linux-zen-server/drivers/gpu/drm/omapdrm/dss/dispc.c

4924 lines
128 KiB
C
Raw Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2009 Nokia Corporation
* Author: Tomi Valkeinen <tomi.valkeinen@ti.com>
*
* Some code and ideas taken from drivers/video/omap/ driver
* by Imre Deak.
*/
#define DSS_SUBSYS_NAME "DISPC"
#include <linux/kernel.h>
#include <linux/dma-mapping.h>
#include <linux/vmalloc.h>
#include <linux/export.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/jiffies.h>
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/workqueue.h>
#include <linux/hardirq.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/sizes.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/component.h>
#include <linux/sys_soc.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_blend.h>
#include "omapdss.h"
#include "dss.h"
#include "dispc.h"
struct dispc_device;
/* DISPC */
#define DISPC_SZ_REGS SZ_4K
enum omap_burst_size {
BURST_SIZE_X2 = 0,
BURST_SIZE_X4 = 1,
BURST_SIZE_X8 = 2,
};
#define REG_GET(dispc, idx, start, end) \
FLD_GET(dispc_read_reg(dispc, idx), start, end)
#define REG_FLD_MOD(dispc, idx, val, start, end) \
dispc_write_reg(dispc, idx, \
FLD_MOD(dispc_read_reg(dispc, idx), val, start, end))
/* DISPC has feature id */
enum dispc_feature_id {
FEAT_LCDENABLEPOL,
FEAT_LCDENABLESIGNAL,
FEAT_PCKFREEENABLE,
FEAT_FUNCGATED,
FEAT_MGR_LCD2,
FEAT_MGR_LCD3,
FEAT_LINEBUFFERSPLIT,
FEAT_ROWREPEATENABLE,
FEAT_RESIZECONF,
/* Independent core clk divider */
FEAT_CORE_CLK_DIV,
FEAT_HANDLE_UV_SEPARATE,
FEAT_ATTR2,
FEAT_CPR,
FEAT_PRELOAD,
FEAT_FIR_COEF_V,
FEAT_ALPHA_FIXED_ZORDER,
FEAT_ALPHA_FREE_ZORDER,
FEAT_FIFO_MERGE,
/* An unknown HW bug causing the normal FIFO thresholds not to work */
FEAT_OMAP3_DSI_FIFO_BUG,
FEAT_BURST_2D,
FEAT_MFLAG,
};
struct dispc_features {
u8 sw_start;
u8 fp_start;
u8 bp_start;
u16 sw_max;
u16 vp_max;
u16 hp_max;
u8 mgr_width_start;
u8 mgr_height_start;
u16 mgr_width_max;
u16 mgr_height_max;
u16 ovl_width_max;
u16 ovl_height_max;
unsigned long max_lcd_pclk;
unsigned long max_tv_pclk;
unsigned int max_downscale;
unsigned int max_line_width;
unsigned int min_pcd;
int (*calc_scaling)(struct dispc_device *dispc,
unsigned long pclk, unsigned long lclk,
const struct videomode *vm,
u16 width, u16 height, u16 out_width, u16 out_height,
u32 fourcc, bool *five_taps,
int *x_predecim, int *y_predecim, int *decim_x, int *decim_y,
u16 pos_x, unsigned long *core_clk, bool mem_to_mem);
unsigned long (*calc_core_clk) (unsigned long pclk,
u16 width, u16 height, u16 out_width, u16 out_height,
bool mem_to_mem);
u8 num_fifos;
const enum dispc_feature_id *features;
unsigned int num_features;
const struct dss_reg_field *reg_fields;
const unsigned int num_reg_fields;
const enum omap_overlay_caps *overlay_caps;
const u32 **supported_color_modes;
const u32 *supported_scaler_color_modes;
unsigned int num_mgrs;
unsigned int num_ovls;
unsigned int buffer_size_unit;
unsigned int burst_size_unit;
/* swap GFX & WB fifos */
bool gfx_fifo_workaround:1;
/* no DISPC_IRQ_FRAMEDONETV on this SoC */
bool no_framedone_tv:1;
/* revert to the OMAP4 mechanism of DISPC Smart Standby operation */
bool mstandby_workaround:1;
bool set_max_preload:1;
/* PIXEL_INC is not added to the last pixel of a line */
bool last_pixel_inc_missing:1;
/* POL_FREQ has ALIGN bit */
bool supports_sync_align:1;
bool has_writeback:1;
bool supports_double_pixel:1;
/*
* Field order for VENC is different than HDMI. We should handle this in
* some intelligent manner, but as the SoCs have either HDMI or VENC,
* never both, we can just use this flag for now.
*/
bool reverse_ilace_field_order:1;
bool has_gamma_table:1;
bool has_gamma_i734_bug:1;
};
#define DISPC_MAX_NR_FIFOS 5
#define DISPC_MAX_CHANNEL_GAMMA 4
struct dispc_device {
struct platform_device *pdev;
void __iomem *base;
struct dss_device *dss;
struct dss_debugfs_entry *debugfs;
int irq;
irq_handler_t user_handler;
void *user_data;
unsigned long core_clk_rate;
unsigned long tv_pclk_rate;
u32 fifo_size[DISPC_MAX_NR_FIFOS];
/* maps which plane is using a fifo. fifo-id -> plane-id */
int fifo_assignment[DISPC_MAX_NR_FIFOS];
bool ctx_valid;
u32 ctx[DISPC_SZ_REGS / sizeof(u32)];
u32 *gamma_table[DISPC_MAX_CHANNEL_GAMMA];
const struct dispc_features *feat;
bool is_enabled;
struct regmap *syscon_pol;
u32 syscon_pol_offset;
};
enum omap_color_component {
/* used for all color formats for OMAP3 and earlier
* and for RGB and Y color component on OMAP4
*/
DISPC_COLOR_COMPONENT_RGB_Y = 1 << 0,
/* used for UV component for
* DRM_FORMAT_YUYV, DRM_FORMAT_UYVY, DRM_FORMAT_NV12
* color formats on OMAP4
*/
DISPC_COLOR_COMPONENT_UV = 1 << 1,
};
enum mgr_reg_fields {
DISPC_MGR_FLD_ENABLE,
DISPC_MGR_FLD_STNTFT,
DISPC_MGR_FLD_GO,
DISPC_MGR_FLD_TFTDATALINES,
DISPC_MGR_FLD_STALLMODE,
DISPC_MGR_FLD_TCKENABLE,
DISPC_MGR_FLD_TCKSELECTION,
DISPC_MGR_FLD_CPR,
DISPC_MGR_FLD_FIFOHANDCHECK,
/* used to maintain a count of the above fields */
DISPC_MGR_FLD_NUM,
};
/* DISPC register field id */
enum dispc_feat_reg_field {
FEAT_REG_FIRHINC,
FEAT_REG_FIRVINC,
FEAT_REG_FIFOHIGHTHRESHOLD,
FEAT_REG_FIFOLOWTHRESHOLD,
FEAT_REG_FIFOSIZE,
FEAT_REG_HORIZONTALACCU,
FEAT_REG_VERTICALACCU,
};
struct dispc_reg_field {
u16 reg;
u8 high;
u8 low;
};
struct dispc_gamma_desc {
u32 len;
u32 bits;
u16 reg;
bool has_index;
};
static const struct {
const char *name;
u32 vsync_irq;
u32 framedone_irq;
u32 sync_lost_irq;
struct dispc_gamma_desc gamma;
struct dispc_reg_field reg_desc[DISPC_MGR_FLD_NUM];
} mgr_desc[] = {
[OMAP_DSS_CHANNEL_LCD] = {
.name = "LCD",
.vsync_irq = DISPC_IRQ_VSYNC,
.framedone_irq = DISPC_IRQ_FRAMEDONE,
.sync_lost_irq = DISPC_IRQ_SYNC_LOST,
.gamma = {
.len = 256,
.bits = 8,
.reg = DISPC_GAMMA_TABLE0,
.has_index = true,
},
.reg_desc = {
[DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL, 0, 0 },
[DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL, 3, 3 },
[DISPC_MGR_FLD_GO] = { DISPC_CONTROL, 5, 5 },
[DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL, 9, 8 },
[DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL, 11, 11 },
[DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG, 10, 10 },
[DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG, 11, 11 },
[DISPC_MGR_FLD_CPR] = { DISPC_CONFIG, 15, 15 },
[DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG, 16, 16 },
},
},
[OMAP_DSS_CHANNEL_DIGIT] = {
.name = "DIGIT",
.vsync_irq = DISPC_IRQ_EVSYNC_ODD | DISPC_IRQ_EVSYNC_EVEN,
.framedone_irq = DISPC_IRQ_FRAMEDONETV,
.sync_lost_irq = DISPC_IRQ_SYNC_LOST_DIGIT,
.gamma = {
.len = 1024,
.bits = 10,
.reg = DISPC_GAMMA_TABLE2,
.has_index = false,
},
.reg_desc = {
[DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL, 1, 1 },
[DISPC_MGR_FLD_STNTFT] = { },
[DISPC_MGR_FLD_GO] = { DISPC_CONTROL, 6, 6 },
[DISPC_MGR_FLD_TFTDATALINES] = { },
[DISPC_MGR_FLD_STALLMODE] = { },
[DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG, 12, 12 },
[DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG, 13, 13 },
[DISPC_MGR_FLD_CPR] = { },
[DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG, 16, 16 },
},
},
[OMAP_DSS_CHANNEL_LCD2] = {
.name = "LCD2",
.vsync_irq = DISPC_IRQ_VSYNC2,
.framedone_irq = DISPC_IRQ_FRAMEDONE2,
.sync_lost_irq = DISPC_IRQ_SYNC_LOST2,
.gamma = {
.len = 256,
.bits = 8,
.reg = DISPC_GAMMA_TABLE1,
.has_index = true,
},
.reg_desc = {
[DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL2, 0, 0 },
[DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL2, 3, 3 },
[DISPC_MGR_FLD_GO] = { DISPC_CONTROL2, 5, 5 },
[DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL2, 9, 8 },
[DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL2, 11, 11 },
[DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG2, 10, 10 },
[DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG2, 11, 11 },
[DISPC_MGR_FLD_CPR] = { DISPC_CONFIG2, 15, 15 },
[DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG2, 16, 16 },
},
},
[OMAP_DSS_CHANNEL_LCD3] = {
.name = "LCD3",
.vsync_irq = DISPC_IRQ_VSYNC3,
.framedone_irq = DISPC_IRQ_FRAMEDONE3,
.sync_lost_irq = DISPC_IRQ_SYNC_LOST3,
.gamma = {
.len = 256,
.bits = 8,
.reg = DISPC_GAMMA_TABLE3,
.has_index = true,
},
.reg_desc = {
[DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL3, 0, 0 },
[DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL3, 3, 3 },
[DISPC_MGR_FLD_GO] = { DISPC_CONTROL3, 5, 5 },
[DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL3, 9, 8 },
[DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL3, 11, 11 },
[DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG3, 10, 10 },
[DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG3, 11, 11 },
[DISPC_MGR_FLD_CPR] = { DISPC_CONFIG3, 15, 15 },
[DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG3, 16, 16 },
},
},
};
static unsigned long dispc_fclk_rate(struct dispc_device *dispc);
static unsigned long dispc_core_clk_rate(struct dispc_device *dispc);
static unsigned long dispc_mgr_lclk_rate(struct dispc_device *dispc,
enum omap_channel channel);
static unsigned long dispc_mgr_pclk_rate(struct dispc_device *dispc,
enum omap_channel channel);
static unsigned long dispc_plane_pclk_rate(struct dispc_device *dispc,
enum omap_plane_id plane);
static unsigned long dispc_plane_lclk_rate(struct dispc_device *dispc,
enum omap_plane_id plane);
static inline void dispc_write_reg(struct dispc_device *dispc, u16 idx, u32 val)
{
__raw_writel(val, dispc->base + idx);
}
static inline u32 dispc_read_reg(struct dispc_device *dispc, u16 idx)
{
return __raw_readl(dispc->base + idx);
}
static u32 mgr_fld_read(struct dispc_device *dispc, enum omap_channel channel,
enum mgr_reg_fields regfld)
{
const struct dispc_reg_field *rfld = &mgr_desc[channel].reg_desc[regfld];
return REG_GET(dispc, rfld->reg, rfld->high, rfld->low);
}
static void mgr_fld_write(struct dispc_device *dispc, enum omap_channel channel,
enum mgr_reg_fields regfld, int val)
{
const struct dispc_reg_field *rfld = &mgr_desc[channel].reg_desc[regfld];
REG_FLD_MOD(dispc, rfld->reg, val, rfld->high, rfld->low);
}
int dispc_get_num_ovls(struct dispc_device *dispc)
{
return dispc->feat->num_ovls;
}
int dispc_get_num_mgrs(struct dispc_device *dispc)
{
return dispc->feat->num_mgrs;
}
static void dispc_get_reg_field(struct dispc_device *dispc,
enum dispc_feat_reg_field id,
u8 *start, u8 *end)
{
BUG_ON(id >= dispc->feat->num_reg_fields);
*start = dispc->feat->reg_fields[id].start;
*end = dispc->feat->reg_fields[id].end;
}
static bool dispc_has_feature(struct dispc_device *dispc,
enum dispc_feature_id id)
{
unsigned int i;
for (i = 0; i < dispc->feat->num_features; i++) {
if (dispc->feat->features[i] == id)
return true;
}
return false;
}
#define SR(dispc, reg) \
dispc->ctx[DISPC_##reg / sizeof(u32)] = dispc_read_reg(dispc, DISPC_##reg)
#define RR(dispc, reg) \
dispc_write_reg(dispc, DISPC_##reg, dispc->ctx[DISPC_##reg / sizeof(u32)])
static void dispc_save_context(struct dispc_device *dispc)
{
int i, j;
DSSDBG("dispc_save_context\n");
SR(dispc, IRQENABLE);
SR(dispc, CONTROL);
SR(dispc, CONFIG);
SR(dispc, LINE_NUMBER);
if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
SR(dispc, GLOBAL_ALPHA);
if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
SR(dispc, CONTROL2);
SR(dispc, CONFIG2);
}
if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
SR(dispc, CONTROL3);
SR(dispc, CONFIG3);
}
for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
SR(dispc, DEFAULT_COLOR(i));
SR(dispc, TRANS_COLOR(i));
SR(dispc, SIZE_MGR(i));
if (i == OMAP_DSS_CHANNEL_DIGIT)
continue;
SR(dispc, TIMING_H(i));
SR(dispc, TIMING_V(i));
SR(dispc, POL_FREQ(i));
SR(dispc, DIVISORo(i));
SR(dispc, DATA_CYCLE1(i));
SR(dispc, DATA_CYCLE2(i));
SR(dispc, DATA_CYCLE3(i));
if (dispc_has_feature(dispc, FEAT_CPR)) {
SR(dispc, CPR_COEF_R(i));
SR(dispc, CPR_COEF_G(i));
SR(dispc, CPR_COEF_B(i));
}
}
for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
SR(dispc, OVL_BA0(i));
SR(dispc, OVL_BA1(i));
SR(dispc, OVL_POSITION(i));
SR(dispc, OVL_SIZE(i));
SR(dispc, OVL_ATTRIBUTES(i));
SR(dispc, OVL_FIFO_THRESHOLD(i));
SR(dispc, OVL_ROW_INC(i));
SR(dispc, OVL_PIXEL_INC(i));
if (dispc_has_feature(dispc, FEAT_PRELOAD))
SR(dispc, OVL_PRELOAD(i));
if (i == OMAP_DSS_GFX) {
SR(dispc, OVL_WINDOW_SKIP(i));
SR(dispc, OVL_TABLE_BA(i));
continue;
}
SR(dispc, OVL_FIR(i));
SR(dispc, OVL_PICTURE_SIZE(i));
SR(dispc, OVL_ACCU0(i));
SR(dispc, OVL_ACCU1(i));
for (j = 0; j < 8; j++)
SR(dispc, OVL_FIR_COEF_H(i, j));
for (j = 0; j < 8; j++)
SR(dispc, OVL_FIR_COEF_HV(i, j));
for (j = 0; j < 5; j++)
SR(dispc, OVL_CONV_COEF(i, j));
if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
for (j = 0; j < 8; j++)
SR(dispc, OVL_FIR_COEF_V(i, j));
}
if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
SR(dispc, OVL_BA0_UV(i));
SR(dispc, OVL_BA1_UV(i));
SR(dispc, OVL_FIR2(i));
SR(dispc, OVL_ACCU2_0(i));
SR(dispc, OVL_ACCU2_1(i));
for (j = 0; j < 8; j++)
SR(dispc, OVL_FIR_COEF_H2(i, j));
for (j = 0; j < 8; j++)
SR(dispc, OVL_FIR_COEF_HV2(i, j));
for (j = 0; j < 8; j++)
SR(dispc, OVL_FIR_COEF_V2(i, j));
}
if (dispc_has_feature(dispc, FEAT_ATTR2))
SR(dispc, OVL_ATTRIBUTES2(i));
}
if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
SR(dispc, DIVISOR);
dispc->ctx_valid = true;
DSSDBG("context saved\n");
}
static void dispc_restore_context(struct dispc_device *dispc)
{
int i, j;
DSSDBG("dispc_restore_context\n");
if (!dispc->ctx_valid)
return;
/*RR(dispc, IRQENABLE);*/
/*RR(dispc, CONTROL);*/
RR(dispc, CONFIG);
RR(dispc, LINE_NUMBER);
if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
RR(dispc, GLOBAL_ALPHA);
if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
RR(dispc, CONFIG2);
if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
RR(dispc, CONFIG3);
for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
RR(dispc, DEFAULT_COLOR(i));
RR(dispc, TRANS_COLOR(i));
RR(dispc, SIZE_MGR(i));
if (i == OMAP_DSS_CHANNEL_DIGIT)
continue;
RR(dispc, TIMING_H(i));
RR(dispc, TIMING_V(i));
RR(dispc, POL_FREQ(i));
RR(dispc, DIVISORo(i));
RR(dispc, DATA_CYCLE1(i));
RR(dispc, DATA_CYCLE2(i));
RR(dispc, DATA_CYCLE3(i));
if (dispc_has_feature(dispc, FEAT_CPR)) {
RR(dispc, CPR_COEF_R(i));
RR(dispc, CPR_COEF_G(i));
RR(dispc, CPR_COEF_B(i));
}
}
for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
RR(dispc, OVL_BA0(i));
RR(dispc, OVL_BA1(i));
RR(dispc, OVL_POSITION(i));
RR(dispc, OVL_SIZE(i));
RR(dispc, OVL_ATTRIBUTES(i));
RR(dispc, OVL_FIFO_THRESHOLD(i));
RR(dispc, OVL_ROW_INC(i));
RR(dispc, OVL_PIXEL_INC(i));
if (dispc_has_feature(dispc, FEAT_PRELOAD))
RR(dispc, OVL_PRELOAD(i));
if (i == OMAP_DSS_GFX) {
RR(dispc, OVL_WINDOW_SKIP(i));
RR(dispc, OVL_TABLE_BA(i));
continue;
}
RR(dispc, OVL_FIR(i));
RR(dispc, OVL_PICTURE_SIZE(i));
RR(dispc, OVL_ACCU0(i));
RR(dispc, OVL_ACCU1(i));
for (j = 0; j < 8; j++)
RR(dispc, OVL_FIR_COEF_H(i, j));
for (j = 0; j < 8; j++)
RR(dispc, OVL_FIR_COEF_HV(i, j));
for (j = 0; j < 5; j++)
RR(dispc, OVL_CONV_COEF(i, j));
if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
for (j = 0; j < 8; j++)
RR(dispc, OVL_FIR_COEF_V(i, j));
}
if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
RR(dispc, OVL_BA0_UV(i));
RR(dispc, OVL_BA1_UV(i));
RR(dispc, OVL_FIR2(i));
RR(dispc, OVL_ACCU2_0(i));
RR(dispc, OVL_ACCU2_1(i));
for (j = 0; j < 8; j++)
RR(dispc, OVL_FIR_COEF_H2(i, j));
for (j = 0; j < 8; j++)
RR(dispc, OVL_FIR_COEF_HV2(i, j));
for (j = 0; j < 8; j++)
RR(dispc, OVL_FIR_COEF_V2(i, j));
}
if (dispc_has_feature(dispc, FEAT_ATTR2))
RR(dispc, OVL_ATTRIBUTES2(i));
}
if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
RR(dispc, DIVISOR);
/* enable last, because LCD & DIGIT enable are here */
RR(dispc, CONTROL);
if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
RR(dispc, CONTROL2);
if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
RR(dispc, CONTROL3);
/* clear spurious SYNC_LOST_DIGIT interrupts */
dispc_clear_irqstatus(dispc, DISPC_IRQ_SYNC_LOST_DIGIT);
/*
* enable last so IRQs won't trigger before
* the context is fully restored
*/
RR(dispc, IRQENABLE);
DSSDBG("context restored\n");
}
#undef SR
#undef RR
int dispc_runtime_get(struct dispc_device *dispc)
{
int r;
DSSDBG("dispc_runtime_get\n");
r = pm_runtime_get_sync(&dispc->pdev->dev);
if (WARN_ON(r < 0)) {
pm_runtime_put_noidle(&dispc->pdev->dev);
return r;
}
return 0;
}
void dispc_runtime_put(struct dispc_device *dispc)
{
int r;
DSSDBG("dispc_runtime_put\n");
r = pm_runtime_put_sync(&dispc->pdev->dev);
WARN_ON(r < 0 && r != -ENOSYS);
}
u32 dispc_mgr_get_vsync_irq(struct dispc_device *dispc,
enum omap_channel channel)
{
return mgr_desc[channel].vsync_irq;
}
u32 dispc_mgr_get_framedone_irq(struct dispc_device *dispc,
enum omap_channel channel)
{
if (channel == OMAP_DSS_CHANNEL_DIGIT && dispc->feat->no_framedone_tv)
return 0;
return mgr_desc[channel].framedone_irq;
}
u32 dispc_mgr_get_sync_lost_irq(struct dispc_device *dispc,
enum omap_channel channel)
