dsi_pll_28nm_clk_recalc_rate,
.prepare = dsi_pll_28nm_vco_prepare_hpm,
.unprepare = dsi_pll_28nm_vco_unprepare,
.is_enabled = dsi_pll_28nm_clk_is_enabled,
};
static const struct clk_ops clk_ops_dsi_pll_28nm_vco_lp = {
.round_rate = dsi_pll_28nm_clk_round_rate,
.set_rate = dsi_pll_28nm_clk_set_rate,
.recalc_rate = dsi_pll_28nm_clk_recalc_rate,
.prepare = dsi_pll_28nm_vco_prepare_lp,
.unprepare = dsi_pll_28nm_vco_unprepare,
.is_enabled = dsi_pll_28nm_clk_is_enabled,
};
/*
* PLL Callbacks
*/
static void dsi_28nm_pll_save_state(struct msm_dsi_phy *phy)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(phy->vco_hw);
struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state;
void __iomem *base = pll_28nm->phy->pll_base;
cached_state->postdiv3 =
dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_POSTDIV3_CFG);
cached_state->postdiv1 =
dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_POSTDIV1_CFG);
cached_state->byte_mux = dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_VREG_CFG);
if (dsi_pll_28nm_clk_is_enabled(phy->vco_hw))
cached_state->vco_rate = clk_hw_get_rate(phy->vco_hw);
else
cached_state->vco_rate = 0;
}
static int dsi_28nm_pll_restore_state(struct msm_dsi_phy *phy)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(phy->vco_hw);
struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state;
void __iomem *base = pll_28nm->phy->pll_base;
int ret;
ret = dsi_pll_28nm_clk_set_rate(phy->vco_hw,
cached_state->vco_rate, 0);
if (ret) {
DRM_DEV_ERROR(&pll_28nm->phy->pdev->dev,
"restore vco rate failed. ret=%d\n", ret);
return ret;
}
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_POSTDIV3_CFG,
cached_state->postdiv3);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_POSTDIV1_CFG,
cached_state->postdiv1);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_VREG_CFG,
cached_state->byte_mux);
return 0;
}
static int pll_28nm_register(struct dsi_pll_28nm *pll_28nm, struct clk_hw **provided_clocks)
{
char clk_name[32];
struct clk_init_data vco_init = {
.parent_data = &(const struct clk_parent_data) {
.fw_name = "ref", .name = "xo",
},
.num_parents = 1,
.name = clk_name,
.flags = CLK_IGNORE_UNUSED,
};
struct device *dev = &pll_28nm->phy->pdev->dev;
struct clk_hw *hw, *analog_postdiv, *indirect_path_div2, *byte_mux;
int ret;
DBG("%d", pll_28nm->phy->id);
if (pll_28nm->phy->cfg->quirks & DSI_PHY_28NM_QUIRK_PHY_LP)
vco_init.ops = &clk_ops_dsi_pll_28nm_vco_lp;
else
vco_init.ops = &clk_ops_dsi_pll_28nm_vco_hpm;
snprintf(clk_name, sizeof(clk_name), "dsi%dvco_clk", pll_28nm->phy->id);
pll_28nm->clk_hw.init = &vco_init;
ret = devm_clk_hw_register(dev, &pll_28nm->clk_hw);
if (ret)
return ret;
snprintf(clk_name, sizeof(clk_name), "dsi%danalog_postdiv_clk", pll_28nm->phy->id);
analog_postdiv = devm_clk_hw_register_divider_parent_hw(dev, clk_name,
&pll_28nm->clk_hw, CLK_SET_RATE_PARENT,
pll_28nm->phy->pll_base +
REG_DSI_28nm_PHY_PLL_POSTDIV1_CFG,
0, 4, 0, NULL);
if (IS_ERR(analog_postdiv))
return PTR_ERR(analog_postdiv);
snprintf(clk_name, sizeof(clk_name), "dsi%dindirect_path_div2_clk", pll_28nm->phy->id);
indirect_path_div2 = devm_clk_hw_register_fixed_factor_parent_hw(dev,
clk_name, analog_postdiv, CLK_SET_RATE_PARENT, 1, 2);
if (IS_ERR(indirect_path_div2))
return PTR_ERR(indirect_path_div2);
snprintf(clk_name, sizeof(clk_name), "dsi%dpll", pll_28nm->phy->id);
hw = devm_clk_hw_register_divider_parent_hw(dev, clk_name,
&pll_28nm->clk_hw, 0, pll_28nm->phy->pll_base +
REG_DSI_28nm_PHY_PLL_POSTDIV3_CFG,
0, 8, 0, NULL);
if (IS_ERR(hw))
return PTR_ERR(hw);
provided_clocks[DSI_PIXEL_PLL_CLK] = hw;
snprintf(clk_name, sizeof(clk_name), "dsi%dbyte_mux", pll_28nm->phy->id);
byte_mux = devm_clk_hw_register_mux_parent_hws(dev, clk_name,
((const struct clk_hw *[]){
&pll_28nm->clk_hw,
indirect_path_div2,
}), 2, CLK_SET_RATE_PARENT, pll_28nm->phy->pll_base +
REG_DSI_28nm_PHY_PLL_VREG_CFG, 1, 1, 0, NULL);
if (IS_ERR(byte_mux))