{
return mgr_desc[channel].sync_lost_irq;
}
u32 dispc_wb_get_framedone_irq(struct dispc_device *dispc)
{
return DISPC_IRQ_FRAMEDONEWB;
}
void dispc_mgr_enable(struct dispc_device *dispc,
enum omap_channel channel, bool enable)
{
mgr_fld_write(dispc, channel, DISPC_MGR_FLD_ENABLE, enable);
/* flush posted write */
mgr_fld_read(dispc, channel, DISPC_MGR_FLD_ENABLE);
}
static bool dispc_mgr_is_enabled(struct dispc_device *dispc,
enum omap_channel channel)
{
return !!mgr_fld_read(dispc, channel, DISPC_MGR_FLD_ENABLE);
}
bool dispc_mgr_go_busy(struct dispc_device *dispc,
enum omap_channel channel)
{
return mgr_fld_read(dispc, channel, DISPC_MGR_FLD_GO) == 1;
}
void dispc_mgr_go(struct dispc_device *dispc, enum omap_channel channel)
{
WARN_ON(!dispc_mgr_is_enabled(dispc, channel));
WARN_ON(dispc_mgr_go_busy(dispc, channel));
DSSDBG("GO %s\n", mgr_desc[channel].name);
mgr_fld_write(dispc, channel, DISPC_MGR_FLD_GO, 1);
}
bool dispc_wb_go_busy(struct dispc_device *dispc)
{
return REG_GET(dispc, DISPC_CONTROL2, 6, 6) == 1;
}
void dispc_wb_go(struct dispc_device *dispc)
{
enum omap_plane_id plane = OMAP_DSS_WB;
bool enable, go;
enable = REG_GET(dispc, DISPC_OVL_ATTRIBUTES(plane), 0, 0) == 1;
if (!enable)
return;
go = REG_GET(dispc, DISPC_CONTROL2, 6, 6) == 1;
if (go) {
DSSERR("GO bit not down for WB\n");
return;
}
REG_FLD_MOD(dispc, DISPC_CONTROL2, 1, 6, 6);
}
static void dispc_ovl_write_firh_reg(struct dispc_device *dispc,
enum omap_plane_id plane, int reg,
u32 value)
{
dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_H(plane, reg), value);
}
static void dispc_ovl_write_firhv_reg(struct dispc_device *dispc,
enum omap_plane_id plane, int reg,
u32 value)
{
dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_HV(plane, reg), value);
}
static void dispc_ovl_write_firv_reg(struct dispc_device *dispc,
enum omap_plane_id plane, int reg,
u32 value)
{
dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_V(plane, reg), value);
}
static void dispc_ovl_write_firh2_reg(struct dispc_device *dispc,
enum omap_plane_id plane, int reg,
u32 value)
{
BUG_ON(plane == OMAP_DSS_GFX);
dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_H2(plane, reg), value);
}
static void dispc_ovl_write_firhv2_reg(struct dispc_device *dispc,
enum omap_plane_id plane, int reg,
u32 value)
{
BUG_ON(plane == OMAP_DSS_GFX);
dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_HV2(plane, reg), value);
}
static void dispc_ovl_write_firv2_reg(struct dispc_device *dispc,
enum omap_plane_id plane, int reg,
u32 value)
{
BUG_ON(plane == OMAP_DSS_GFX);
dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_V2(plane, reg), value);
}
static void dispc_ovl_set_scale_coef(struct dispc_device *dispc,
enum omap_plane_id plane, int fir_hinc,
int fir_vinc, int five_taps,
enum omap_color_component color_comp)
{
const struct dispc_coef *h_coef, *v_coef;
int i;
h_coef = dispc_ovl_get_scale_coef(fir_hinc, true);
v_coef = dispc_ovl_get_scale_coef(fir_vinc, five_taps);
if (!h_coef || !v_coef) {
dev_err(&dispc->pdev->dev, "%s: failed to find scale coefs\n",
__func__);
return;
}
for (i = 0; i < 8; i++) {
u32 h, hv;
h = FLD_VAL(h_coef[i].hc0_vc00, 7, 0)
| FLD_VAL(h_coef[i].hc1_vc0, 15, 8)
| FLD_VAL(h_coef[i].hc2_vc1, 23, 16)
| FLD_VAL(h_coef[i].hc3_vc2, 31, 24);
hv = FLD_VAL(h_coef[i].hc4_vc22, 7, 0)
| FLD_VAL(v_coef[i].hc1_vc0, 15, 8)
| FLD_VAL(v_coef[i].hc2_vc1, 23, 16)
| FLD_VAL(v_coef[i].hc3_vc2, 31, 24);
if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) {
dispc_ovl_write_firh_reg(dispc, plane, i, h);
dispc_ovl_write_firhv_reg(dispc, plane, i, hv);
} else {
dispc_ovl_write_firh2_reg(dispc, plane, i, h);
dispc_ovl_write_firhv2_reg(dispc, plane, i, hv);
}
}
if (five_taps) {
for (i = 0; i < 8; i++) {
u32 v;
v = FLD_VAL(v_coef[i].hc0_vc00, 7, 0)
| FLD_VAL(v_coef[i].hc4_vc22, 15, 8);
if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y)
dispc_ovl_write_firv_reg(dispc, plane, i, v);
else
dispc_ovl_write_firv2_reg(dispc, plane, i, v);
}
}
}
struct csc_coef_yuv2rgb {
int ry, rcb, rcr, gy, gcb, gcr, by, bcb, bcr;
bool full_range;
};
static void dispc_ovl_write_color_conv_coef(struct dispc_device *dispc,
enum omap_plane_id plane,
const struct csc_coef_yuv2rgb *ct)
{
#define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0))
dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 0), CVAL(ct->rcr, ct->ry));
dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 1), CVAL(ct->gy, ct->rcb));
dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 2), CVAL(ct->gcb, ct->gcr));
dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 3), CVAL(ct->bcr, ct->by));
dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 4), CVAL(0, ct->bcb));
REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), ct->full_range, 11, 11);
#undef CVAL
}
/* YUV -> RGB, ITU-R BT.601, full range */
static const struct csc_coef_yuv2rgb coefs_yuv2rgb_bt601_full = {
256, 0, 358, /* ry, rcb, rcr |1.000 0.000 1.402|*/
256, -88, -182, /* gy, gcb, gcr |1.000 -0.344 -0.714|*/
256, 452, 0, /* by, bcb, bcr |1.000 1.772 0.000|*/
true, /* full range */
};
/* YUV -> RGB, ITU-R BT.601, limited range */
static const struct csc_coef_yuv2rgb coefs_yuv2rgb_bt601_lim = {
298, 0, 409, /* ry, rcb, rcr |1.164 0.000 1.596|*/
298, -100, -208, /* gy, gcb, gcr |1.164 -0.392 -0.813|*/
298, 516, 0, /* by, bcb, bcr |1.164 2.017 0.000|*/
false, /* limited range */
};
/* YUV -> RGB, ITU-R BT.709, full range */
static const struct csc_coef_yuv2rgb coefs_yuv2rgb_bt709_full = {
256, 0, 402, /* ry, rcb, rcr |1.000 0.000 1.570|*/
256, -48, -120, /* gy, gcb, gcr |1.000 -0.187 -0.467|*/
256, 475, 0, /* by, bcb, bcr |1.000 1.856 0.000|*/
true, /* full range */
};
/* YUV -> RGB, ITU-R BT.709, limited range */
static const struct csc_coef_yuv2rgb coefs_yuv2rgb_bt709_lim = {
298, 0, 459, /* ry, rcb, rcr |1.164 0.000 1.793|*/
298, -55, -136, /* gy, gcb, gcr |1.164 -0.213 -0.533|*/
298, 541, 0, /* by, bcb, bcr |1.164 2.112 0.000|*/
false, /* limited range */
};
static void dispc_ovl_set_csc(struct dispc_device *dispc,
enum omap_plane_id plane,
enum drm_color_encoding color_encoding,
enum drm_color_range color_range)
{
const struct csc_coef_yuv2rgb *csc;
switch (color_encoding) {
default:
case DRM_COLOR_YCBCR_BT601:
if (color_range == DRM_COLOR_YCBCR_FULL_RANGE)
csc = &coefs_yuv2rgb_bt601_full;
else
csc = &coefs_yuv2rgb_bt601_lim;
break;
case DRM_COLOR_YCBCR_BT709:
if (color_range == DRM_COLOR_YCBCR_FULL_RANGE)
csc = &coefs_yuv2rgb_bt709_full;
else
csc = &coefs_yuv2rgb_bt709_lim;
break;
}
dispc_ovl_write_color_conv_coef(dispc, plane, csc);
}
static void dispc_ovl_set_ba0(struct dispc_device *dispc,
enum omap_plane_id plane, u32 paddr)
{
dispc_write_reg(dispc, DISPC_OVL_BA0(plane), paddr);
}
static void dispc_ovl_set_ba1(struct dispc_device *dispc,
enum omap_plane_id plane, u32 paddr)
{
dispc_write_reg(dispc, DISPC_OVL_BA1(plane), paddr);
}
static void dispc_ovl_set_ba0_uv(struct dispc_device *dispc,
enum omap_plane_id plane, u32 paddr)
{
dispc_write_reg(dispc, DISPC_OVL_BA0_UV(plane), paddr);
}
static void dispc_ovl_set_ba1_uv(struct dispc_device *dispc,
enum omap_plane_id plane, u32 paddr)
{
dispc_write_reg(dispc, DISPC_OVL_BA1_UV(plane), paddr);
}
static void dispc_ovl_set_pos(struct dispc_device *dispc,
enum omap_plane_id plane,
enum omap_overlay_caps caps, int x, int y)
{
u32 val;
if ((caps & OMAP_DSS_OVL_CAP_POS) == 0)
return;
val = FLD_VAL(y, 26, 16) | FLD_VAL(x, 10, 0);
dispc_write_reg(dispc, DISPC_OVL_POSITION(plane), val);
}
static void dispc_ovl_set_input_size(struct dispc_device *dispc,
enum omap_plane_id plane, int width,
int height)
{
u32 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
if (plane == OMAP_DSS_GFX || plane == OMAP_DSS_WB)
dispc_write_reg(dispc, DISPC_OVL_SIZE(plane), val);
else
dispc_write_reg(dispc, DISPC_OVL_PICTURE_SIZE(plane), val);
}
static void dispc_ovl_set_output_size(struct dispc_device *dispc,
enum omap_plane_id plane, int width,
int height)
{
u32 val;
BUG_ON(plane == OMAP_DSS_GFX);
val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
if (plane == OMAP_DSS_WB)
dispc_write_reg(dispc, DISPC_OVL_PICTURE_SIZE(plane), val);
else
dispc_write_reg(dispc, DISPC_OVL_SIZE(plane), val);
}
static void dispc_ovl_set_zorder(struct dispc_device *dispc,
enum omap_plane_id plane,
enum omap_overlay_caps caps, u8 zorder)
{
if ((caps & OMAP_DSS_OVL_CAP_ZORDER) == 0)
return;
REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), zorder, 27, 26);
}
static void dispc_ovl_enable_zorder_planes(struct dispc_device *dispc)
{
int i;
if (!dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
return;
for (i = 0; i < dispc_get_num_ovls(dispc); i++)
REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(i), 1, 25, 25);
}
static void dispc_ovl_set_pre_mult_alpha(struct dispc_device *dispc,
enum omap_plane_id plane,
enum omap_overlay_caps caps,
bool enable)
{
if ((caps & OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA) == 0)
return;
REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 28, 28);
}
static void dispc_ovl_setup_global_alpha(struct dispc_device *dispc,
enum omap_plane_id plane,
enum omap_overlay_caps caps,
u8 global_alpha)
{
static const unsigned int shifts[] = { 0, 8, 16, 24, };
int shift;
if ((caps & OMAP_DSS_OVL_CAP_GLOBAL_ALPHA) == 0)
return;
shift = shifts[plane];
REG_FLD_MOD(dispc, DISPC_GLOBAL_ALPHA, global_alpha, shift + 7, shift);
}
static void dispc_ovl_set_pix_inc(struct dispc_device *dispc,
enum omap_plane_id plane, s32 inc)
{
dispc_write_reg(dispc, DISPC_OVL_PIXEL_INC(plane), inc);
}
static void dispc_ovl_set_row_inc(struct dispc_device *dispc,
enum omap_plane_id plane, s32 inc)
{
dispc_write_reg(dispc, DISPC_OVL_ROW_INC(plane), inc);
}
static void dispc_ovl_set_color_mode(struct dispc_device *dispc,
enum omap_plane_id plane, u32 fourcc)
{
u32 m = 0;
if (plane != OMAP_DSS_GFX) {
switch (fourcc) {
case DRM_FORMAT_NV12:
m = 0x0; break;
case DRM_FORMAT_XRGB4444:
m = 0x1; break;
case DRM_FORMAT_RGBA4444:
m = 0x2; break;
case DRM_FORMAT_RGBX4444:
m = 0x4; break;
case DRM_FORMAT_ARGB4444:
m = 0x5; break;
case DRM_FORMAT_RGB565:
m = 0x6; break;
case DRM_FORMAT_ARGB1555:
m = 0x7; break;
case DRM_FORMAT_XRGB8888:
m = 0x8; break;
case DRM_FORMAT_RGB888:
m = 0x9; break;
case DRM_FORMAT_YUYV:
m = 0xa; break;
case DRM_FORMAT_UYVY:
m = 0xb; break;
case DRM_FORMAT_ARGB8888:
m = 0xc; break;
case DRM_FORMAT_RGBA8888:
m = 0xd; break;
case DRM_FORMAT_RGBX8888:
m = 0xe; break;
case DRM_FORMAT_XRGB1555:
m = 0xf; break;
default:
BUG(); return;
}
} else {
switch (fourcc) {
case DRM_FORMAT_RGBX4444:
m = 0x4; break;
case DRM_FORMAT_ARGB4444:
m = 0x5; break;
case DRM_FORMAT_RGB565:
m = 0x6; break;
case DRM_FORMAT_ARGB1555:
m = 0x7; break;
case DRM_FORMAT_XRGB8888:
m = 0x8; break;
case DRM_FORMAT_RGB888:
m = 0x9; break;
case DRM_FORMAT_XRGB4444:
m = 0xa; break;
case DRM_FORMAT_RGBA4444:
m = 0xb; break;
case DRM_FORMAT_ARGB8888:
m = 0xc; break;
case DRM_FORMAT_RGBA8888:
m = 0xd; break;
case DRM_FORMAT_RGBX8888:
m = 0xe; break;
case DRM_FORMAT_XRGB1555:
m = 0xf; break;
default:
BUG(); return;
}
}
REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), m, 4, 1);
}
static void dispc_ovl_configure_burst_type(struct dispc_device *dispc,
enum omap_plane_id plane,
enum omap_dss_rotation_type rotation)
{
if (dispc_has_feature(dispc, FEAT_BURST_2D) == 0)
return;
if (rotation == OMAP_DSS_ROT_TILER)
REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 1, 29, 29);
else
REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 0, 29, 29);
}
static void dispc_ovl_set_channel_out(struct dispc_device *dispc,
enum omap_plane_id plane,
enum omap_channel channel)
{
int shift;
u32 val;
int chan = 0, chan2 = 0;
switch (plane) {
case OMAP_DSS_GFX:
shift = 8;
break;
case OMAP_DSS_VIDEO1:
case OMAP_DSS_VIDEO2:
case OMAP_DSS_VIDEO3:
shift = 16;
break;
default:
BUG();
return;
}
val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
switch (channel) {
case OMAP_DSS_CHANNEL_LCD:
chan = 0;
chan2 = 0;
break;
case OMAP_DSS_CHANNEL_DIGIT:
chan = 1;
chan2 = 0;
break;
case OMAP_DSS_CHANNEL_LCD2:
chan = 0;
chan2 = 1;
break;
case OMAP_DSS_CHANNEL_LCD3:
if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
chan = 0;
chan2 = 2;
} else {
BUG();
return;
}
break;
case OMAP_DSS_CHANNEL_WB:
chan = 0;
chan2 = 3;
break;
default:
BUG();
return;
}
val = FLD_MOD(val, chan, shift, shift);
val = FLD_MOD(val, chan2, 31, 30);
} else {
val = FLD_MOD(val, channel, shift, shift);
}
dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), val);
}
static enum omap_channel dispc_ovl_get_channel_out(struct dispc_device *dispc,
enum omap_plane_id plane)
{
int shift;
u32 val;
switch (plane) {
case OMAP_DSS_GFX:
shift = 8;
break;
case OMAP_DSS_VIDEO1:
case OMAP_DSS_VIDEO2:
case OMAP_DSS_VIDEO3:
shift = 16;
break;
default:
BUG();
return 0;
}
val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
if (FLD_GET(val, shift, shift) == 1)
return OMAP_DSS_CHANNEL_DIGIT;
if (!dispc_has_feature(dispc, FEAT_MGR_LCD2))
return OMAP_DSS_CHANNEL_LCD;
switch (FLD_GET(val, 31, 30)) {
case 0:
default:
return OMAP_DSS_CHANNEL_LCD;
case 1:
return OMAP_DSS_CHANNEL_LCD2;
case 2:
return OMAP_DSS_CHANNEL_LCD3;
case 3:
return OMAP_DSS_CHANNEL_WB;
}
}
static void dispc_ovl_set_burst_size(struct dispc_device *dispc,
enum omap_plane_id plane,
enum omap_burst_size burst_size)
{
static const unsigned int shifts[] = { 6, 14, 14, 14, 14, };
int shift;
shift = shifts[plane];
REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), burst_size,
shift + 1, shift);
}
static void dispc_configure_burst_sizes(struct dispc_device *dispc)
{
int i;
const int burst_size = BURST_SIZE_X8;
/* Configure burst size always to maximum size */
for (i = 0; i < dispc_get_num_ovls(dispc); ++i)
dispc_ovl_set_burst_size(dispc, i, burst_size);
if (dispc->feat->has_writeback)
dispc_ovl_set_burst_size(dispc, OMAP_DSS_WB, burst_size);
}
static u32 dispc_ovl_get_burst_size(struct dispc_device *dispc,
enum omap_plane_id plane)
{
/* burst multiplier is always x8 (see dispc_configure_burst_sizes()) */
return dispc->feat->burst_size_unit * 8;
}
bool dispc_ovl_color_mode_supported(struct dispc_device *dispc,
enum omap_plane_id plane, u32 fourcc)
{
const u32 *modes;
unsigned int i;
modes = dispc->feat->supported_color_modes[plane];
for (i = 0; modes[i]; ++i) {
if (modes[i] == fourcc)
return true;
}
return false;
}
const u32 *dispc_ovl_get_color_modes(struct dispc_device *dispc,
enum omap_plane_id plane)
{
return dispc->feat->supported_color_modes[plane];
}
static void dispc_mgr_enable_cpr(struct dispc_device *dispc,
enum omap_channel channel, bool enable)
{
if (channel == OMAP_DSS_CHANNEL_DIGIT)
return;
mgr_fld_write(dispc, channel, DISPC_MGR_FLD_CPR, enable);
}
static void dispc_mgr_set_cpr_coef(struct dispc_device *dispc,
enum omap_channel channel,
const struct omap_dss_cpr_coefs *coefs)
{
u32 coef_r, coef_g, coef_b;
if (!dss_mgr_is_lcd(channel))
return;
coef_r = FLD_VAL(coefs->rr, 31, 22) | FLD_VAL(coefs->rg, 20, 11) |
FLD_VAL(coefs->rb, 9, 0);
coef_g = FLD_VAL(coefs->gr, 31, 22) | FLD_VAL(coefs->gg, 20, 11) |
FLD_VAL(coefs->gb, 9, 0);
coef_b = FLD_VAL(coefs->br, 31, 22) | FLD_VAL(coefs->bg, 20, 11) |
FLD_VAL(coefs->bb, 9, 0);
dispc_write_reg(dispc, DISPC_CPR_COEF_R(channel), coef_r);
dispc_write_reg(dispc, DISPC_CPR_COEF_G(channel), coef_g);
dispc_write_reg(dispc, DISPC_CPR_COEF_B(channel), coef_b);
}
static void dispc_ovl_set_vid_color_conv(struct dispc_device *dispc,
enum omap_plane_id plane, bool enable)
{
u32 val;
BUG_ON(plane == OMAP_DSS_GFX);
val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
val = FLD_MOD(val, enable, 9, 9);
dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), val);
}
static void dispc_ovl_enable_replication(struct dispc_device *dispc,
enum omap_plane_id plane,
enum omap_overlay_caps caps,
bool enable)
{
static const unsigned int shifts[] = { 5, 10, 10, 10 };
int shift;
if ((caps & OMAP_DSS_OVL_CAP_REPLICATION) == 0)
return;
shift = shifts[plane];
REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable, shift, shift);
}
static void dispc_mgr_set_size(struct dispc_device *dispc,
enum omap_channel channel, u16 width, u16 height)
{
u32 val;
val = FLD_VAL(height - 1, dispc->feat->mgr_height_start, 16) |
FLD_VAL(width - 1, dispc->feat->mgr_width_start, 0);
dispc_write_reg(dispc, DISPC_SIZE_MGR(channel), val);
}
static void dispc_init_fifos(struct dispc_device *dispc)
{
u32 size;
int fifo;
u8 start, end;
u32 unit;
int i;
unit = dispc->feat->buffer_size_unit;
dispc_get_reg_field(dispc, FEAT_REG_FIFOSIZE, &start, &end);
for (fifo = 0; fifo < dispc->feat->num_fifos; ++fifo) {
size = REG_GET(dispc, DISPC_OVL_FIFO_SIZE_STATUS(fifo),
start, end);
size *= unit;
dispc->fifo_size[fifo] = size;
/*
* By default fifos are mapped directly to overlays, fifo 0 to
* ovl 0, fifo 1 to ovl 1, etc.
*/
dispc->fifo_assignment[fifo] = fifo;
}
/*
* The GFX fifo on OMAP4 is smaller than the other fifos. The small fifo
* causes problems with certain use cases, like using the tiler in 2D
* mode. The below hack swaps the fifos of GFX and WB planes, thus
* giving GFX plane a larger fifo. WB but should work fine with a
* smaller fifo.
*/
if (dispc->feat->gfx_fifo_workaround) {
u32 v;
v = dispc_read_reg(dispc, DISPC_GLOBAL_BUFFER);
v = FLD_MOD(v, 4, 2, 0); /* GFX BUF top to WB */
v = FLD_MOD(v, 4, 5, 3); /* GFX BUF bottom to WB */
v = FLD_MOD(v, 0, 26, 24); /* WB BUF top to GFX */
v = FLD_MOD(v, 0, 29, 27); /* WB BUF bottom to GFX */
dispc_write_reg(dispc, DISPC_GLOBAL_BUFFER, v);
dispc->fifo_assignment[OMAP_DSS_GFX] = OMAP_DSS_WB;
dispc->fifo_assignment[OMAP_DSS_WB] = OMAP_DSS_GFX;
}
/*
* Setup default fifo thresholds.
*/
for (i = 0; i < dispc_get_num_ovls(dispc); ++i) {
u32 low, high;
const bool use_fifomerge = false;
const bool manual_update = false;
dispc_ovl_compute_fifo_thresholds(dispc, i, &low, &high,
use_fifomerge, manual_update);
dispc_ovl_set_fifo_threshold(dispc, i, low, high);
}
if (dispc->feat->has_writeback) {
u32 low, high;
const bool use_fifomerge = false;
const bool manual_update = false;
dispc_ovl_compute_fifo_thresholds(dispc, OMAP_DSS_WB,
&low, &high, use_fifomerge,
manual_update);
dispc_ovl_set_fifo_threshold(dispc, OMAP_DSS_WB, low, high);
}
}
static u32 dispc_ovl_get_fifo_size(struct dispc_device *dispc,
enum omap_plane_id plane)
{
int fifo;
u32 size = 0;
for (fifo = 0; fifo < dispc->feat->num_fifos; ++fifo) {
if (dispc->fifo_assignment[fifo] == plane)
size += dispc->fifo_size[fifo];
}
return size;
}
void dispc_ovl_set_fifo_threshold(struct dispc_device *dispc,
enum omap_plane_id plane,
u32 low, u32 high)
{
u8 hi_start, hi_end, lo_start, lo_end;
u32 unit;
unit = dispc->feat->buffer_size_unit;
WARN_ON(low % unit != 0);
WARN_ON(high % unit != 0);
low /= unit;
high /= unit;
dispc_get_reg_field(dispc, FEAT_REG_FIFOHIGHTHRESHOLD,
&hi_start, &hi_end);
dispc_get_reg_field(dispc, FEAT_REG_FIFOLOWTHRESHOLD,
&lo_start, &lo_end);
DSSDBG("fifo(%d) threshold (bytes), old %u/%u, new %u/%u\n",
plane,
REG_GET(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
lo_start, lo_end) * unit,
REG_GET(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
hi_start, hi_end) * unit,
low * unit, high * unit);
dispc_write_reg(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
FLD_VAL(high, hi_start, hi_end) |
FLD_VAL(low, lo_start, lo_end));
/*
* configure the preload to the pipeline's high threhold, if HT it's too
* large for the preload field, set the threshold to the maximum value
* that can be held by the preload register
*/
if (dispc_has_feature(dispc, FEAT_PRELOAD) &&
dispc->feat->set_max_preload && plane != OMAP_DSS_WB)
dispc_write_reg(dispc, DISPC_OVL_PRELOAD(plane),
min(high, 0xfffu));
}
void dispc_enable_fifomerge(struct dispc_device *dispc, bool enable)
{
if (!dispc_has_feature(dispc, FEAT_FIFO_MERGE)) {
WARN_ON(enable);
return;
}
DSSDBG("FIFO merge %s\n", enable ? "enabled" : "disabled");
REG_FLD_MOD(dispc, DISPC_CONFIG, enable ? 1 : 0, 14, 14);
}
void dispc_ovl_compute_fifo_thresholds(struct dispc_device *dispc,
enum omap_plane_id plane,
u32 *fifo_low, u32 *fifo_high,
bool use_fifomerge, bool manual_update)
{
/*
* All sizes are in bytes. Both the buffer and burst are made of
* buffer_units, and the fifo thresholds must be buffer_unit aligned.
*/
unsigned int buf_unit = dispc->feat->buffer_size_unit;
unsigned int ovl_fifo_size, total_fifo_size, burst_size;
int i;
burst_size = dispc_ovl_get_burst_size(dispc, plane);
ovl_fifo_size = dispc_ovl_get_fifo_size(dispc, plane);
if (use_fifomerge) {
total_fifo_size = 0;
for (i = 0; i < dispc_get_num_ovls(dispc); ++i)
total_fifo_size += dispc_ovl_get_fifo_size(dispc, i);
} else {
total_fifo_size = ovl_fifo_size;
}
/*
* We use the same low threshold for both fifomerge and non-fifomerge
* cases, but for fifomerge we calculate the high threshold using the
* combined fifo size
*/
if (manual_update && dispc_has_feature(dispc, FEAT_OMAP3_DSI_FIFO_BUG)) {
*fifo_low = ovl_fifo_size - burst_size * 2;
*fifo_high = total_fifo_size - burst_size;
} else if (plane == OMAP_DSS_WB) {
/*
* Most optimal configuration for writeback is to push out data
* to the interconnect the moment writeback pushes enough pixels
* in the FIFO to form a burst
*/
*fifo_low = 0;
*fifo_high = burst_size;
} else {
*fifo_low = ovl_fifo_size - burst_size;
*fifo_high = total_fifo_size - buf_unit;
}
}
static void dispc_ovl_set_mflag(struct dispc_device *dispc,
enum omap_plane_id plane, bool enable)
{
int bit;
if (plane == OMAP_DSS_GFX)
bit = 14;
else
bit = 23;
REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable, bit, bit);
}
static void dispc_ovl_set_mflag_threshold(struct dispc_device *dispc,
enum omap_plane_id plane,
int low, int high)
{
dispc_write_reg(dispc, DISPC_OVL_MFLAG_THRESHOLD(plane),
FLD_VAL(high, 31, 16) | FLD_VAL(low, 15, 0));
}
static void dispc_init_mflag(struct dispc_device *dispc)
{
int i;
/*
* HACK: NV12 color format and MFLAG seem to have problems working
* together: using two displays, and having an NV12 overlay on one of
* the displays will cause underflows/synclosts when MFLAG_CTRL=2.
* Changing MFLAG thresholds and PRELOAD to certain values seem to
* remove the errors, but there doesn't seem to be a clear logic on
* which values work and which not.
*
* As a work-around, set force MFLAG to always on.
*/
dispc_write_reg(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE,
(1 << 0) | /* MFLAG_CTRL = force always on */
(0 << 2)); /* MFLAG_START = disable */
for (i = 0; i < dispc_get_num_ovls(dispc); ++i) {
u32 size = dispc_ovl_get_fifo_size(dispc, i);
u32 unit = dispc->feat->buffer_size_unit;
u32 low, high;
dispc_ovl_set_mflag(dispc, i, true);
/*
* Simulation team suggests below thesholds:
* HT = fifosize * 5 / 8;
* LT = fifosize * 4 / 8;
*/
low = size * 4 / 8 / unit;
high = size * 5 / 8 / unit;
dispc_ovl_set_mflag_threshold(dispc, i, low, high);
}
if (dispc->feat->has_writeback) {
u32 size = dispc_ovl_get_fifo_size(dispc, OMAP_DSS_WB);
u32 unit = dispc->feat->buffer_size_unit;
u32 low, high;
dispc_ovl_set_mflag(dispc, OMAP_DSS_WB, true);
/*
* Simulation team suggests below thesholds:
* HT = fifosize * 5 / 8;
* LT = fifosize * 4 / 8;
*/
low = size * 4 / 8 / unit;
high = size * 5 / 8 / unit;
dispc_ovl_set_mflag_threshold(dispc, OMAP_DSS_WB, low, high);
}
}
static void dispc_ovl_set_fir(struct dispc_device *dispc,
enum omap_plane_id plane,
int hinc, int vinc,
enum omap_color_component color_comp)
{
u32 val;
if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) {
u8 hinc_start, hinc_end, vinc_start, vinc_end;
dispc_get_reg_field(dispc, FEAT_REG_FIRHINC,
&hinc_start, &hinc_end);
dispc_get_reg_field(dispc, FEAT_REG_FIRVINC,
&vinc_start, &vinc_end);
val = FLD_VAL(vinc, vinc_start, vinc_end) |
FLD_VAL(hinc, hinc_start, hinc_end);
dispc_write_reg(dispc, DISPC_OVL_FIR(plane), val);
} else {
val = FLD_VAL(vinc, 28, 16) | FLD_VAL(hinc, 12, 0);
dispc_write_reg(dispc, DISPC_OVL_FIR2(plane), val);
}
}
static void dispc_ovl_set_vid_accu0(struct dispc_device *dispc,
enum omap_plane_id plane, int haccu,
int vaccu)
{
u32 val;
u8 hor_start, hor_end, vert_start, vert_end;
dispc_get_reg_field(dispc, FEAT_REG_HORIZONTALACCU,
&hor_start, &hor_end);
dispc_get_reg_field(dispc, FEAT_REG_VERTICALACCU,
&vert_start, &vert_end);
val = FLD_VAL(vaccu, vert_start, vert_end) |
FLD_VAL(haccu, hor_start, hor_end);
dispc_write_reg(dispc, DISPC_OVL_ACCU0(plane), val);
}
static void dispc_ovl_set_vid_accu1(struct dispc_device *dispc,
enum omap_plane_id plane, int haccu,
int vaccu)
{
u32 val;
u8 hor_start, hor_end, vert_start, vert_end;
dispc_get_reg_field(dispc, FEAT_REG_HORIZONTALACCU,
&hor_start, &hor_end);
dispc_get_reg_field(dispc, FEAT_REG_VERTICALACCU,
&vert_start, &vert_end);
val = FLD_VAL(vaccu, vert_start, vert_end) |
FLD_VAL(haccu, hor_start, hor_end);
dispc_write_reg(dispc, DISPC_OVL_ACCU1(plane), val);
}
static void dispc_ovl_set_vid_accu2_0(struct dispc_device *dispc,
enum omap_plane_id plane, int haccu,
int vaccu)
{
u32 val;
val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0);
dispc_write_reg(dispc, DISPC_OVL_ACCU2_0(plane), val);
}
static void dispc_ovl_set_vid_accu2_1(struct dispc_device *dispc,
enum omap_plane_id plane, int haccu,
int vaccu)
{
u32 val;
val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0);
dispc_write_reg(dispc, DISPC_OVL_ACCU2_1(plane), val);
}
static void dispc_ovl_set_scale_param(struct dispc_device *dispc,
enum omap_plane_id plane,
u16 orig_width, u16 orig_height,
u16 out_width, u16 out_height,
bool five_taps, u8 rotation,
enum omap_color_component color_comp)
{
int fir_hinc, fir_vinc;
fir_hinc = 1024 * orig_width / out_width;
fir_vinc = 1024 * orig_height / out_height;
dispc_ovl_set_scale_coef(dispc, plane, fir_hinc, fir_vinc, five_taps,
color_comp);
dispc_ovl_set_fir(dispc, plane, fir_hinc, fir_vinc, color_comp);
}
static void dispc_ovl_set_accu_uv(struct dispc_device *dispc,
enum omap_plane_id plane,
u16 orig_width, u16 orig_height,
u16 out_width, u16 out_height,
bool ilace, u32 fourcc, u8 rotation)
{
int h_accu2_0, h_accu2_1;
int v_accu2_0, v_accu2_1;
int chroma_hinc, chroma_vinc;
int idx;
struct accu {
s8 h0_m, h0_n;
s8 h1_m, h1_n;
s8 v0_m, v0_n;
s8 v1_m, v1_n;
};
const struct accu *accu_table;
const struct accu *accu_val;
static const struct accu accu_nv12[4] = {
{ 0, 1, 0, 1 , -1, 2, 0, 1 },
{ 1, 2, -3, 4 , 0, 1, 0, 1 },
{ -1, 1, 0, 1 , -1, 2, 0, 1 },
{ -1, 2, -1, 2 , -1, 1, 0, 1 },
};
static const struct accu accu_nv12_ilace[4] = {
{ 0, 1, 0, 1 , -3, 4, -1, 4 },
{ -1, 4, -3, 4 , 0, 1, 0, 1 },
{ -1, 1, 0, 1 , -1, 4, -3, 4 },
{ -3, 4, -3, 4 , -1, 1, 0, 1 },
};
static const struct accu accu_yuv[4] = {
{ 0, 1, 0, 1, 0, 1, 0, 1 },
{ 0, 1, 0, 1, 0, 1, 0, 1 },
{ -1, 1, 0, 1, 0, 1, 0, 1 },
{ 0, 1, 0, 1, -1, 1, 0, 1 },
};
/* Note: DSS HW rotates clockwise, DRM_MODE_ROTATE_* counter-clockwise */
switch (rotation & DRM_MODE_ROTATE_MASK) {
default:
case DRM_MODE_ROTATE_0:
idx = 0;
break;
case DRM_MODE_ROTATE_90:
idx = 3;
break;
case DRM_MODE_ROTATE_180:
idx = 2;
break;
case DRM_MODE_ROTATE_270:
idx = 1;
break;
}
switch (fourcc) {
case DRM_FORMAT_NV12:
if (ilace)
accu_table = accu_nv12_ilace;
else
accu_table = accu_nv12;
break;
case DRM_FORMAT_YUYV:
case DRM_FORMAT_UYVY:
accu_table = accu_yuv;
break;
default:
BUG();
return;
}
accu_val = &accu_table[idx];
chroma_hinc = 1024 * orig_width / out_width;
chroma_vinc = 1024 * orig_height / out_height;
h_accu2_0 = (accu_val->h0_m * chroma_hinc / accu_val->h0_n) % 1024;
h_accu2_1 = (accu_val->h1_m * chroma_hinc / accu_val->h1_n) % 1024;
v_accu2_0 = (accu_val->v0_m * chroma_vinc / accu_val->v0_n) % 1024;
v_accu2_1 = (accu_val->v1_m * chroma_vinc / accu_val->v1_n) % 1024;
dispc_ovl_set_vid_accu2_0(dispc, plane, h_accu2_0, v_accu2_0);
dispc_ovl_set_vid_accu2_1(dispc, plane, h_accu2_1, v_accu2_1);
}
static void dispc_ovl_set_scaling_common(struct dispc_device *dispc,
enum omap_plane_id plane,
u16 orig_width, u16 orig_height,
u16 out_width, u16 out_height,
bool ilace, bool five_taps,
bool fieldmode, u32 fourcc,
u8 rotation)
{
int accu0 = 0;
int accu1 = 0;
u32 l;
dispc_ovl_set_scale_param(dispc, plane, orig_width, orig_height,
out_width, out_height, five_taps,
rotation, DISPC_COLOR_COMPONENT_RGB_Y);
l = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
/* RESIZEENABLE and VERTICALTAPS */
l &= ~((0x3 << 5) | (0x1 << 21));
l |= (orig_width != out_width) ? (1 << 5) : 0;
l |= (orig_height != out_height) ? (1 << 6) : 0;
l |= five_taps ? (1 << 21) : 0;
/* VRESIZECONF and HRESIZECONF */
if (dispc_has_feature(dispc, FEAT_RESIZECONF)) {
l &= ~(0x3 << 7);
l |= (orig_width <= out_width) ? 0 : (1 << 7);
l |= (orig_height <= out_height) ? 0 : (1 << 8);
}
/* LINEBUFFERSPLIT */
if (dispc_has_feature(dispc, FEAT_LINEBUFFERSPLIT)) {
l &= ~(0x1 << 22);
l |= five_taps ? (1 << 22) : 0;
}
dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), l);
/*
* field 0 = even field = bottom field
* field 1 = odd field = top field
*/
if (ilace && !fieldmode) {
accu1 = 0;
accu0 = ((1024 * orig_height / out_height) / 2) & 0x3ff;
if (accu0 >= 1024/2) {
accu1 = 1024/2;
accu0 -= accu1;
}
}
dispc_ovl_set_vid_accu0(dispc, plane, 0, accu0);
dispc_ovl_set_vid_accu1(dispc, plane, 0, accu1);
}
static void dispc_ovl_set_scaling_uv(struct dispc_device *dispc,
enum omap_plane_id plane,
u16 orig_width, u16 orig_height,
u16 out_width, u16 out_height,
bool ilace, bool five_taps,
bool fieldmode, u32 fourcc,
u8 rotation)
{
int scale_x = out_width != orig_width;
int scale_y = out_height != orig_height;
bool chroma_upscale = plane != OMAP_DSS_WB;
const struct drm_format_info *info;
info = drm_format_info(fourcc);
if (!dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE))
return;
if (!info->is_yuv) {
/* reset chroma resampling for RGB formats */
if (plane != OMAP_DSS_WB)
REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane),
0, 8, 8);
return;
}
dispc_ovl_set_accu_uv(dispc, plane, orig_width, orig_height, out_width,
out_height, ilace, fourcc, rotation);
switch (fourcc) {
case DRM_FORMAT_NV12:
if (chroma_upscale) {
/* UV is subsampled by 2 horizontally and vertically */
orig_height >>= 1;
orig_width >>= 1;
} else {
/* UV is downsampled by 2 horizontally and vertically */
orig_height <<= 1;
orig_width <<= 1;
}
break;
case DRM_FORMAT_YUYV:
case DRM_FORMAT_UYVY:
/* For YUV422 with 90/270 rotation, we don't upsample chroma */
if (!drm_rotation_90_or_270(rotation)) {
if (chroma_upscale)
/* UV is subsampled by 2 horizontally */
orig_width >>= 1;
else
/* UV is downsampled by 2 horizontally */
orig_width <<= 1;
}
/* must use FIR for YUV422 if rotated */
if ((rotation & DRM_MODE_ROTATE_MASK) != DRM_MODE_ROTATE_0)
scale_x = scale_y = true;
break;
default:
BUG();
return;
}
if (out_width != orig_width)
scale_x = true;
if (out_height != orig_height)
scale_y = true;
dispc_ovl_set_scale_param(dispc, plane, orig_width, orig_height,
out_width, out_height, five_taps,
rotation, DISPC_COLOR_COMPONENT_UV);
if (plane != OMAP_DSS_WB)
REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane),
(scale_x || scale_y) ? 1 : 0, 8, 8);
/* set H scaling */
REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), scale_x ? 1 : 0, 5, 5);
/* set V scaling */
REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), scale_y ? 1 : 0, 6, 6);
}
static void dispc_ovl_set_scaling(struct dispc_device *dispc,
enum omap_plane_id plane,
u16 orig_width, u16 orig_height,
u16 out_width, u16 out_height,
bool ilace, bool five_taps,
bool fieldmode, u32 fourcc,
u8 rotation)
{
BUG_ON(plane == OMAP_DSS_GFX);
dispc_ovl_set_scaling_common(dispc, plane, orig_width, orig_height,
out_width, out_height, ilace, five_taps,
fieldmode, fourcc, rotation);
dispc_ovl_set_scaling_uv(dispc, plane, orig_width, orig_height,
out_width, out_height, ilace, five_taps,
fieldmode, fourcc, rotation);
}
static void dispc_ovl_set_rotation_attrs(struct dispc_device *dispc,
enum omap_plane_id plane, u8 rotation,
enum omap_dss_rotation_type rotation_type,
u32 fourcc)
{
bool row_repeat = false;
int vidrot = 0;
/* Note: DSS HW rotates clockwise, DRM_MODE_ROTATE_* counter-clockwise */
if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY) {
if (rotation & DRM_MODE_REFLECT_X) {
switch (rotation & DRM_MODE_ROTATE_MASK) {
case DRM_MODE_ROTATE_0:
vidrot = 2;
break;
case DRM_MODE_ROTATE_90:
vidrot = 1;
break;
case DRM_MODE_ROTATE_180:
vidrot = 0;
break;
case DRM_MODE_ROTATE_270:
vidrot = 3;
break;
}
} else {
switch (rotation & DRM_MODE_ROTATE_MASK) {
case DRM_MODE_ROTATE_0:
vidrot = 0;
break;
case DRM_MODE_ROTATE_90:
vidrot = 3;
break;
case DRM_MODE_ROTATE_180:
vidrot = 2;
break;
case DRM_MODE_ROTATE_270:
vidrot = 1;
break;
}
}
if (drm_rotation_90_or_270(rotation))
row_repeat = true;
else
row_repeat = false;
}
/*
* OMAP4/5 Errata i631:
* NV12 in 1D mode must use ROTATION=1. Otherwise DSS will fetch extra
* rows beyond the framebuffer, which may cause OCP error.