return PTR_ERR(byte_mux);
snprintf(clk_name, sizeof(clk_name), "dsi%dpllbyte", pll_28nm->phy->id);
hw = devm_clk_hw_register_fixed_factor_parent_hw(dev, clk_name,
byte_mux, CLK_SET_RATE_PARENT, 1, 4);
if (IS_ERR(hw))
return PTR_ERR(hw);
provided_clocks[DSI_BYTE_PLL_CLK] = hw;
return 0;
}
static int dsi_pll_28nm_init(struct msm_dsi_phy *phy)
{
struct platform_device *pdev = phy->pdev;
struct dsi_pll_28nm *pll_28nm;
int ret;
if (!pdev)
return -ENODEV;
pll_28nm = devm_kzalloc(&pdev->dev, sizeof(*pll_28nm), GFP_KERNEL);
if (!pll_28nm)
return -ENOMEM;
pll_28nm->phy = phy;
ret = pll_28nm_register(pll_28nm, phy->provided_clocks->hws);
if (ret) {
DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
return ret;
}
phy->vco_hw = &pll_28nm->clk_hw;
return 0;
}
static void dsi_28nm_dphy_set_timing(struct msm_dsi_phy *phy,
struct msm_dsi_dphy_timing *timing)
{
void __iomem *base = phy->base;
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_0,
DSI_28nm_PHY_TIMING_CTRL_0_CLK_ZERO(timing->clk_zero));
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_1,
DSI_28nm_PHY_TIMING_CTRL_1_CLK_TRAIL(timing->clk_trail));
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_2,
DSI_28nm_PHY_TIMING_CTRL_2_CLK_PREPARE(timing->clk_prepare));
if (timing->clk_zero & BIT(8))
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_3,
DSI_28nm_PHY_TIMING_CTRL_3_CLK_ZERO_8);
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_4,
DSI_28nm_PHY_TIMING_CTRL_4_HS_EXIT(timing->hs_exit));
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_5,
DSI_28nm_PHY_TIMING_CTRL_5_HS_ZERO(timing->hs_zero));
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_6,
DSI_28nm_PHY_TIMING_CTRL_6_HS_PREPARE(timing->hs_prepare));
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_7,
DSI_28nm_PHY_TIMING_CTRL_7_HS_TRAIL(timing->hs_trail));
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_8,
DSI_28nm_PHY_TIMING_CTRL_8_HS_RQST(timing->hs_rqst));
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_9,
DSI_28nm_PHY_TIMING_CTRL_9_TA_GO(timing->ta_go) |
DSI_28nm_PHY_TIMING_CTRL_9_TA_SURE(timing->ta_sure));
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_10,
DSI_28nm_PHY_TIMING_CTRL_10_TA_GET(timing->ta_get));
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_11,
DSI_28nm_PHY_TIMING_CTRL_11_TRIG3_CMD(0));
}
static void dsi_28nm_phy_regulator_enable_dcdc(struct msm_dsi_phy *phy)
{
void __iomem *base = phy->reg_base;
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_0, 0x0);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CAL_PWR_CFG, 1);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_5, 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_3, 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_2, 0x3);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_1, 0x9);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_0, 0x7);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_4, 0x20);
dsi_phy_write(phy->base + REG_DSI_28nm_PHY_LDO_CNTRL, 0x00);
}
static void dsi_28nm_phy_regulator_enable_ldo(struct msm_dsi_phy *phy)
{
void __iomem *base = phy->reg_base;
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_0, 0x0);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CAL_PWR_CFG, 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_5, 0x7);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_3, 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_2, 0x1);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_1, 0x1);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_4, 0x20);
if (phy->cfg->quirks & DSI_PHY_28NM_QUIRK_PHY_LP)
dsi_phy_write(phy->base + REG_DSI_28nm_PHY_LDO_CNTRL, 0x05);
else
dsi_phy_write(phy->base + REG_DSI_28nm_PHY_LDO_CNTRL, 0x0d);
}
static void dsi_28nm_phy_regulator_ctrl(struct msm_dsi_phy *phy, bool enable)
{
if (!enable) {
dsi_phy_write(phy->reg_base +
REG_DSI_28nm_PHY_REGULATOR_CAL_PWR_CFG, 0);
return;
}