*/
if (fourcc == DRM_FORMAT_NV12 && rotation_type != OMAP_DSS_ROT_TILER)
vidrot = 1;
REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), vidrot, 13, 12);
if (dispc_has_feature(dispc, FEAT_ROWREPEATENABLE))
REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane),
row_repeat ? 1 : 0, 18, 18);
if (dispc_ovl_color_mode_supported(dispc, plane, DRM_FORMAT_NV12)) {
bool doublestride =
fourcc == DRM_FORMAT_NV12 &&
rotation_type == OMAP_DSS_ROT_TILER &&
!drm_rotation_90_or_270(rotation);
/* DOUBLESTRIDE */
REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane),
doublestride, 22, 22);
}
}
static int color_mode_to_bpp(u32 fourcc)
{
switch (fourcc) {
case DRM_FORMAT_NV12:
return 8;
case DRM_FORMAT_RGBX4444:
case DRM_FORMAT_RGB565:
case DRM_FORMAT_ARGB4444:
case DRM_FORMAT_YUYV:
case DRM_FORMAT_UYVY:
case DRM_FORMAT_RGBA4444:
case DRM_FORMAT_XRGB4444:
case DRM_FORMAT_ARGB1555:
case DRM_FORMAT_XRGB1555:
return 16;
case DRM_FORMAT_RGB888:
return 24;
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
case DRM_FORMAT_RGBA8888:
case DRM_FORMAT_RGBX8888:
return 32;
default:
BUG();
return 0;
}
}
static s32 pixinc(int pixels, u8 ps)
{
if (pixels == 1)
return 1;
else if (pixels > 1)
return 1 + (pixels - 1) * ps;
else if (pixels < 0)
return 1 - (-pixels + 1) * ps;
BUG();
}
static void calc_offset(u16 screen_width, u16 width,
u32 fourcc, bool fieldmode, unsigned int field_offset,
unsigned int *offset0, unsigned int *offset1,
s32 *row_inc, s32 *pix_inc, int x_predecim, int y_predecim,
enum omap_dss_rotation_type rotation_type, u8 rotation)
{
u8 ps;
ps = color_mode_to_bpp(fourcc) / 8;
DSSDBG("scrw %d, width %d\n", screen_width, width);
if (rotation_type == OMAP_DSS_ROT_TILER &&
(fourcc == DRM_FORMAT_UYVY || fourcc == DRM_FORMAT_YUYV) &&
drm_rotation_90_or_270(rotation)) {
/*
* HACK: ROW_INC needs to be calculated with TILER units.
* We get such 'screen_width' that multiplying it with the
* YUV422 pixel size gives the correct TILER container width.
* However, 'width' is in pixels and multiplying it with YUV422
* pixel size gives incorrect result. We thus multiply it here
* with 2 to match the 32 bit TILER unit size.
*/
width *= 2;
}
/*
* field 0 = even field = bottom field
* field 1 = odd field = top field
*/
*offset0 = field_offset * screen_width * ps;
*offset1 = 0;
*row_inc = pixinc(1 + (y_predecim * screen_width - width * x_predecim) +
(fieldmode ? screen_width : 0), ps);
if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY)
*pix_inc = pixinc(x_predecim, 2 * ps);
else
*pix_inc = pixinc(x_predecim, ps);
}
/*
* This function is used to avoid synclosts in OMAP3, because of some
* undocumented horizontal position and timing related limitations.
*/
static int check_horiz_timing_omap3(unsigned long pclk, unsigned long lclk,
const struct videomode *vm, u16 pos_x,
u16 width, u16 height, u16 out_width, u16 out_height,
bool five_taps)
{
const int ds = DIV_ROUND_UP(height, out_height);
unsigned long nonactive;
static const u8 limits[3] = { 8, 10, 20 };
u64 val, blank;
int i;
nonactive = vm->hactive + vm->hfront_porch + vm->hsync_len +
vm->hback_porch - out_width;
i = 0;
if (out_height < height)
i++;
if (out_width < width)
i++;
blank = div_u64((u64)(vm->hback_porch + vm->hsync_len + vm->hfront_porch) *
lclk, pclk);
DSSDBG("blanking period + ppl = %llu (limit = %u)\n", blank, limits[i]);
if (blank <= limits[i])
return -EINVAL;
/* FIXME add checks for 3-tap filter once the limitations are known */
if (!five_taps)
return 0;
/*
* Pixel data should be prepared before visible display point starts.
* So, atleast DS-2 lines must have already been fetched by DISPC
* during nonactive - pos_x period.
*/
val = div_u64((u64)(nonactive - pos_x) * lclk, pclk);
DSSDBG("(nonactive - pos_x) * pcd = %llu max(0, DS - 2) * width = %d\n",
val, max(0, ds - 2) * width);
if (val < max(0, ds - 2) * width)
return -EINVAL;
/*
* All lines need to be refilled during the nonactive period of which
* only one line can be loaded during the active period. So, atleast
* DS - 1 lines should be loaded during nonactive period.
*/
val = div_u64((u64)nonactive * lclk, pclk);
DSSDBG("nonactive * pcd = %llu, max(0, DS - 1) * width = %d\n",
val, max(0, ds - 1) * width);
if (val < max(0, ds - 1) * width)
return -EINVAL;
return 0;
}
static unsigned long calc_core_clk_five_taps(unsigned long pclk,
const struct videomode *vm, u16 width,
u16 height, u16 out_width, u16 out_height,
u32 fourcc)
{
u32 core_clk = 0;
u64 tmp;
if (height <= out_height && width <= out_width)
return (unsigned long) pclk;
if (height > out_height) {
unsigned int ppl = vm->hactive;
tmp = (u64)pclk * height * out_width;
do_div(tmp, 2 * out_height * ppl);
core_clk = tmp;
if (height > 2 * out_height) {
if (ppl == out_width)
return 0;
tmp = (u64)pclk * (height - 2 * out_height) * out_width;
do_div(tmp, 2 * out_height * (ppl - out_width));
core_clk = max_t(u32, core_clk, tmp);
}
}
if (width > out_width) {
tmp = (u64)pclk * width;
do_div(tmp, out_width);
core_clk = max_t(u32, core_clk, tmp);
if (fourcc == DRM_FORMAT_XRGB8888)
core_clk <<= 1;
}
return core_clk;
}
static unsigned long calc_core_clk_24xx(unsigned long pclk, u16 width,
u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
{
if (height > out_height && width > out_width)
return pclk * 4;
else
return pclk * 2;
}
static unsigned long calc_core_clk_34xx(unsigned long pclk, u16 width,
u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
{
unsigned int hf, vf;
/*
* FIXME how to determine the 'A' factor
* for the no downscaling case ?
*/
if (width > 3 * out_width)
hf = 4;
else if (width > 2 * out_width)
hf = 3;
else if (width > out_width)
hf = 2;
else
hf = 1;
if (height > out_height)
vf = 2;
else
vf = 1;
return pclk * vf * hf;
}
static unsigned long calc_core_clk_44xx(unsigned long pclk, u16 width,
u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
{
/*
* If the overlay/writeback is in mem to mem mode, there are no
* downscaling limitations with respect to pixel clock, return 1 as
* required core clock to represent that we have sufficient enough
* core clock to do maximum downscaling
*/
if (mem_to_mem)
return 1;
if (width > out_width)
return DIV_ROUND_UP(pclk, out_width) * width;
else
return pclk;
}
static int dispc_ovl_calc_scaling_24xx(struct dispc_device *dispc,
unsigned long pclk, unsigned long lclk,
const struct videomode *vm,
u16 width, u16 height,
u16 out_width, u16 out_height,
u32 fourcc, bool *five_taps,
int *x_predecim, int *y_predecim,
int *decim_x, int *decim_y,
u16 pos_x, unsigned long *core_clk,
bool mem_to_mem)
{
int error;
u16 in_width, in_height;
int min_factor = min(*decim_x, *decim_y);
const int maxsinglelinewidth = dispc->feat->max_line_width;
*five_taps = false;
do {
in_height = height / *decim_y;
in_width = width / *decim_x;
*core_clk = dispc->feat->calc_core_clk(pclk, in_width,
in_height, out_width, out_height, mem_to_mem);
error = (in_width > maxsinglelinewidth || !*core_clk ||
*core_clk > dispc_core_clk_rate(dispc));
if (error) {
if (*decim_x == *decim_y) {
*decim_x = min_factor;
++*decim_y;
} else {
swap(*decim_x, *decim_y);
if (*decim_x < *decim_y)
++*decim_x;
}
}
} while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error);
if (error) {
DSSERR("failed to find scaling settings\n");
return -EINVAL;
}
if (in_width > maxsinglelinewidth) {
DSSERR("Cannot scale max input width exceeded\n");
return -EINVAL;
}
return 0;
}
static int dispc_ovl_calc_scaling_34xx(struct dispc_device *dispc,
unsigned long pclk, unsigned long lclk,
const struct videomode *vm,
u16 width, u16 height,
u16 out_width, u16 out_height,
u32 fourcc, bool *five_taps,
int *x_predecim, int *y_predecim,
int *decim_x, int *decim_y,
u16 pos_x, unsigned long *core_clk,
bool mem_to_mem)
{
int error;
u16 in_width, in_height;
const int maxsinglelinewidth = dispc->feat->max_line_width;
do {
in_height = height / *decim_y;
in_width = width / *decim_x;
*five_taps = in_height > out_height;
if (in_width > maxsinglelinewidth)
if (in_height > out_height &&
in_height < out_height * 2)
*five_taps = false;
again:
if (*five_taps)
*core_clk = calc_core_clk_five_taps(pclk, vm,
in_width, in_height, out_width,
out_height, fourcc);
else
*core_clk = dispc->feat->calc_core_clk(pclk, in_width,
in_height, out_width, out_height,
mem_to_mem);
error = check_horiz_timing_omap3(pclk, lclk, vm,
pos_x, in_width, in_height, out_width,
out_height, *five_taps);
if (error && *five_taps) {
*five_taps = false;
goto again;
}
error = (error || in_width > maxsinglelinewidth * 2 ||
(in_width > maxsinglelinewidth && *five_taps) ||
!*core_clk || *core_clk > dispc_core_clk_rate(dispc));
if (!error) {
/* verify that we're inside the limits of scaler */
if (in_width / 4 > out_width)
error = 1;
if (*five_taps) {
if (in_height / 4 > out_height)
error = 1;
} else {
if (in_height / 2 > out_height)
error = 1;
}
}
if (error)
++*decim_y;
} while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error);
if (error) {
DSSERR("failed to find scaling settings\n");
return -EINVAL;
}
if (check_horiz_timing_omap3(pclk, lclk, vm, pos_x, in_width,
in_height, out_width, out_height, *five_taps)) {
DSSERR("horizontal timing too tight\n");
return -EINVAL;
}
if (in_width > (maxsinglelinewidth * 2)) {
DSSERR("Cannot setup scaling\n");
DSSERR("width exceeds maximum width possible\n");
return -EINVAL;
}
if (in_width > maxsinglelinewidth && *five_taps) {
DSSERR("cannot setup scaling with five taps\n");
return -EINVAL;
}
return 0;
}
static int dispc_ovl_calc_scaling_44xx(struct dispc_device *dispc,
unsigned long pclk, unsigned long lclk,
const struct videomode *vm,
u16 width, u16 height,
u16 out_width, u16 out_height,
u32 fourcc, bool *five_taps,
int *x_predecim, int *y_predecim,
int *decim_x, int *decim_y,
u16 pos_x, unsigned long *core_clk,
bool mem_to_mem)
{
u16 in_width, in_width_max;
int decim_x_min = *decim_x;
u16 in_height = height / *decim_y;
const int maxsinglelinewidth = dispc->feat->max_line_width;
const int maxdownscale = dispc->feat->max_downscale;
if (mem_to_mem) {
in_width_max = out_width * maxdownscale;
} else {
in_width_max = dispc_core_clk_rate(dispc)
/ DIV_ROUND_UP(pclk, out_width);
}
*decim_x = DIV_ROUND_UP(width, in_width_max);
*decim_x = max(*decim_x, decim_x_min);
if (*decim_x > *x_predecim)
return -EINVAL;
do {
in_width = width / *decim_x;
} while (*decim_x <= *x_predecim &&
in_width > maxsinglelinewidth && ++*decim_x);
if (in_width > maxsinglelinewidth) {
DSSERR("Cannot scale width exceeds max line width\n");
return -EINVAL;
}
if (*decim_x > 4 && fourcc != DRM_FORMAT_NV12) {
/*
* Let's disable all scaling that requires horizontal
* decimation with higher factor than 4, until we have
* better estimates of what we can and can not
* do. However, NV12 color format appears to work Ok
* with all decimation factors.
*
* When decimating horizontally by more that 4 the dss
* is not able to fetch the data in burst mode. When
* this happens it is hard to tell if there enough
* bandwidth. Despite what theory says this appears to
* be true also for 16-bit color formats.
*/
DSSERR("Not enough bandwidth, too much downscaling (x-decimation factor %d > 4)\n", *decim_x);
return -EINVAL;
}
*core_clk = dispc->feat->calc_core_clk(pclk, in_width, in_height,
out_width, out_height, mem_to_mem);
return 0;
}
enum omap_overlay_caps dispc_ovl_get_caps(struct dispc_device *dispc, enum omap_plane_id plane)
{
return dispc->feat->overlay_caps[plane];
}
#define DIV_FRAC(dividend, divisor) \
((dividend) * 100 / (divisor) - ((dividend) / (divisor) * 100))
static int dispc_ovl_calc_scaling(struct dispc_device *dispc,
enum omap_plane_id plane,
unsigned long pclk, unsigned long lclk,
enum omap_overlay_caps caps,
const struct videomode *vm,
u16 width, u16 height,
u16 out_width, u16 out_height,
u32 fourcc, bool *five_taps,
int *x_predecim, int *y_predecim, u16 pos_x,
enum omap_dss_rotation_type rotation_type,
bool mem_to_mem)
{
int maxhdownscale = dispc->feat->max_downscale;
int maxvdownscale = dispc->feat->max_downscale;
const int max_decim_limit = 16;
unsigned long core_clk = 0;
int decim_x, decim_y, ret;
if (width == out_width && height == out_height)
return 0;
if (dispc->feat->supported_scaler_color_modes) {
const u32 *modes = dispc->feat->supported_scaler_color_modes;
unsigned int i;
for (i = 0; modes[i]; ++i) {
if (modes[i] == fourcc)
break;
}
if (modes[i] == 0)
return -EINVAL;
}
if (plane == OMAP_DSS_WB) {
switch (fourcc) {
case DRM_FORMAT_NV12:
maxhdownscale = maxvdownscale = 2;
break;
case DRM_FORMAT_YUYV:
case DRM_FORMAT_UYVY:
maxhdownscale = 2;
maxvdownscale = 4;
break;
default:
break;
}
}
if (!mem_to_mem && (pclk == 0 || vm->pixelclock == 0)) {
DSSERR("cannot calculate scaling settings: pclk is zero\n");
return -EINVAL;
}
if ((caps & OMAP_DSS_OVL_CAP_SCALE) == 0)
return -EINVAL;
if (mem_to_mem) {
*x_predecim = *y_predecim = 1;
} else {
*x_predecim = max_decim_limit;
*y_predecim = (rotation_type == OMAP_DSS_ROT_TILER &&
dispc_has_feature(dispc, FEAT_BURST_2D)) ?
2 : max_decim_limit;
}
decim_x = DIV_ROUND_UP(DIV_ROUND_UP(width, out_width), maxhdownscale);
decim_y = DIV_ROUND_UP(DIV_ROUND_UP(height, out_height), maxvdownscale);
if (decim_x > *x_predecim || out_width > width * 8)
return -EINVAL;
if (decim_y > *y_predecim || out_height > height * 8)
return -EINVAL;
ret = dispc->feat->calc_scaling(dispc, pclk, lclk, vm, width, height,
out_width, out_height, fourcc,
five_taps, x_predecim, y_predecim,
&decim_x, &decim_y, pos_x, &core_clk,
mem_to_mem);
if (ret)
return ret;
DSSDBG("%dx%d -> %dx%d (%d.%02d x %d.%02d), decim %dx%d %dx%d (%d.%02d x %d.%02d), taps %d, req clk %lu, cur clk %lu\n",
width, height,
out_width, out_height,
out_width / width, DIV_FRAC(out_width, width),
out_height / height, DIV_FRAC(out_height, height),
decim_x, decim_y,
width / decim_x, height / decim_y,
out_width / (width / decim_x), DIV_FRAC(out_width, width / decim_x),
out_height / (height / decim_y), DIV_FRAC(out_height, height / decim_y),
*five_taps ? 5 : 3,
core_clk, dispc_core_clk_rate(dispc));
if (!core_clk || core_clk > dispc_core_clk_rate(dispc)) {
DSSERR("failed to set up scaling, "
"required core clk rate = %lu Hz, "
"current core clk rate = %lu Hz\n",
core_clk, dispc_core_clk_rate(dispc));
return -EINVAL;
}
*x_predecim = decim_x;
*y_predecim = decim_y;
return 0;
}
void dispc_ovl_get_max_size(struct dispc_device *dispc, u16 *width, u16 *height)
{
*width = dispc->feat->ovl_width_max;
*height = dispc->feat->ovl_height_max;
}
static int dispc_ovl_setup_common(struct dispc_device *dispc,
enum omap_plane_id plane,
enum omap_overlay_caps caps,
u32 paddr, u32 p_uv_addr,
u16 screen_width, int pos_x, int pos_y,
u16 width, u16 height,
u16 out_width, u16 out_height,
u32 fourcc, u8 rotation, u8 zorder,
u8 pre_mult_alpha, u8 global_alpha,
enum omap_dss_rotation_type rotation_type,
bool replication, const struct videomode *vm,
bool mem_to_mem,
enum drm_color_encoding color_encoding,
enum drm_color_range color_range)
{
bool five_taps = true;
bool fieldmode = false;
int r, cconv = 0;
unsigned int offset0, offset1;
s32 row_inc;
s32 pix_inc;
u16 frame_width;
unsigned int field_offset = 0;
u16 in_height = height;
u16 in_width = width;
int x_predecim = 1, y_predecim = 1;
bool ilace = !!(vm->flags & DISPLAY_FLAGS_INTERLACED);
unsigned long pclk = dispc_plane_pclk_rate(dispc, plane);
unsigned long lclk = dispc_plane_lclk_rate(dispc, plane);
const struct drm_format_info *info;
info = drm_format_info(fourcc);
/* when setting up WB, dispc_plane_pclk_rate() returns 0 */
if (plane == OMAP_DSS_WB)
pclk = vm->pixelclock;
if (paddr == 0 && rotation_type != OMAP_DSS_ROT_TILER)
return -EINVAL;
if (info->is_yuv && (in_width & 1)) {
DSSERR("input width %d is not even for YUV format\n", in_width);
return -EINVAL;
}
out_width = out_width == 0 ? width : out_width;
out_height = out_height == 0 ? height : out_height;
if (plane != OMAP_DSS_WB) {
if (ilace && height == out_height)
fieldmode = true;
if (ilace) {
if (fieldmode)
in_height /= 2;
pos_y /= 2;
out_height /= 2;
DSSDBG("adjusting for ilace: height %d, pos_y %d, out_height %d\n",
in_height, pos_y, out_height);
}
}
if (!dispc_ovl_color_mode_supported(dispc, plane, fourcc))
return -EINVAL;
r = dispc_ovl_calc_scaling(dispc, plane, pclk, lclk, caps, vm, in_width,
in_height, out_width, out_height, fourcc,
&five_taps, &x_predecim, &y_predecim, pos_x,
rotation_type, mem_to_mem);
if (r)
return r;
in_width = in_width / x_predecim;
in_height = in_height / y_predecim;
if (x_predecim > 1 || y_predecim > 1)
DSSDBG("predecimation %d x %x, new input size %d x %d\n",
x_predecim, y_predecim, in_width, in_height);
if (info->is_yuv && (in_width & 1)) {
DSSDBG("predecimated input width is not even for YUV format\n");
DSSDBG("adjusting input width %d -> %d\n",
in_width, in_width & ~1);
in_width &= ~1;
}
if (info->is_yuv)
cconv = 1;
if (ilace && !fieldmode) {
/*
* when downscaling the bottom field may have to start several
* source lines below the top field. Unfortunately ACCUI
* registers will only hold the fractional part of the offset
* so the integer part must be added to the base address of the
* bottom field.
*/
if (!in_height || in_height == out_height)
field_offset = 0;
else
field_offset = in_height / out_height / 2;
}
/* Fields are independent but interleaved in memory. */
if (fieldmode)
field_offset = 1;
offset0 = 0;
offset1 = 0;
row_inc = 0;
pix_inc = 0;
if (plane == OMAP_DSS_WB)
frame_width = out_width;
else
frame_width = in_width;
calc_offset(screen_width, frame_width,
fourcc, fieldmode, field_offset,
&offset0, &offset1, &row_inc, &pix_inc,
x_predecim, y_predecim,
rotation_type, rotation);
DSSDBG("offset0 %u, offset1 %u, row_inc %d, pix_inc %d\n",
offset0, offset1, row_inc, pix_inc);
dispc_ovl_set_color_mode(dispc, plane, fourcc);
dispc_ovl_configure_burst_type(dispc, plane, rotation_type);
if (dispc->feat->reverse_ilace_field_order)
swap(offset0, offset1);
dispc_ovl_set_ba0(dispc, plane, paddr + offset0);
dispc_ovl_set_ba1(dispc, plane, paddr + offset1);
if (fourcc == DRM_FORMAT_NV12) {
dispc_ovl_set_ba0_uv(dispc, plane, p_uv_addr + offset0);
dispc_ovl_set_ba1_uv(dispc, plane, p_uv_addr + offset1);
}
if (dispc->feat->last_pixel_inc_missing)
row_inc += pix_inc - 1;
dispc_ovl_set_row_inc(dispc, plane, row_inc);
dispc_ovl_set_pix_inc(dispc, plane, pix_inc);
DSSDBG("%d,%d %dx%d -> %dx%d\n", pos_x, pos_y, in_width,
in_height, out_width, out_height);
dispc_ovl_set_pos(dispc, plane, caps, pos_x, pos_y);
dispc_ovl_set_input_size(dispc, plane, in_width, in_height);
if (caps & OMAP_DSS_OVL_CAP_SCALE) {
dispc_ovl_set_scaling(dispc, plane, in_width, in_height,
out_width, out_height, ilace, five_taps,
fieldmode, fourcc, rotation);
dispc_ovl_set_output_size(dispc, plane, out_width, out_height);
dispc_ovl_set_vid_color_conv(dispc, plane, cconv);
if (plane != OMAP_DSS_WB)
dispc_ovl_set_csc(dispc, plane, color_encoding, color_range);
}
dispc_ovl_set_rotation_attrs(dispc, plane, rotation, rotation_type,
fourcc);
dispc_ovl_set_zorder(dispc, plane, caps, zorder);
dispc_ovl_set_pre_mult_alpha(dispc, plane, caps, pre_mult_alpha);
dispc_ovl_setup_global_alpha(dispc, plane, caps, global_alpha);
dispc_ovl_enable_replication(dispc, plane, caps, replication);
return 0;
}
int dispc_ovl_setup(struct dispc_device *dispc,
enum omap_plane_id plane,
const struct omap_overlay_info *oi,
const struct videomode *vm, bool mem_to_mem,
enum omap_channel channel)
{
int r;
enum omap_overlay_caps caps = dispc->feat->overlay_caps[plane];
const bool replication = true;
DSSDBG("dispc_ovl_setup %d, pa %pad, pa_uv %pad, sw %d, %d,%d, %dx%d ->"
" %dx%d, cmode %x, rot %d, chan %d repl %d\n",
plane, &oi->paddr, &oi->p_uv_addr, oi->screen_width, oi->pos_x,
oi->pos_y, oi->width, oi->height, oi->out_width, oi->out_height,
oi->fourcc, oi->rotation, channel, replication);
dispc_ovl_set_channel_out(dispc, plane, channel);
r = dispc_ovl_setup_common(dispc, plane, caps, oi->paddr, oi->p_uv_addr,
oi->screen_width, oi->pos_x, oi->pos_y, oi->width, oi->height,
oi->out_width, oi->out_height, oi->fourcc, oi->rotation,
oi->zorder, oi->pre_mult_alpha, oi->global_alpha,
oi->rotation_type, replication, vm, mem_to_mem,
oi->color_encoding, oi->color_range);
return r;
}
int dispc_wb_setup(struct dispc_device *dispc,
const struct omap_dss_writeback_info *wi,
bool mem_to_mem, const struct videomode *vm,
enum dss_writeback_channel channel_in)
{
int r;
u32 l;
enum omap_plane_id plane = OMAP_DSS_WB;
const int pos_x = 0, pos_y = 0;
const u8 zorder = 0, global_alpha = 0;
const bool replication = true;
bool truncation;
int in_width = vm->hactive;
int in_height = vm->vactive;
enum omap_overlay_caps caps =
OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA;
if (vm->flags & DISPLAY_FLAGS_INTERLACED)
in_height /= 2;
DSSDBG("dispc_wb_setup, pa %x, pa_uv %x, %d,%d -> %dx%d, cmode %x, "
"rot %d\n", wi->paddr, wi->p_uv_addr, in_width,
in_height, wi->width, wi->height, wi->fourcc, wi->rotation);
r = dispc_ovl_setup_common(dispc, plane, caps, wi->paddr, wi->p_uv_addr,
wi->buf_width, pos_x, pos_y, in_width, in_height, wi->width,
wi->height, wi->fourcc, wi->rotation, zorder,
wi->pre_mult_alpha, global_alpha, wi->rotation_type,
replication, vm, mem_to_mem, DRM_COLOR_YCBCR_BT601,
DRM_COLOR_YCBCR_LIMITED_RANGE);
if (r)
return r;
switch (wi->fourcc) {
case DRM_FORMAT_RGB565:
case DRM_FORMAT_RGB888:
case DRM_FORMAT_ARGB4444:
case DRM_FORMAT_RGBA4444:
case DRM_FORMAT_RGBX4444:
case DRM_FORMAT_ARGB1555:
case DRM_FORMAT_XRGB1555:
case DRM_FORMAT_XRGB4444:
truncation = true;
break;
default:
truncation = false;
break;
}
/* setup extra DISPC_WB_ATTRIBUTES */
l = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
l = FLD_MOD(l, truncation, 10, 10); /* TRUNCATIONENABLE */
l = FLD_MOD(l, channel_in, 18, 16); /* CHANNELIN */
l = FLD_MOD(l, mem_to_mem, 19, 19); /* WRITEBACKMODE */
if (mem_to_mem)
l = FLD_MOD(l, 1, 26, 24); /* CAPTUREMODE */
else
l = FLD_MOD(l, 0, 26, 24); /* CAPTUREMODE */
dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), l);
if (mem_to_mem) {
/* WBDELAYCOUNT */
REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), 0, 7, 0);
} else {
u32 wbdelay;
if (channel_in == DSS_WB_TV_MGR)
wbdelay = vm->vsync_len + vm->vback_porch;
else
wbdelay = vm->vfront_porch + vm->vsync_len +
vm->vback_porch;
if (vm->flags & DISPLAY_FLAGS_INTERLACED)
wbdelay /= 2;
wbdelay = min(wbdelay, 255u);
/* WBDELAYCOUNT */
REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), wbdelay, 7, 0);
}
return 0;
}
bool dispc_has_writeback(struct dispc_device *dispc)
{
return dispc->feat->has_writeback;
}
int dispc_ovl_enable(struct dispc_device *dispc,
enum omap_plane_id plane, bool enable)
{
DSSDBG("dispc_enable_plane %d, %d\n", plane, enable);
REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 0, 0);
return 0;
}
static void dispc_lcd_enable_signal_polarity(struct dispc_device *dispc,
bool act_high)
{
if (!dispc_has_feature(dispc, FEAT_LCDENABLEPOL))
return;
REG_FLD_MOD(dispc, DISPC_CONTROL, act_high ? 1 : 0, 29, 29);
}
void dispc_lcd_enable_signal(struct dispc_device *dispc, bool enable)
{
if (!dispc_has_feature(dispc, FEAT_LCDENABLESIGNAL))
return;
REG_FLD_MOD(dispc, DISPC_CONTROL, enable ? 1 : 0, 28, 28);
}
void dispc_pck_free_enable(struct dispc_device *dispc, bool enable)
{
if (!dispc_has_feature(dispc, FEAT_PCKFREEENABLE))
return;
REG_FLD_MOD(dispc, DISPC_CONTROL, enable ? 1 : 0, 27, 27);
}
static void dispc_mgr_enable_fifohandcheck(struct dispc_device *dispc,
enum omap_channel channel,
bool enable)
{
mgr_fld_write(dispc, channel, DISPC_MGR_FLD_FIFOHANDCHECK, enable);
}
static void dispc_mgr_set_lcd_type_tft(struct dispc_device *dispc,
enum omap_channel channel)
{
mgr_fld_write(dispc, channel, DISPC_MGR_FLD_STNTFT, 1);
}
static void dispc_set_loadmode(struct dispc_device *dispc,
enum omap_dss_load_mode mode)
{
REG_FLD_MOD(dispc, DISPC_CONFIG, mode, 2, 1);
}
static void dispc_mgr_set_default_color(struct dispc_device *dispc,
enum omap_channel channel, u32 color)
{
dispc_write_reg(dispc, DISPC_DEFAULT_COLOR(channel), color);
}
static void dispc_mgr_set_trans_key(struct dispc_device *dispc,
enum omap_channel ch,
enum omap_dss_trans_key_type type,
u32 trans_key)
{
mgr_fld_write(dispc, ch, DISPC_MGR_FLD_TCKSELECTION, type);
dispc_write_reg(dispc, DISPC_TRANS_COLOR(ch), trans_key);
}
static void dispc_mgr_enable_trans_key(struct dispc_device *dispc,
enum omap_channel ch, bool enable)
{
mgr_fld_write(dispc, ch, DISPC_MGR_FLD_TCKENABLE, enable);
}
static void dispc_mgr_enable_alpha_fixed_zorder(struct dispc_device *dispc,
enum omap_channel ch,
bool enable)
{
if (!dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER))
return;
if (ch == OMAP_DSS_CHANNEL_LCD)
REG_FLD_MOD(dispc, DISPC_CONFIG, enable, 18, 18);
else if (ch == OMAP_DSS_CHANNEL_DIGIT)
REG_FLD_MOD(dispc, DISPC_CONFIG, enable, 19, 19);
}
void dispc_mgr_setup(struct dispc_device *dispc,
enum omap_channel channel,
const struct omap_overlay_manager_info *info)
{
dispc_mgr_set_default_color(dispc, channel, info->default_color);
dispc_mgr_set_trans_key(dispc, channel, info->trans_key_type,
info->trans_key);
dispc_mgr_enable_trans_key(dispc, channel, info->trans_enabled);
dispc_mgr_enable_alpha_fixed_zorder(dispc, channel,
info->partial_alpha_enabled);
if (dispc_has_feature(dispc, FEAT_CPR)) {
dispc_mgr_enable_cpr(dispc, channel, info->cpr_enable);
dispc_mgr_set_cpr_coef(dispc, channel, &info->cpr_coefs);
}
}
static void dispc_mgr_set_tft_data_lines(struct dispc_device *dispc,
enum omap_channel channel,
u8 data_lines)
{
int code;
switch (data_lines) {
case 12:
code = 0;
break;
case 16:
code = 1;
break;
case 18:
code = 2;
break;
case 24:
code = 3;
break;
default:
BUG();
return;
}
mgr_fld_write(dispc, channel, DISPC_MGR_FLD_TFTDATALINES, code);
}
static void dispc_mgr_set_io_pad_mode(struct dispc_device *dispc,
enum dss_io_pad_mode mode)
{
u32 l;
int gpout0, gpout1;
switch (mode) {
case DSS_IO_PAD_MODE_RESET:
gpout0 = 0;
gpout1 = 0;
break;
case DSS_IO_PAD_MODE_RFBI:
gpout0 = 1;
gpout1 = 0;
break;
case DSS_IO_PAD_MODE_BYPASS:
gpout0 = 1;
gpout1 = 1;
break;
default:
BUG();
return;
}
l = dispc_read_reg(dispc, DISPC_CONTROL);
l = FLD_MOD(l, gpout0, 15, 15);
l = FLD_MOD(l, gpout1, 16, 16);
dispc_write_reg(dispc, DISPC_CONTROL, l);
}
static void dispc_mgr_enable_stallmode(struct dispc_device *dispc,
enum omap_channel channel, bool enable)
{
mgr_fld_write(dispc, channel, DISPC_MGR_FLD_STALLMODE, enable);
}
void dispc_mgr_set_lcd_config(struct dispc_device *dispc,
enum omap_channel channel,
const struct dss_lcd_mgr_config *config)
{
dispc_mgr_set_io_pad_mode(dispc, config->io_pad_mode);
dispc_mgr_enable_stallmode(dispc, channel, config->stallmode);
dispc_mgr_enable_fifohandcheck(dispc, channel, config->fifohandcheck);
dispc_mgr_set_clock_div(dispc, channel, &config->clock_info);
dispc_mgr_set_tft_data_lines(dispc, channel, config->video_port_width);
dispc_lcd_enable_signal_polarity(dispc, config->lcden_sig_polarity);
dispc_mgr_set_lcd_type_tft(dispc, channel);
}
static bool _dispc_mgr_size_ok(struct dispc_device *dispc,
u16 width, u16 height)
{
return width <= dispc->feat->mgr_width_max &&
height <= dispc->feat->mgr_height_max;
}
static bool _dispc_lcd_timings_ok(struct dispc_device *dispc,
int hsync_len, int hfp, int hbp,
int vsw, int vfp, int vbp)
{
if (hsync_len < 1 || hsync_len > dispc->feat->sw_max ||
hfp < 1 || hfp > dispc->feat->hp_max ||
hbp < 1 || hbp > dispc->feat->hp_max ||
vsw < 1 || vsw > dispc->feat->sw_max ||
vfp < 0 || vfp > dispc->feat->vp_max ||
vbp < 0 || vbp > dispc->feat->vp_max)
return false;
return true;
}
static bool _dispc_mgr_pclk_ok(struct dispc_device *dispc,
enum omap_channel channel,
unsigned long pclk)
{
if (dss_mgr_is_lcd(channel))
return pclk <= dispc->feat->max_lcd_pclk;
else
return pclk <= dispc->feat->max_tv_pclk;
}
int dispc_mgr_check_timings(struct dispc_device *dispc,
enum omap_channel channel,
const struct videomode *vm)
{
if (!_dispc_mgr_size_ok(dispc, vm->hactive, vm->vactive))
return MODE_BAD;
if (!_dispc_mgr_pclk_ok(dispc, channel, vm->pixelclock))
return MODE_BAD;
if (dss_mgr_is_lcd(channel)) {
/* TODO: OMAP4+ supports interlace for LCD outputs */
if (vm->flags & DISPLAY_FLAGS_INTERLACED)
return MODE_BAD;