if (phy->regulator_ldo_mode)
dsi_28nm_phy_regulator_enable_ldo(phy);
else
dsi_28nm_phy_regulator_enable_dcdc(phy);
}
static int dsi_28nm_phy_enable(struct msm_dsi_phy *phy,
struct msm_dsi_phy_clk_request *clk_req)
{
struct msm_dsi_dphy_timing *timing = &phy->timing;
int i;
void __iomem *base = phy->base;
u32 val;
DBG("");
if (msm_dsi_dphy_timing_calc(timing, clk_req)) {
DRM_DEV_ERROR(&phy->pdev->dev,
"%s: D-PHY timing calculation failed\n",
__func__);
return -EINVAL;
}
dsi_phy_write(base + REG_DSI_28nm_PHY_STRENGTH_0, 0xff);
dsi_28nm_phy_regulator_ctrl(phy, true);
dsi_28nm_dphy_set_timing(phy, timing);
dsi_phy_write(base + REG_DSI_28nm_PHY_CTRL_1, 0x00);
dsi_phy_write(base + REG_DSI_28nm_PHY_CTRL_0, 0x5f);
dsi_phy_write(base + REG_DSI_28nm_PHY_STRENGTH_1, 0x6);
for (i = 0; i < 4; i++) {
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_0(i), 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_1(i), 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_2(i), 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_3(i), 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_4(i), 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_TEST_DATAPATH(i), 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_DEBUG_SEL(i), 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_TEST_STR_0(i), 0x1);
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_TEST_STR_1(i), 0x97);
}
dsi_phy_write(base + REG_DSI_28nm_PHY_LNCK_CFG_4, 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_LNCK_CFG_1, 0xc0);
dsi_phy_write(base + REG_DSI_28nm_PHY_LNCK_TEST_STR0, 0x1);
dsi_phy_write(base + REG_DSI_28nm_PHY_LNCK_TEST_STR1, 0xbb);
dsi_phy_write(base + REG_DSI_28nm_PHY_CTRL_0, 0x5f);
val = dsi_phy_read(base + REG_DSI_28nm_PHY_GLBL_TEST_CTRL);
if (phy->id == DSI_1 && phy->usecase == MSM_DSI_PHY_SLAVE)
val &= ~DSI_28nm_PHY_GLBL_TEST_CTRL_BITCLK_HS_SEL;
else
val |= DSI_28nm_PHY_GLBL_TEST_CTRL_BITCLK_HS_SEL;
dsi_phy_write(base + REG_DSI_28nm_PHY_GLBL_TEST_CTRL, val);
return 0;
}
static void dsi_28nm_phy_disable(struct msm_dsi_phy *phy)
{
dsi_phy_write(phy->base + REG_DSI_28nm_PHY_CTRL_0, 0);
dsi_28nm_phy_regulator_ctrl(phy, false);
/*
* Wait for the registers writes to complete in order to
* ensure that the phy is completely disabled
*/
wmb();
}
static const struct regulator_bulk_data dsi_phy_28nm_regulators[] = {
{ .supply = "vddio", .init_load_uA = 100000 },
};
const struct msm_dsi_phy_cfg dsi_phy_28nm_hpm_cfgs = {
.has_phy_regulator = true,
.regulator_data = dsi_phy_28nm_regulators,
.num_regulators = ARRAY_SIZE(dsi_phy_28nm_regulators),
.ops = {
.enable = dsi_28nm_phy_enable,
.disable = dsi_28nm_phy_disable,
.pll_init = dsi_pll_28nm_init,
.save_pll_state = dsi_28nm_pll_save_state,
.restore_pll_state = dsi_28nm_pll_restore_state,
},
.min_pll_rate = VCO_MIN_RATE,
.max_pll_rate = VCO_MAX_RATE,
.io_start = { 0xfd922b00, 0xfd923100 },
.num_dsi_phy = 2,
};
const struct msm_dsi_phy_cfg dsi_phy_28nm_hpm_famb_cfgs = {
.has_phy_regulator = true,
.regulator_data = dsi_phy_28nm_regulators,
.num_regulators = ARRAY_SIZE(dsi_phy_28nm_regulators),
.ops = {
.enable = dsi_28nm_phy_enable,
.disable = dsi_28nm_phy_disable,
.pll_init = dsi_pll_28nm_init,
.save_pll_state = dsi_28nm_pll_save_state,
.restore_pll_state = dsi_28nm_pll_restore_state,
},
.min_pll_rate = VCO_MIN_RATE,
.max_pll_rate = VCO_MAX_RATE,
.io_start = { 0x1a94400, 0x1a96400 },
.num_dsi_phy = 2,
};
const struct msm_dsi_phy_cfg dsi_phy_28nm_lp_cfgs = {
.has_phy_regulator = true,
.regulator_data = dsi_phy_28nm_regulators,
.num_regulators = ARRAY_SIZE(dsi_phy_28nm_regulators),
.ops = {
.enable = dsi_28nm_phy_enable,
.disable = dsi_28nm_phy_disable,
.pll_init = dsi_pll_28nm_init,
.save_pll_state = dsi_28nm_pll_save_state,
.restore_pll_state = dsi_28nm_pll_restore_state,
},
.min_pll_rate = VCO_MIN_RATE,
.max_pll_rate = VCO_MAX_RATE,
.io_start = { 0x1a98500 },
.num_dsi_phy = 1,
.quirks = DSI_PHY_28NM_QUIRK_PHY_LP,
};