if (!_dispc_lcd_timings_ok(dispc, vm->hsync_len,
vm->hfront_porch, vm->hback_porch,
vm->vsync_len, vm->vfront_porch,
vm->vback_porch))
return MODE_BAD;
}
return MODE_OK;
}
static void _dispc_mgr_set_lcd_timings(struct dispc_device *dispc,
enum omap_channel channel,
const struct videomode *vm)
{
u32 timing_h, timing_v, l;
bool onoff, rf, ipc, vs, hs, de;
timing_h = FLD_VAL(vm->hsync_len - 1, dispc->feat->sw_start, 0) |
FLD_VAL(vm->hfront_porch - 1, dispc->feat->fp_start, 8) |
FLD_VAL(vm->hback_porch - 1, dispc->feat->bp_start, 20);
timing_v = FLD_VAL(vm->vsync_len - 1, dispc->feat->sw_start, 0) |
FLD_VAL(vm->vfront_porch, dispc->feat->fp_start, 8) |
FLD_VAL(vm->vback_porch, dispc->feat->bp_start, 20);
dispc_write_reg(dispc, DISPC_TIMING_H(channel), timing_h);
dispc_write_reg(dispc, DISPC_TIMING_V(channel), timing_v);
vs = !!(vm->flags & DISPLAY_FLAGS_VSYNC_LOW);
hs = !!(vm->flags & DISPLAY_FLAGS_HSYNC_LOW);
de = !!(vm->flags & DISPLAY_FLAGS_DE_LOW);
ipc = !!(vm->flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE);
onoff = true; /* always use the 'rf' setting */
rf = !!(vm->flags & DISPLAY_FLAGS_SYNC_POSEDGE);
l = FLD_VAL(onoff, 17, 17) |
FLD_VAL(rf, 16, 16) |
FLD_VAL(de, 15, 15) |
FLD_VAL(ipc, 14, 14) |
FLD_VAL(hs, 13, 13) |
FLD_VAL(vs, 12, 12);
/* always set ALIGN bit when available */
if (dispc->feat->supports_sync_align)
l |= (1 << 18);
dispc_write_reg(dispc, DISPC_POL_FREQ(channel), l);
if (dispc->syscon_pol) {
const int shifts[] = {
[OMAP_DSS_CHANNEL_LCD] = 0,
[OMAP_DSS_CHANNEL_LCD2] = 1,
[OMAP_DSS_CHANNEL_LCD3] = 2,
};
u32 mask, val;
mask = (1 << 0) | (1 << 3) | (1 << 6);
val = (rf << 0) | (ipc << 3) | (onoff << 6);
mask <<= 16 + shifts[channel];
val <<= 16 + shifts[channel];
regmap_update_bits(dispc->syscon_pol, dispc->syscon_pol_offset,
mask, val);
}
}
static int vm_flag_to_int(enum display_flags flags, enum display_flags high,
enum display_flags low)
{
if (flags & high)
return 1;
if (flags & low)
return -1;
return 0;
}
/* change name to mode? */
void dispc_mgr_set_timings(struct dispc_device *dispc,
enum omap_channel channel,
const struct videomode *vm)
{
unsigned int xtot, ytot;
unsigned long ht, vt;
struct videomode t = *vm;
DSSDBG("channel %d xres %u yres %u\n", channel, t.hactive, t.vactive);
if (dispc_mgr_check_timings(dispc, channel, &t)) {
BUG();
return;
}
if (dss_mgr_is_lcd(channel)) {
_dispc_mgr_set_lcd_timings(dispc, channel, &t);
xtot = t.hactive + t.hfront_porch + t.hsync_len + t.hback_porch;
ytot = t.vactive + t.vfront_porch + t.vsync_len + t.vback_porch;
ht = vm->pixelclock / xtot;
vt = vm->pixelclock / xtot / ytot;
DSSDBG("pck %lu\n", vm->pixelclock);
DSSDBG("hsync_len %d hfp %d hbp %d vsw %d vfp %d vbp %d\n",
t.hsync_len, t.hfront_porch, t.hback_porch,
t.vsync_len, t.vfront_porch, t.vback_porch);
DSSDBG("vsync_level %d hsync_level %d data_pclk_edge %d de_level %d sync_pclk_edge %d\n",
vm_flag_to_int(t.flags, DISPLAY_FLAGS_VSYNC_HIGH, DISPLAY_FLAGS_VSYNC_LOW),
vm_flag_to_int(t.flags, DISPLAY_FLAGS_HSYNC_HIGH, DISPLAY_FLAGS_HSYNC_LOW),
vm_flag_to_int(t.flags, DISPLAY_FLAGS_PIXDATA_POSEDGE, DISPLAY_FLAGS_PIXDATA_NEGEDGE),
vm_flag_to_int(t.flags, DISPLAY_FLAGS_DE_HIGH, DISPLAY_FLAGS_DE_LOW),
vm_flag_to_int(t.flags, DISPLAY_FLAGS_SYNC_POSEDGE, DISPLAY_FLAGS_SYNC_NEGEDGE));
DSSDBG("hsync %luHz, vsync %luHz\n", ht, vt);
} else {
if (t.flags & DISPLAY_FLAGS_INTERLACED)
t.vactive /= 2;
if (dispc->feat->supports_double_pixel)
REG_FLD_MOD(dispc, DISPC_CONTROL,
!!(t.flags & DISPLAY_FLAGS_DOUBLECLK),
19, 17);
}
dispc_mgr_set_size(dispc, channel, t.hactive, t.vactive);
}
static void dispc_mgr_set_lcd_divisor(struct dispc_device *dispc,
enum omap_channel channel, u16 lck_div,
u16 pck_div)
{
BUG_ON(lck_div < 1);
BUG_ON(pck_div < 1);
dispc_write_reg(dispc, DISPC_DIVISORo(channel),
FLD_VAL(lck_div, 23, 16) | FLD_VAL(pck_div, 7, 0));
if (!dispc_has_feature(dispc, FEAT_CORE_CLK_DIV) &&
channel == OMAP_DSS_CHANNEL_LCD)
dispc->core_clk_rate = dispc_fclk_rate(dispc) / lck_div;
}
static void dispc_mgr_get_lcd_divisor(struct dispc_device *dispc,
enum omap_channel channel, int *lck_div,
int *pck_div)
{
u32 l;
l = dispc_read_reg(dispc, DISPC_DIVISORo(channel));
*lck_div = FLD_GET(l, 23, 16);
*pck_div = FLD_GET(l, 7, 0);
}
static unsigned long dispc_fclk_rate(struct dispc_device *dispc)
{
unsigned long r;
enum dss_clk_source src;
src = dss_get_dispc_clk_source(dispc->dss);
if (src == DSS_CLK_SRC_FCK) {
r = dss_get_dispc_clk_rate(dispc->dss);
} else {
struct dss_pll *pll;
unsigned int clkout_idx;
pll = dss_pll_find_by_src(dispc->dss, src);
clkout_idx = dss_pll_get_clkout_idx_for_src(src);
r = pll->cinfo.clkout[clkout_idx];
}
return r;
}
static unsigned long dispc_mgr_lclk_rate(struct dispc_device *dispc,
enum omap_channel channel)
{
int lcd;
unsigned long r;
enum dss_clk_source src;
/* for TV, LCLK rate is the FCLK rate */
if (!dss_mgr_is_lcd(channel))
return dispc_fclk_rate(dispc);
src = dss_get_lcd_clk_source(dispc->dss, channel);
if (src == DSS_CLK_SRC_FCK) {
r = dss_get_dispc_clk_rate(dispc->dss);
} else {
struct dss_pll *pll;
unsigned int clkout_idx;
pll = dss_pll_find_by_src(dispc->dss, src);
clkout_idx = dss_pll_get_clkout_idx_for_src(src);
r = pll->cinfo.clkout[clkout_idx];
}
lcd = REG_GET(dispc, DISPC_DIVISORo(channel), 23, 16);
return r / lcd;
}
static unsigned long dispc_mgr_pclk_rate(struct dispc_device *dispc,
enum omap_channel channel)
{
unsigned long r;
if (dss_mgr_is_lcd(channel)) {
int pcd;
u32 l;
l = dispc_read_reg(dispc, DISPC_DIVISORo(channel));
pcd = FLD_GET(l, 7, 0);
r = dispc_mgr_lclk_rate(dispc, channel);
return r / pcd;
} else {
return dispc->tv_pclk_rate;
}
}
void dispc_set_tv_pclk(struct dispc_device *dispc, unsigned long pclk)
{
dispc->tv_pclk_rate = pclk;
}
static unsigned long dispc_core_clk_rate(struct dispc_device *dispc)
{
return dispc->core_clk_rate;
}
static unsigned long dispc_plane_pclk_rate(struct dispc_device *dispc,
enum omap_plane_id plane)
{
enum omap_channel channel;
if (plane == OMAP_DSS_WB)
return 0;
channel = dispc_ovl_get_channel_out(dispc, plane);
return dispc_mgr_pclk_rate(dispc, channel);
}
static unsigned long dispc_plane_lclk_rate(struct dispc_device *dispc,
enum omap_plane_id plane)
{
enum omap_channel channel;
if (plane == OMAP_DSS_WB)
return 0;
channel = dispc_ovl_get_channel_out(dispc, plane);
return dispc_mgr_lclk_rate(dispc, channel);
}
static void dispc_dump_clocks_channel(struct dispc_device *dispc,
struct seq_file *s,
enum omap_channel channel)
{
int lcd, pcd;
enum dss_clk_source lcd_clk_src;
seq_printf(s, "- %s -\n", mgr_desc[channel].name);
lcd_clk_src = dss_get_lcd_clk_source(dispc->dss, channel);
seq_printf(s, "%s clk source = %s\n", mgr_desc[channel].name,
dss_get_clk_source_name(lcd_clk_src));
dispc_mgr_get_lcd_divisor(dispc, channel, &lcd, &pcd);
seq_printf(s, "lck\t\t%-16lulck div\t%u\n",
dispc_mgr_lclk_rate(dispc, channel), lcd);
seq_printf(s, "pck\t\t%-16lupck div\t%u\n",
dispc_mgr_pclk_rate(dispc, channel), pcd);
}
void dispc_dump_clocks(struct dispc_device *dispc, struct seq_file *s)
{
enum dss_clk_source dispc_clk_src;
int lcd;
u32 l;
if (dispc_runtime_get(dispc))
return;
seq_printf(s, "- DISPC -\n");
dispc_clk_src = dss_get_dispc_clk_source(dispc->dss);
seq_printf(s, "dispc fclk source = %s\n",
dss_get_clk_source_name(dispc_clk_src));
seq_printf(s, "fck\t\t%-16lu\n", dispc_fclk_rate(dispc));
if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) {
seq_printf(s, "- DISPC-CORE-CLK -\n");
l = dispc_read_reg(dispc, DISPC_DIVISOR);
lcd = FLD_GET(l, 23, 16);
seq_printf(s, "lck\t\t%-16lulck div\t%u\n",
(dispc_fclk_rate(dispc)/lcd), lcd);
}
dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD);
if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD2);
if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD3);
dispc_runtime_put(dispc);
}
static int dispc_dump_regs(struct seq_file *s, void *p)
{
struct dispc_device *dispc = s->private;
int i, j;
const char *mgr_names[] = {
[OMAP_DSS_CHANNEL_LCD] = "LCD",
[OMAP_DSS_CHANNEL_DIGIT] = "TV",
[OMAP_DSS_CHANNEL_LCD2] = "LCD2",
[OMAP_DSS_CHANNEL_LCD3] = "LCD3",
};
const char *ovl_names[] = {
[OMAP_DSS_GFX] = "GFX",
[OMAP_DSS_VIDEO1] = "VID1",
[OMAP_DSS_VIDEO2] = "VID2",
[OMAP_DSS_VIDEO3] = "VID3",
[OMAP_DSS_WB] = "WB",
};
const char **p_names;
#define DUMPREG(dispc, r) \
seq_printf(s, "%-50s %08x\n", #r, dispc_read_reg(dispc, r))
if (dispc_runtime_get(dispc))
return 0;
/* DISPC common registers */
DUMPREG(dispc, DISPC_REVISION);
DUMPREG(dispc, DISPC_SYSCONFIG);
DUMPREG(dispc, DISPC_SYSSTATUS);
DUMPREG(dispc, DISPC_IRQSTATUS);
DUMPREG(dispc, DISPC_IRQENABLE);
DUMPREG(dispc, DISPC_CONTROL);
DUMPREG(dispc, DISPC_CONFIG);
DUMPREG(dispc, DISPC_CAPABLE);
DUMPREG(dispc, DISPC_LINE_STATUS);
DUMPREG(dispc, DISPC_LINE_NUMBER);
if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
DUMPREG(dispc, DISPC_GLOBAL_ALPHA);
if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
DUMPREG(dispc, DISPC_CONTROL2);
DUMPREG(dispc, DISPC_CONFIG2);
}
if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
DUMPREG(dispc, DISPC_CONTROL3);
DUMPREG(dispc, DISPC_CONFIG3);
}
if (dispc_has_feature(dispc, FEAT_MFLAG))
DUMPREG(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE);
#undef DUMPREG
#define DISPC_REG(i, name) name(i)
#define DUMPREG(dispc, i, r) seq_printf(s, "%s(%s)%*s %08x\n", #r, p_names[i], \
(int)(48 - strlen(#r) - strlen(p_names[i])), " ", \
dispc_read_reg(dispc, DISPC_REG(i, r)))
p_names = mgr_names;
/* DISPC channel specific registers */
for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
DUMPREG(dispc, i, DISPC_DEFAULT_COLOR);
DUMPREG(dispc, i, DISPC_TRANS_COLOR);
DUMPREG(dispc, i, DISPC_SIZE_MGR);
if (i == OMAP_DSS_CHANNEL_DIGIT)
continue;
DUMPREG(dispc, i, DISPC_TIMING_H);
DUMPREG(dispc, i, DISPC_TIMING_V);
DUMPREG(dispc, i, DISPC_POL_FREQ);
DUMPREG(dispc, i, DISPC_DIVISORo);
DUMPREG(dispc, i, DISPC_DATA_CYCLE1);
DUMPREG(dispc, i, DISPC_DATA_CYCLE2);
DUMPREG(dispc, i, DISPC_DATA_CYCLE3);
if (dispc_has_feature(dispc, FEAT_CPR)) {
DUMPREG(dispc, i, DISPC_CPR_COEF_R);
DUMPREG(dispc, i, DISPC_CPR_COEF_G);
DUMPREG(dispc, i, DISPC_CPR_COEF_B);
}
}
p_names = ovl_names;
for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
DUMPREG(dispc, i, DISPC_OVL_BA0);
DUMPREG(dispc, i, DISPC_OVL_BA1);
DUMPREG(dispc, i, DISPC_OVL_POSITION);
DUMPREG(dispc, i, DISPC_OVL_SIZE);
DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES);
DUMPREG(dispc, i, DISPC_OVL_FIFO_THRESHOLD);
DUMPREG(dispc, i, DISPC_OVL_FIFO_SIZE_STATUS);
DUMPREG(dispc, i, DISPC_OVL_ROW_INC);
DUMPREG(dispc, i, DISPC_OVL_PIXEL_INC);
if (dispc_has_feature(dispc, FEAT_PRELOAD))
DUMPREG(dispc, i, DISPC_OVL_PRELOAD);
if (dispc_has_feature(dispc, FEAT_MFLAG))
DUMPREG(dispc, i, DISPC_OVL_MFLAG_THRESHOLD);
if (i == OMAP_DSS_GFX) {
DUMPREG(dispc, i, DISPC_OVL_WINDOW_SKIP);
DUMPREG(dispc, i, DISPC_OVL_TABLE_BA);
continue;
}
DUMPREG(dispc, i, DISPC_OVL_FIR);
DUMPREG(dispc, i, DISPC_OVL_PICTURE_SIZE);
DUMPREG(dispc, i, DISPC_OVL_ACCU0);
DUMPREG(dispc, i, DISPC_OVL_ACCU1);
if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
DUMPREG(dispc, i, DISPC_OVL_BA0_UV);
DUMPREG(dispc, i, DISPC_OVL_BA1_UV);
DUMPREG(dispc, i, DISPC_OVL_FIR2);
DUMPREG(dispc, i, DISPC_OVL_ACCU2_0);
DUMPREG(dispc, i, DISPC_OVL_ACCU2_1);
}
if (dispc_has_feature(dispc, FEAT_ATTR2))
DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES2);
}
if (dispc->feat->has_writeback) {
i = OMAP_DSS_WB;
DUMPREG(dispc, i, DISPC_OVL_BA0);
DUMPREG(dispc, i, DISPC_OVL_BA1);
DUMPREG(dispc, i, DISPC_OVL_SIZE);
DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES);
DUMPREG(dispc, i, DISPC_OVL_FIFO_THRESHOLD);
DUMPREG(dispc, i, DISPC_OVL_FIFO_SIZE_STATUS);
DUMPREG(dispc, i, DISPC_OVL_ROW_INC);
DUMPREG(dispc, i, DISPC_OVL_PIXEL_INC);
if (dispc_has_feature(dispc, FEAT_MFLAG))
DUMPREG(dispc, i, DISPC_OVL_MFLAG_THRESHOLD);
DUMPREG(dispc, i, DISPC_OVL_FIR);
DUMPREG(dispc, i, DISPC_OVL_PICTURE_SIZE);
DUMPREG(dispc, i, DISPC_OVL_ACCU0);
DUMPREG(dispc, i, DISPC_OVL_ACCU1);
if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
DUMPREG(dispc, i, DISPC_OVL_BA0_UV);
DUMPREG(dispc, i, DISPC_OVL_BA1_UV);
DUMPREG(dispc, i, DISPC_OVL_FIR2);
DUMPREG(dispc, i, DISPC_OVL_ACCU2_0);
DUMPREG(dispc, i, DISPC_OVL_ACCU2_1);
}
if (dispc_has_feature(dispc, FEAT_ATTR2))
DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES2);
}
#undef DISPC_REG
#undef DUMPREG
#define DISPC_REG(plane, name, i) name(plane, i)
#define DUMPREG(dispc, plane, name, i) \
seq_printf(s, "%s_%d(%s)%*s %08x\n", #name, i, p_names[plane], \
(int)(46 - strlen(#name) - strlen(p_names[plane])), " ", \
dispc_read_reg(dispc, DISPC_REG(plane, name, i)))
/* Video pipeline coefficient registers */
/* start from OMAP_DSS_VIDEO1 */
for (i = 1; i < dispc_get_num_ovls(dispc); i++) {
for (j = 0; j < 8; j++)
DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_H, j);
for (j = 0; j < 8; j++)
DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_HV, j);
for (j = 0; j < 5; j++)
DUMPREG(dispc, i, DISPC_OVL_CONV_COEF, j);
if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
for (j = 0; j < 8; j++)
DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_V, j);
}
if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
for (j = 0; j < 8; j++)
DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_H2, j);
for (j = 0; j < 8; j++)
DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_HV2, j);
for (j = 0; j < 8; j++)
DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_V2, j);
}
}
dispc_runtime_put(dispc);
#undef DISPC_REG
#undef DUMPREG
return 0;
}
/* calculate clock rates using dividers in cinfo */
int dispc_calc_clock_rates(struct dispc_device *dispc,
unsigned long dispc_fclk_rate,
struct dispc_clock_info *cinfo)
{
if (cinfo->lck_div > 255 || cinfo->lck_div == 0)
return -EINVAL;
if (cinfo->pck_div < 1 || cinfo->pck_div > 255)
return -EINVAL;
cinfo->lck = dispc_fclk_rate / cinfo->lck_div;
cinfo->pck = cinfo->lck / cinfo->pck_div;
return 0;
}
bool dispc_div_calc(struct dispc_device *dispc, unsigned long dispc_freq,
unsigned long pck_min, unsigned long pck_max,
dispc_div_calc_func func, void *data)
{
int lckd, lckd_start, lckd_stop;
int pckd, pckd_start, pckd_stop;
unsigned long pck, lck;
unsigned long lck_max;
unsigned long pckd_hw_min, pckd_hw_max;
unsigned int min_fck_per_pck;
unsigned long fck;
#ifdef CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK
min_fck_per_pck = CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK;
#else
min_fck_per_pck = 0;
#endif
pckd_hw_min = dispc->feat->min_pcd;
pckd_hw_max = 255;
lck_max = dss_get_max_fck_rate(dispc->dss);
pck_min = pck_min ? pck_min : 1;
pck_max = pck_max ? pck_max : ULONG_MAX;
lckd_start = max(DIV_ROUND_UP(dispc_freq, lck_max), 1ul);
lckd_stop = min(dispc_freq / pck_min, 255ul);
for (lckd = lckd_start; lckd <= lckd_stop; ++lckd) {
lck = dispc_freq / lckd;
pckd_start = max(DIV_ROUND_UP(lck, pck_max), pckd_hw_min);
pckd_stop = min(lck / pck_min, pckd_hw_max);
for (pckd = pckd_start; pckd <= pckd_stop; ++pckd) {
pck = lck / pckd;
/*
* For OMAP2/3 the DISPC fclk is the same as LCD's logic
* clock, which means we're configuring DISPC fclk here
* also. Thus we need to use the calculated lck. For
* OMAP4+ the DISPC fclk is a separate clock.
*/
if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
fck = dispc_core_clk_rate(dispc);
else
fck = lck;
if (fck < pck * min_fck_per_pck)
continue;
if (func(lckd, pckd, lck, pck, data))
return true;
}
}
return false;
}
void dispc_mgr_set_clock_div(struct dispc_device *dispc,
enum omap_channel channel,
const struct dispc_clock_info *cinfo)
{
DSSDBG("lck = %lu (%u)\n", cinfo->lck, cinfo->lck_div);
DSSDBG("pck = %lu (%u)\n", cinfo->pck, cinfo->pck_div);
dispc_mgr_set_lcd_divisor(dispc, channel, cinfo->lck_div,
cinfo->pck_div);
}
int dispc_mgr_get_clock_div(struct dispc_device *dispc,
enum omap_channel channel,
struct dispc_clock_info *cinfo)
{
unsigned long fck;
fck = dispc_fclk_rate(dispc);
cinfo->lck_div = REG_GET(dispc, DISPC_DIVISORo(channel), 23, 16);
cinfo->pck_div = REG_GET(dispc, DISPC_DIVISORo(channel), 7, 0);
cinfo->lck = fck / cinfo->lck_div;
cinfo->pck = cinfo->lck / cinfo->pck_div;
return 0;
}
u32 dispc_read_irqstatus(struct dispc_device *dispc)
{
return dispc_read_reg(dispc, DISPC_IRQSTATUS);
}
void dispc_clear_irqstatus(struct dispc_device *dispc, u32 mask)
{
dispc_write_reg(dispc, DISPC_IRQSTATUS, mask);
}
void dispc_write_irqenable(struct dispc_device *dispc, u32 mask)
{
u32 old_mask = dispc_read_reg(dispc, DISPC_IRQENABLE);
/* clear the irqstatus for newly enabled irqs */
dispc_clear_irqstatus(dispc, (mask ^ old_mask) & mask);
dispc_write_reg(dispc, DISPC_IRQENABLE, mask);
/* flush posted write */
dispc_read_reg(dispc, DISPC_IRQENABLE);
}
void dispc_enable_sidle(struct dispc_device *dispc)
{
/* SIDLEMODE: smart idle */
REG_FLD_MOD(dispc, DISPC_SYSCONFIG, 2, 4, 3);
}
void dispc_disable_sidle(struct dispc_device *dispc)
{
REG_FLD_MOD(dispc, DISPC_SYSCONFIG, 1, 4, 3); /* SIDLEMODE: no idle */
}
u32 dispc_mgr_gamma_size(struct dispc_device *dispc,
enum omap_channel channel)
{
const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
if (!dispc->feat->has_gamma_table)
return 0;
return gdesc->len;
}
static void dispc_mgr_write_gamma_table(struct dispc_device *dispc,
enum omap_channel channel)
{
const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
u32 *table = dispc->gamma_table[channel];
unsigned int i;
DSSDBG("%s: channel %d\n", __func__, channel);
for (i = 0; i < gdesc->len; ++i) {
u32 v = table[i];
if (gdesc->has_index)
v |= i << 24;
else if (i == 0)
v |= 1 << 31;
dispc_write_reg(dispc, gdesc->reg, v);
}
}
static void dispc_restore_gamma_tables(struct dispc_device *dispc)
{
DSSDBG("%s()\n", __func__);
if (!dispc->feat->has_gamma_table)
return;
dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD);
dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_DIGIT);
if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD2);
if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD3);
}
static const struct drm_color_lut dispc_mgr_gamma_default_lut[] = {
{ .red = 0, .green = 0, .blue = 0, },
{ .red = U16_MAX, .green = U16_MAX, .blue = U16_MAX, },
};
void dispc_mgr_set_gamma(struct dispc_device *dispc,
enum omap_channel channel,
const struct drm_color_lut *lut,
unsigned int length)
{
const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
u32 *table = dispc->gamma_table[channel];
uint i;
DSSDBG("%s: channel %d, lut len %u, hw len %u\n", __func__,
channel, length, gdesc->len);
if (!dispc->feat->has_gamma_table)
return;
if (lut == NULL || length < 2) {
lut = dispc_mgr_gamma_default_lut;
length = ARRAY_SIZE(dispc_mgr_gamma_default_lut);
}
for (i = 0; i < length - 1; ++i) {
uint first = i * (gdesc->len - 1) / (length - 1);
uint last = (i + 1) * (gdesc->len - 1) / (length - 1);
uint w = last - first;
u16 r, g, b;
uint j;
if (w == 0)
continue;
for (j = 0; j <= w; j++) {
r = (lut[i].red * (w - j) + lut[i+1].red * j) / w;
g = (lut[i].green * (w - j) + lut[i+1].green * j) / w;
b = (lut[i].blue * (w - j) + lut[i+1].blue * j) / w;
r >>= 16 - gdesc->bits;
g >>= 16 - gdesc->bits;
b >>= 16 - gdesc->bits;
table[first + j] = (r << (gdesc->bits * 2)) |
(g << gdesc->bits) | b;
}
}
if (dispc->is_enabled)
dispc_mgr_write_gamma_table(dispc, channel);
}
static int dispc_init_gamma_tables(struct dispc_device *dispc)
{
int channel;
if (!dispc->feat->has_gamma_table)
return 0;
for (channel = 0; channel < ARRAY_SIZE(dispc->gamma_table); channel++) {
const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
u32 *gt;
if (channel == OMAP_DSS_CHANNEL_LCD2 &&
!dispc_has_feature(dispc, FEAT_MGR_LCD2))
continue;
if (channel == OMAP_DSS_CHANNEL_LCD3 &&
!dispc_has_feature(dispc, FEAT_MGR_LCD3))
continue;
gt = devm_kmalloc_array(&dispc->pdev->dev, gdesc->len,
sizeof(u32), GFP_KERNEL);
if (!gt)
return -ENOMEM;
dispc->gamma_table[channel] = gt;
dispc_mgr_set_gamma(dispc, channel, NULL, 0);
}
return 0;
}
static void _omap_dispc_initial_config(struct dispc_device *dispc)
{
u32 l;
/* Exclusively enable DISPC_CORE_CLK and set divider to 1 */
if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) {
l = dispc_read_reg(dispc, DISPC_DIVISOR);
/* Use DISPC_DIVISOR.LCD, instead of DISPC_DIVISOR1.LCD */
l = FLD_MOD(l, 1, 0, 0);
l = FLD_MOD(l, 1, 23, 16);
dispc_write_reg(dispc, DISPC_DIVISOR, l);
dispc->core_clk_rate = dispc_fclk_rate(dispc);
}
/* Use gamma table mode, instead of palette mode */
if (dispc->feat->has_gamma_table)
REG_FLD_MOD(dispc, DISPC_CONFIG, 1, 3, 3);
/* For older DSS versions (FEAT_FUNCGATED) this enables
* func-clock auto-gating. For newer versions
* (dispc->feat->has_gamma_table) this enables tv-out gamma tables.
*/
if (dispc_has_feature(dispc, FEAT_FUNCGATED) ||
dispc->feat->has_gamma_table)
REG_FLD_MOD(dispc, DISPC_CONFIG, 1, 9, 9);
dispc_set_loadmode(dispc, OMAP_DSS_LOAD_FRAME_ONLY);
dispc_init_fifos(dispc);
dispc_configure_burst_sizes(dispc);
dispc_ovl_enable_zorder_planes(dispc);
if (dispc->feat->mstandby_workaround)
REG_FLD_MOD(dispc, DISPC_MSTANDBY_CTRL, 1, 0, 0);
if (dispc_has_feature(dispc, FEAT_MFLAG))
dispc_init_mflag(dispc);
}
static const enum dispc_feature_id omap2_dispc_features_list[] = {
FEAT_LCDENABLEPOL,
FEAT_LCDENABLESIGNAL,
FEAT_PCKFREEENABLE,
FEAT_FUNCGATED,
FEAT_ROWREPEATENABLE,
FEAT_RESIZECONF,
};
static const enum dispc_feature_id omap3_dispc_features_list[] = {
FEAT_LCDENABLEPOL,
FEAT_LCDENABLESIGNAL,
FEAT_PCKFREEENABLE,
FEAT_FUNCGATED,
FEAT_LINEBUFFERSPLIT,
FEAT_ROWREPEATENABLE,
FEAT_RESIZECONF,
FEAT_CPR,
FEAT_PRELOAD,
FEAT_FIR_COEF_V,
FEAT_ALPHA_FIXED_ZORDER,
FEAT_FIFO_MERGE,
FEAT_OMAP3_DSI_FIFO_BUG,
};
static const enum dispc_feature_id am43xx_dispc_features_list[] = {
FEAT_LCDENABLEPOL,
FEAT_LCDENABLESIGNAL,
FEAT_PCKFREEENABLE,
FEAT_FUNCGATED,
FEAT_LINEBUFFERSPLIT,
FEAT_ROWREPEATENABLE,
FEAT_RESIZECONF,
FEAT_CPR,
FEAT_PRELOAD,
FEAT_FIR_COEF_V,
FEAT_ALPHA_FIXED_ZORDER,
FEAT_FIFO_MERGE,
};
static const enum dispc_feature_id omap4_dispc_features_list[] = {
FEAT_MGR_LCD2,
FEAT_CORE_CLK_DIV,
FEAT_HANDLE_UV_SEPARATE,
FEAT_ATTR2,
FEAT_CPR,
FEAT_PRELOAD,
FEAT_FIR_COEF_V,
FEAT_ALPHA_FREE_ZORDER,
FEAT_FIFO_MERGE,
FEAT_BURST_2D,
};
static const enum dispc_feature_id omap5_dispc_features_list[] = {
FEAT_MGR_LCD2,
FEAT_MGR_LCD3,
FEAT_CORE_CLK_DIV,
FEAT_HANDLE_UV_SEPARATE,
FEAT_ATTR2,
FEAT_CPR,
FEAT_PRELOAD,
FEAT_FIR_COEF_V,
FEAT_ALPHA_FREE_ZORDER,
FEAT_FIFO_MERGE,
FEAT_BURST_2D,
FEAT_MFLAG,
};
static const struct dss_reg_field omap2_dispc_reg_fields[] = {
[FEAT_REG_FIRHINC] = { 11, 0 },
[FEAT_REG_FIRVINC] = { 27, 16 },
[FEAT_REG_FIFOLOWTHRESHOLD] = { 8, 0 },
[FEAT_REG_FIFOHIGHTHRESHOLD] = { 24, 16 },
[FEAT_REG_FIFOSIZE] = { 8, 0 },
[FEAT_REG_HORIZONTALACCU] = { 9, 0 },
[FEAT_REG_VERTICALACCU] = { 25, 16 },
};
static const struct dss_reg_field omap3_dispc_reg_fields[] = {
[FEAT_REG_FIRHINC] = { 12, 0 },
[FEAT_REG_FIRVINC] = { 28, 16 },
[FEAT_REG_FIFOLOWTHRESHOLD] = { 11, 0 },
[FEAT_REG_FIFOHIGHTHRESHOLD] = { 27, 16 },
[FEAT_REG_FIFOSIZE] = { 10, 0 },
[FEAT_REG_HORIZONTALACCU] = { 9, 0 },
[FEAT_REG_VERTICALACCU] = { 25, 16 },
};
static const struct dss_reg_field omap4_dispc_reg_fields[] = {
[FEAT_REG_FIRHINC] = { 12, 0 },
[FEAT_REG_FIRVINC] = { 28, 16 },
[FEAT_REG_FIFOLOWTHRESHOLD] = { 15, 0 },
[FEAT_REG_FIFOHIGHTHRESHOLD] = { 31, 16 },
[FEAT_REG_FIFOSIZE] = { 15, 0 },
[FEAT_REG_HORIZONTALACCU] = { 10, 0 },
[FEAT_REG_VERTICALACCU] = { 26, 16 },
};
static const enum omap_overlay_caps omap2_dispc_overlay_caps[] = {
/* OMAP_DSS_GFX */
OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
/* OMAP_DSS_VIDEO1 */
OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
OMAP_DSS_OVL_CAP_REPLICATION,
/* OMAP_DSS_VIDEO2 */
OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
OMAP_DSS_OVL_CAP_REPLICATION,
};
static const enum omap_overlay_caps omap3430_dispc_overlay_caps[] = {
/* OMAP_DSS_GFX */
OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_POS |
OMAP_DSS_OVL_CAP_REPLICATION,
/* OMAP_DSS_VIDEO1 */
OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
OMAP_DSS_OVL_CAP_REPLICATION,
/* OMAP_DSS_VIDEO2 */
OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
};
static const enum omap_overlay_caps omap3630_dispc_overlay_caps[] = {
/* OMAP_DSS_GFX */
OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA |
OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
/* OMAP_DSS_VIDEO1 */
OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
OMAP_DSS_OVL_CAP_REPLICATION,
/* OMAP_DSS_VIDEO2 */
OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_POS |
OMAP_DSS_OVL_CAP_REPLICATION,
};
static const enum omap_overlay_caps omap4_dispc_overlay_caps[] = {
/* OMAP_DSS_GFX */
OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA |
OMAP_DSS_OVL_CAP_ZORDER | OMAP_DSS_OVL_CAP_POS |
OMAP_DSS_OVL_CAP_REPLICATION,
/* OMAP_DSS_VIDEO1 */
OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
/* OMAP_DSS_VIDEO2 */
OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
/* OMAP_DSS_VIDEO3 */
OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
};
#define COLOR_ARRAY(arr...) (const u32[]) { arr, 0 }
static const u32 *omap2_dispc_supported_color_modes[] = {
/* OMAP_DSS_GFX */
COLOR_ARRAY(
DRM_FORMAT_RGBX4444, DRM_FORMAT_RGB565,
DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888),
/* OMAP_DSS_VIDEO1 */
COLOR_ARRAY(
DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
DRM_FORMAT_UYVY),
/* OMAP_DSS_VIDEO2 */
COLOR_ARRAY(
DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
DRM_FORMAT_UYVY),
};
static const u32 *omap3_dispc_supported_color_modes[] = {
/* OMAP_DSS_GFX */
COLOR_ARRAY(
DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
DRM_FORMAT_RGB888, DRM_FORMAT_ARGB8888,
DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888),
/* OMAP_DSS_VIDEO1 */
COLOR_ARRAY(
DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888,
DRM_FORMAT_RGBX4444, DRM_FORMAT_RGB565,
DRM_FORMAT_YUYV, DRM_FORMAT_UYVY),
/* OMAP_DSS_VIDEO2 */
COLOR_ARRAY(
DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
DRM_FORMAT_UYVY, DRM_FORMAT_ARGB8888,
DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888),
};
static const u32 *omap4_dispc_supported_color_modes[] = {
/* OMAP_DSS_GFX */
COLOR_ARRAY(
DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
DRM_FORMAT_RGB888, DRM_FORMAT_ARGB8888,
DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888,
DRM_FORMAT_ARGB1555, DRM_FORMAT_XRGB4444,
DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB1555),
/* OMAP_DSS_VIDEO1 */
COLOR_ARRAY(
DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
DRM_FORMAT_RGBX8888),
/* OMAP_DSS_VIDEO2 */
COLOR_ARRAY(
DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
DRM_FORMAT_RGBX8888),
/* OMAP_DSS_VIDEO3 */
COLOR_ARRAY(
DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
DRM_FORMAT_RGBX8888),
/* OMAP_DSS_WB */
COLOR_ARRAY(
DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
DRM_FORMAT_RGBX8888),
};
static const u32 omap3_dispc_supported_scaler_color_modes[] = {
DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB565, DRM_FORMAT_YUYV,
DRM_FORMAT_UYVY,
0,
};
static const struct dispc_features omap24xx_dispc_feats = {
.sw_start = 5,
.fp_start = 15,
.bp_start = 27,
.sw_max = 64,
.vp_max = 255,
.hp_max = 256,
.mgr_width_start = 10,
.mgr_height_start = 26,
.mgr_width_max = 2048,
.mgr_height_max = 2048,
.ovl_width_max = 2048,
.ovl_height_max = 2048,
.max_lcd_pclk = 66500000,
.max_downscale = 2,
/*
* Assume the line width buffer to be 768 pixels as OMAP2 DISPC scaler
* cannot scale an image width larger than 768.
*/
.max_line_width = 768,
.min_pcd = 2,
.calc_scaling = dispc_ovl_calc_scaling_24xx,
.calc_core_clk = calc_core_clk_24xx,
.num_fifos = 3,
.features = omap2_dispc_features_list,
.num_features = ARRAY_SIZE(omap2_dispc_features_list),
.reg_fields = omap2_dispc_reg_fields,
.num_reg_fields = ARRAY_SIZE(omap2_dispc_reg_fields),
.overlay_caps = omap2_dispc_overlay_caps,
.supported_color_modes = omap2_dispc_supported_color_modes,
.supported_scaler_color_modes = COLOR_ARRAY(DRM_FORMAT_XRGB8888),
.num_mgrs = 2,
.num_ovls = 3,
.buffer_size_unit = 1,
.burst_size_unit = 8,
.no_framedone_tv = true,
.set_max_preload = false,
.last_pixel_inc_missing = true,
};
static const struct dispc_features omap34xx_rev1_0_dispc_feats = {
.sw_start = 5,
.fp_start = 15,
.bp_start = 27,
.sw_max = 64,
.vp_max = 255,
.hp_max = 256,
.mgr_width_start = 10,
.mgr_height_start = 26,
.mgr_width_max = 2048,
.mgr_height_max = 2048,
.ovl_width_max = 2048,
.ovl_height_max = 2048,
.max_lcd_pclk = 173000000,
.max_tv_pclk = 59000000,
.max_downscale = 4,
.max_line_width = 1024,
.min_pcd = 1,
.calc_scaling = dispc_ovl_calc_scaling_34xx,
.calc_core_clk = calc_core_clk_34xx,
.num_fifos = 3,
.features = omap3_dispc_features_list,
.num_features = ARRAY_SIZE(omap3_dispc_features_list),
.reg_fields = omap3_dispc_reg_fields,
.num_reg_fields = ARRAY_SIZE(omap3_dispc_reg_fields),
.overlay_caps = omap3430_dispc_overlay_caps,
.supported_color_modes = omap3_dispc_supported_color_modes,
.supported_scaler_color_modes = omap3_dispc_supported_scaler_color_modes,
.num_mgrs = 2,
.num_ovls = 3,
.buffer_size_unit = 1,
.burst_size_unit = 8,
.no_framedone_tv = true,
.set_max_preload = false,
.last_pixel_inc_missing = true,
};
static const struct dispc_features omap34xx_rev3_0_dispc_feats = {
.sw_start = 7,
.fp_start = 19,
.bp_start = 31,
.sw_max = 256,
.vp_max = 4095,
.hp_max = 4096,
.mgr_width_start = 10,
.mgr_height_start = 26,
.mgr_width_max = 2048,
.mgr_height_max = 2048,
.ovl_width_max = 2048,
.ovl_height_max = 2048,
.max_lcd_pclk = 173000000,
.max_tv_pclk = 59000000,
.max_downscale = 4,
.max_line_width = 1024,
.min_pcd = 1,
.calc_scaling = dispc_ovl_calc_scaling_34xx,
.calc_core_clk = calc_core_clk_34xx,
.num_fifos = 3,
.features = omap3_dispc_features_list,
.num_features = ARRAY_SIZE(omap3_dispc_features_list),
.reg_fields = omap3_dispc_reg_fields,
.num_reg_fields = ARRAY_SIZE(omap3_dispc_reg_fields),
.overlay_caps = omap3430_dispc_overlay_caps,
.supported_color_modes = omap3_dispc_supported_color_modes,
.supported_scaler_color_modes = omap3_dispc_supported_scaler_color_modes,
.num_mgrs = 2,
.num_ovls = 3,
.buffer_size_unit = 1,
.burst_size_unit = 8,
.no_framedone_tv = true,
.set_max_preload = false,
.last_pixel_inc_missing = true,
};
static const struct dispc_features omap36xx_dispc_feats = {
.sw_start = 7,
.fp_start = 19,
.bp_start = 31,
.sw_max = 256,
.vp_max = 4095,
.hp_max = 4096,
.mgr_width_start = 10,
.mgr_height_start = 26,
.mgr_width_max = 2048,
.mgr_height_max = 2048,
.ovl_width_max = 2048,
.ovl_height_max = 2048,
.max_lcd_pclk = 173000000,
.max_tv_pclk = 59000000,
.max_downscale = 4,
.max_line_width = 1024,
.min_pcd = 1,
.calc_scaling = dispc_ovl_calc_scaling_34xx,
.calc_core_clk = calc_core_clk_34xx,
.num_fifos = 3,
.features = omap3_dispc_features_list,
.num_features = ARRAY_SIZE(omap3_dispc_features_list),
.reg_fields = omap3_dispc_reg_fields,
.num_reg_fields = ARRAY_SIZE(omap3_dispc_reg_fields),
.overlay_caps = omap3630_dispc_overlay_caps,
.supported_color_modes = omap3_dispc_supported_color_modes,
.supported_scaler_color_modes = omap3_dispc_supported_scaler_color_modes,
.num_mgrs = 2,
.num_ovls = 3,
.buffer_size_unit = 1,
.burst_size_unit = 8,
.no_framedone_tv = true,
.set_max_preload = false,
.last_pixel_inc_missing = true,
};
static const struct dispc_features am43xx_dispc_feats = {
.sw_start = 7,
.fp_start = 19,
.bp_start = 31,
.sw_max = 256,
.vp_max = 4095,
.hp_max = 4096,
.mgr_width_start = 10,
.mgr_height_start = 26,
.mgr_width_max = 2048,
.mgr_height_max = 2048,
.ovl_width_max = 2048,
.ovl_height_max = 2048,
.max_lcd_pclk = 173000000,
.max_tv_pclk = 59000000,
.max_downscale = 4,
.max_line_width = 1024,
.min_pcd = 1,
.calc_scaling = dispc_ovl_calc_scaling_34xx,
.calc_core_clk = calc_core_clk_34xx,
.num_fifos = 3,
.features = am43xx_dispc_features_list,
.num_features = ARRAY_SIZE(am43xx_dispc_features_list),
.reg_fields = omap3_dispc_reg_fields,
.num_reg_fields = ARRAY_SIZE(omap3_dispc_reg_fields),
.overlay_caps = omap3430_dispc_overlay_caps,
.supported_color_modes = omap3_dispc_supported_color_modes,
.supported_scaler_color_modes = omap3_dispc_supported_scaler_color_modes,
.num_mgrs = 1,
.num_ovls = 3,
.buffer_size_unit = 1,
.burst_size_unit = 8,
.no_framedone_tv = true,
.set_max_preload = false,
.last_pixel_inc_missing = true,
};
static const struct dispc_features omap44xx_dispc_feats = {
.sw_start = 7,
.fp_start = 19,
.bp_start = 31,
.sw_max = 256,
.vp_max = 4095,
.hp_max = 4096,
.mgr_width_start = 10,
.mgr_height_start = 26,
.mgr_width_max = 2048,
.mgr_height_max = 2048,
.ovl_width_max = 2048,
.ovl_height_max = 2048,
.max_lcd_pclk = 170000000,
.max_tv_pclk = 185625000,
.max_downscale = 4,
.max_line_width = 2048,
.min_pcd = 1,
.calc_scaling = dispc_ovl_calc_scaling_44xx,
.calc_core_clk = calc_core_clk_44xx,
.num_fifos = 5,
.features = omap4_dispc_features_list,
.num_features = ARRAY_SIZE(omap4_dispc_features_list),
.reg_fields = omap4_dispc_reg_fields,
.num_reg_fields = ARRAY_SIZE(omap4_dispc_reg_fields),
.overlay_caps = omap4_dispc_overlay_caps,
.supported_color_modes = omap4_dispc_supported_color_modes,
.num_mgrs = 3,
.num_ovls = 4,
.buffer_size_unit = 16,
.burst_size_unit = 16,
.gfx_fifo_workaround = true,
.set_max_preload = true,
.supports_sync_align = true,
.has_writeback = true,
.supports_double_pixel = true,
.reverse_ilace_field_order = true,
.has_gamma_table = true,
.has_gamma_i734_bug = true,
};
static const struct dispc_features omap54xx_dispc_feats = {
.sw_start = 7,
.fp_start = 19,
.bp_start = 31,
.sw_max = 256,
.vp_max = 4095,
.hp_max = 4096,
.mgr_width_start = 11,
.mgr_height_start = 27,
.mgr_width_max = 4096,
.mgr_height_max = 4096,
.ovl_width_max = 2048,
.ovl_height_max = 4096,
.max_lcd_pclk = 170000000,
.max_tv_pclk = 192000000,
.max_downscale = 4,
.max_line_width = 2048,
.min_pcd = 1,
.calc_scaling = dispc_ovl_calc_scaling_44xx,
.calc_core_clk = calc_core_clk_44xx,
.num_fifos = 5,
.features = omap5_dispc_features_list,
.num_features = ARRAY_SIZE(omap5_dispc_features_list),
.reg_fields = omap4_dispc_reg_fields,
.num_reg_fields = ARRAY_SIZE(omap4_dispc_reg_fields),
.overlay_caps = omap4_dispc_overlay_caps,
.supported_color_modes = omap4_dispc_supported_color_modes,
.num_mgrs = 4,
.num_ovls = 4,
.buffer_size_unit = 16,
.burst_size_unit = 16,
.gfx_fifo_workaround = true,
.mstandby_workaround = true,
.set_max_preload = true,
.supports_sync_align = true,
.has_writeback = true,
.supports_double_pixel = true,
.reverse_ilace_field_order = true,
.has_gamma_table = true,
.has_gamma_i734_bug = true,
};
static irqreturn_t dispc_irq_handler(int irq, void *arg)
{
struct dispc_device *dispc = arg;
if (!dispc->is_enabled)
return IRQ_NONE;
return dispc->user_handler(irq, dispc->user_data);
}
int dispc_request_irq(struct dispc_device *dispc, irq_handler_t handler,
void *dev_id)
{
int r;
if (dispc->user_handler != NULL)
return -EBUSY;
dispc->user_handler = handler;
dispc->user_data = dev_id;
/* ensure the dispc_irq_handler sees the values above */
smp_wmb();
r = devm_request_irq(&dispc->pdev->dev, dispc->irq, dispc_irq_handler,
IRQF_SHARED, "OMAP DISPC", dispc);
if (r) {
dispc->user_handler = NULL;
dispc->user_data = NULL;
}
return r;
}
void dispc_free_irq(struct dispc_device *dispc, void *dev_id)
{
devm_free_irq(&dispc->pdev->dev, dispc->irq, dispc);
dispc->user_handler = NULL;
dispc->user_data = NULL;
}
u32 dispc_get_memory_bandwidth_limit(struct dispc_device *dispc)
{
u32 limit = 0;
/* Optional maximum memory bandwidth */
of_property_read_u32(dispc->pdev->dev.of_node, "max-memory-bandwidth",
&limit);
return limit;
}
/*
* Workaround for errata i734 in DSS dispc
* - LCD1 Gamma Correction Is Not Working When GFX Pipe Is Disabled
*
* For gamma tables to work on LCD1 the GFX plane has to be used at
* least once after DSS HW has come out of reset. The workaround
* sets up a minimal LCD setup with GFX plane and waits for one
* vertical sync irq before disabling the setup and continuing with
* the context restore. The physical outputs are gated during the
* operation. This workaround requires that gamma table's LOADMODE
* is set to 0x2 in DISPC_CONTROL1 register.
*
* For details see:
* OMAP543x Multimedia Device Silicon Revision 2.0 Silicon Errata
* Literature Number: SWPZ037E
* Or some other relevant errata document for the DSS IP version.
*/
static const struct dispc_errata_i734_data {
struct videomode vm;
struct omap_overlay_info ovli;
struct omap_overlay_manager_info mgri;
struct dss_lcd_mgr_config lcd_conf;
} i734 = {
.vm = {
.hactive = 8, .vactive = 1,
.pixelclock = 16000000,
.hsync_len = 8, .hfront_porch = 4, .hback_porch = 4,
.vsync_len = 1, .vfront_porch = 1, .vback_porch = 1,
.flags = DISPLAY_FLAGS_HSYNC_LOW | DISPLAY_FLAGS_VSYNC_LOW |
DISPLAY_FLAGS_DE_HIGH | DISPLAY_FLAGS_SYNC_POSEDGE |
DISPLAY_FLAGS_PIXDATA_POSEDGE,
},
.ovli = {
.screen_width = 1,
.width = 1, .height = 1,
.fourcc = DRM_FORMAT_XRGB8888,
.rotation = DRM_MODE_ROTATE_0,
.rotation_type = OMAP_DSS_ROT_NONE,
.pos_x = 0, .pos_y = 0,
.out_width = 0, .out_height = 0,
.global_alpha = 0xff,
.pre_mult_alpha = 0,
.zorder = 0,
},
.mgri = {
.default_color = 0,
.trans_enabled = false,
.partial_alpha_enabled = false,
.cpr_enable = false,
},
.lcd_conf = {
.io_pad_mode = DSS_IO_PAD_MODE_BYPASS,
.stallmode = false,
.fifohandcheck = false,
.clock_info = {
.lck_div = 1,
.pck_div = 2,
},
.video_port_width = 24,
.lcden_sig_polarity = 0,
},
};
static struct i734_buf {
size_t size;
dma_addr_t paddr;
void *vaddr;
} i734_buf;
static int dispc_errata_i734_wa_init(struct dispc_device *dispc)
{
if (!dispc->feat->has_gamma_i734_bug)
return 0;
i734_buf.size = i734.ovli.width * i734.ovli.height *
color_mode_to_bpp(i734.ovli.fourcc) / 8;
i734_buf.vaddr = dma_alloc_wc(&dispc->pdev->dev, i734_buf.size,
&i734_buf.paddr, GFP_KERNEL);
if (!i734_buf.vaddr) {
dev_err(&dispc->pdev->dev, "%s: dma_alloc_wc failed\n",
__func__);
return -ENOMEM;
}
return 0;
}
static void dispc_errata_i734_wa_fini(struct dispc_device *dispc)
{
if (!dispc->feat->has_gamma_i734_bug)
return;
dma_free_wc(&dispc->pdev->dev, i734_buf.size, i734_buf.vaddr,
i734_buf.paddr);
}
static void dispc_errata_i734_wa(struct dispc_device *dispc)
{
u32 framedone_irq = dispc_mgr_get_framedone_irq(dispc,
OMAP_DSS_CHANNEL_LCD);
struct omap_overlay_info ovli;
struct dss_lcd_mgr_config lcd_conf;
u32 gatestate;
unsigned int count;
if (!dispc->feat->has_gamma_i734_bug)
return;
gatestate = REG_GET(dispc, DISPC_CONFIG, 8, 4);
ovli = i734.ovli;
ovli.paddr = i734_buf.paddr;
lcd_conf = i734.lcd_conf;
/* Gate all LCD1 outputs */
REG_FLD_MOD(dispc, DISPC_CONFIG, 0x1f, 8, 4);
/* Setup and enable GFX plane */
dispc_ovl_setup(dispc, OMAP_DSS_GFX, &ovli, &i734.vm, false,
OMAP_DSS_CHANNEL_LCD);
dispc_ovl_enable(dispc, OMAP_DSS_GFX, true);
/* Set up and enable display manager for LCD1 */
dispc_mgr_setup(dispc, OMAP_DSS_CHANNEL_LCD, &i734.mgri);
dispc_calc_clock_rates(dispc, dss_get_dispc_clk_rate(dispc->dss),
&lcd_conf.clock_info);
dispc_mgr_set_lcd_config(dispc, OMAP_DSS_CHANNEL_LCD, &lcd_conf);
dispc_mgr_set_timings(dispc, OMAP_DSS_CHANNEL_LCD, &i734.vm);
dispc_clear_irqstatus(dispc, framedone_irq);
/* Enable and shut the channel to produce just one frame */
dispc_mgr_enable(dispc, OMAP_DSS_CHANNEL_LCD, true);
dispc_mgr_enable(dispc, OMAP_DSS_CHANNEL_LCD, false);
/* Busy wait for framedone. We can't fiddle with irq handlers
* in PM resume. Typically the loop runs less than 5 times and
* waits less than a micro second.
*/
count = 0;
while (!(dispc_read_irqstatus(dispc) & framedone_irq)) {
if (count++ > 10000) {
dev_err(&dispc->pdev->dev, "%s: framedone timeout\n",
__func__);
break;
}
}
dispc_ovl_enable(dispc, OMAP_DSS_GFX, false);
/* Clear all irq bits before continuing */
dispc_clear_irqstatus(dispc, 0xffffffff);
/* Restore the original state to LCD1 output gates */
REG_FLD_MOD(dispc, DISPC_CONFIG, gatestate, 8, 4);
}
/* DISPC HW IP initialisation */
static const struct of_device_id dispc_of_match[] = {
{ .compatible = "ti,omap2-dispc", .data = &omap24xx_dispc_feats },
{ .compatible = "ti,omap3-dispc", .data = &omap36xx_dispc_feats },
{ .compatible = "ti,omap4-dispc", .data = &omap44xx_dispc_feats },
{ .compatible = "ti,omap5-dispc", .data = &omap54xx_dispc_feats },
{ .compatible = "ti,dra7-dispc", .data = &omap54xx_dispc_feats },
{},
};
static const struct soc_device_attribute dispc_soc_devices[] = {
{ .machine = "OMAP3[45]*",
.revision = "ES[12].?", .data = &omap34xx_rev1_0_dispc_feats },
{ .machine = "OMAP3[45]*", .data = &omap34xx_rev3_0_dispc_feats },
{ .machine = "AM35*", .data = &omap34xx_rev3_0_dispc_feats },
{ .machine = "AM43*", .data = &am43xx_dispc_feats },
{ /* sentinel */ }
};
static int dispc_bind(struct device *dev, struct device *master, void *data)
{
struct platform_device *pdev = to_platform_device(dev);
const struct soc_device_attribute *soc;
struct dss_device *dss = dss_get_device(master);
struct dispc_device *dispc;
u32 rev;
int r = 0;
struct device_node *np = pdev->dev.of_node;
dispc = kzalloc(sizeof(*dispc), GFP_KERNEL);
if (!dispc)
return -ENOMEM;
dispc->pdev = pdev;
platform_set_drvdata(pdev, dispc);
dispc->dss = dss;
/*
* The OMAP3-based models can't be told apart using the compatible
* string, use SoC device matching.
*/
soc = soc_device_match(dispc_soc_devices);
if (soc)
dispc->feat = soc->data;
else
dispc->feat = of_match_device(dispc_of_match, &pdev->dev)->data;
r = dispc_errata_i734_wa_init(dispc);
if (r)
goto err_free;
dispc->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(dispc->base)) {
r = PTR_ERR(dispc->base);
goto err_free;
}
dispc->irq = platform_get_irq(dispc->pdev, 0);
if (dispc->irq < 0) {
DSSERR("platform_get_irq failed\n");
r = -ENODEV;
goto err_free;
}
if (np && of_property_read_bool(np, "syscon-pol")) {
dispc->syscon_pol = syscon_regmap_lookup_by_phandle(np, "syscon-pol");
if (IS_ERR(dispc->syscon_pol)) {
dev_err(&pdev->dev, "failed to get syscon-pol regmap\n");
r = PTR_ERR(dispc->syscon_pol);
goto err_free;
}
if (of_property_read_u32_index(np, "syscon-pol", 1,
&dispc->syscon_pol_offset)) {
dev_err(&pdev->dev, "failed to get syscon-pol offset\n");
r = -EINVAL;
goto err_free;
}
}
r = dispc_init_gamma_tables(dispc);
if (r)
goto err_free;
pm_runtime_enable(&pdev->dev);
r = dispc_runtime_get(dispc);
if (r)
goto err_runtime_get;
_omap_dispc_initial_config(dispc);
rev = dispc_read_reg(dispc, DISPC_REVISION);
dev_dbg(&pdev->dev, "OMAP DISPC rev %d.%d\n",
FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
dispc_runtime_put(dispc);
dss->dispc = dispc;
dispc->debugfs = dss_debugfs_create_file(dss, "dispc", dispc_dump_regs,
dispc);
return 0;
err_runtime_get:
pm_runtime_disable(&pdev->dev);
err_free:
kfree(dispc);
return r;
}
static void dispc_unbind(struct device *dev, struct device *master, void *data)
{
struct dispc_device *dispc = dev_get_drvdata(dev);
struct dss_device *dss = dispc->dss;
dss_debugfs_remove_file(dispc->debugfs);
dss->dispc = NULL;
pm_runtime_disable(dev);
dispc_errata_i734_wa_fini(dispc);
kfree(dispc);
}
static const struct component_ops dispc_component_ops = {
.bind = dispc_bind,
.unbind = dispc_unbind,
};
static int dispc_probe(struct platform_device *pdev)
{
return component_add(&pdev->dev, &dispc_component_ops);
}
static int dispc_remove(struct platform_device *pdev)
{
component_del(&pdev->dev, &dispc_component_ops);
return 0;
}
static __maybe_unused int dispc_runtime_suspend(struct device *dev)
{
struct dispc_device *dispc = dev_get_drvdata(dev);
dispc->is_enabled = false;
/* ensure the dispc_irq_handler sees the is_enabled value */
smp_wmb();
/* wait for current handler to finish before turning the DISPC off */
synchronize_irq(dispc->irq);
dispc_save_context(dispc);
return 0;
}
static __maybe_unused int dispc_runtime_resume(struct device *dev)
{
struct dispc_device *dispc = dev_get_drvdata(dev);
/*
* The reset value for load mode is 0 (OMAP_DSS_LOAD_CLUT_AND_FRAME)
* but we always initialize it to 2 (OMAP_DSS_LOAD_FRAME_ONLY) in
* _omap_dispc_initial_config(). We can thus use it to detect if
* we have lost register context.
*/
if (REG_GET(dispc, DISPC_CONFIG, 2, 1) != OMAP_DSS_LOAD_FRAME_ONLY) {
_omap_dispc_initial_config(dispc);
dispc_errata_i734_wa(dispc);
dispc_restore_context(dispc);
dispc_restore_gamma_tables(dispc);
}
dispc->is_enabled = true;
/* ensure the dispc_irq_handler sees the is_enabled value */
smp_wmb();
return 0;
}
static const struct dev_pm_ops dispc_pm_ops = {
SET_RUNTIME_PM_OPS(dispc_runtime_suspend, dispc_runtime_resume, NULL)
SET_LATE_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume)
};
struct platform_driver omap_dispchw_driver = {
.probe = dispc_probe,
.remove = dispc_remove,
.driver = {
.name = "omapdss_dispc",
.pm = &dispc_pm_ops,
.of_match_table = dispc_of_match,
.suppress_bind_attrs = true,
},
};