linux-zen-server/drivers/hsi/clients/cmt_speech.c

1449 lines
33 KiB
C
Raw Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* cmt_speech.c - HSI CMT speech driver
*
* Copyright (C) 2008,2009,2010 Nokia Corporation. All rights reserved.
*
* Contact: Kai Vehmanen <kai.vehmanen@nokia.com>
* Original author: Peter Ujfalusi <peter.ujfalusi@nokia.com>
*/
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/miscdevice.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/poll.h>
#include <linux/sched/signal.h>
#include <linux/ioctl.h>
#include <linux/uaccess.h>
#include <linux/pm_qos.h>
#include <linux/hsi/hsi.h>
#include <linux/hsi/ssi_protocol.h>
#include <linux/hsi/cs-protocol.h>
#define CS_MMAP_SIZE PAGE_SIZE
struct char_queue {
struct list_head list;
u32 msg;
};
struct cs_char {
unsigned int opened;
struct hsi_client *cl;
struct cs_hsi_iface *hi;
struct list_head chardev_queue;
struct list_head dataind_queue;
int dataind_pending;
/* mmap things */
unsigned long mmap_base;
unsigned long mmap_size;
spinlock_t lock;
struct fasync_struct *async_queue;
wait_queue_head_t wait;
/* hsi channel ids */
int channel_id_cmd;
int channel_id_data;
};
#define SSI_CHANNEL_STATE_READING 1
#define SSI_CHANNEL_STATE_WRITING (1 << 1)
#define SSI_CHANNEL_STATE_POLL (1 << 2)
#define SSI_CHANNEL_STATE_ERROR (1 << 3)
#define TARGET_MASK 0xf000000
#define TARGET_REMOTE (1 << CS_DOMAIN_SHIFT)
#define TARGET_LOCAL 0
/* Number of pre-allocated commands buffers */
#define CS_MAX_CMDS 4
/*
* During data transfers, transactions must be handled
* within 20ms (fixed value in cmtspeech HSI protocol)
*/
#define CS_QOS_LATENCY_FOR_DATA_USEC 20000
/* Timeout to wait for pending HSI transfers to complete */
#define CS_HSI_TRANSFER_TIMEOUT_MS 500
#define RX_PTR_BOUNDARY_SHIFT 8
#define RX_PTR_MAX_SHIFT (RX_PTR_BOUNDARY_SHIFT + \
CS_MAX_BUFFERS_SHIFT)
struct cs_hsi_iface {
struct hsi_client *cl;
struct hsi_client *master;
unsigned int iface_state;
unsigned int wakeline_state;
unsigned int control_state;
unsigned int data_state;
/* state exposed to application */
struct cs_mmap_config_block *mmap_cfg;
unsigned long mmap_base;
unsigned long mmap_size;
unsigned int rx_slot;
unsigned int tx_slot;
/* note: for security reasons, we do not trust the contents of
* mmap_cfg, but instead duplicate the variables here */
unsigned int buf_size;
unsigned int rx_bufs;
unsigned int tx_bufs;
unsigned int rx_ptr_boundary;
unsigned int rx_offsets[CS_MAX_BUFFERS];
unsigned int tx_offsets[CS_MAX_BUFFERS];
/* size of aligned memory blocks */
unsigned int slot_size;
unsigned int flags;
struct list_head cmdqueue;
struct hsi_msg *data_rx_msg;
struct hsi_msg *data_tx_msg;
wait_queue_head_t datawait;
struct pm_qos_request pm_qos_req;
spinlock_t lock;
};
static struct cs_char cs_char_data;
static void cs_hsi_read_on_control(struct cs_hsi_iface *hi);
static void cs_hsi_read_on_data(struct cs_hsi_iface *hi);
static inline void rx_ptr_shift_too_big(void)
{
BUILD_BUG_ON((1LLU << RX_PTR_MAX_SHIFT) > UINT_MAX);
}
static void cs_notify(u32 message, struct list_head *head)
{
struct char_queue *entry;
spin_lock(&cs_char_data.lock);
if (!cs_char_data.opened) {
spin_unlock(&cs_char_data.lock);
goto out;
}
entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
if (!entry) {
dev_err(&cs_char_data.cl->device,
"Can't allocate new entry for the queue.\n");
spin_unlock(&cs_char_data.lock);
goto out;
}
entry->msg = message;
list_add_tail(&entry->list, head);
spin_unlock(&cs_char_data.lock);
wake_up_interruptible(&cs_char_data.wait);
kill_fasync(&cs_char_data.async_queue, SIGIO, POLL_IN);
out:
return;
}
static u32 cs_pop_entry(struct list_head *head)
{
struct char_queue *entry;
u32 data;
entry = list_entry(head->next, struct char_queue, list);
data = entry->msg;
list_del(&entry->list);
kfree(entry);
return data;
}
static void cs_notify_control(u32 message)
{
cs_notify(message, &cs_char_data.chardev_queue);
}
static void cs_notify_data(u32 message, int maxlength)
{
cs_notify(message, &cs_char_data.dataind_queue);
spin_lock(&cs_char_data.lock);
cs_char_data.dataind_pending++;
while (cs_char_data.dataind_pending > maxlength &&
!list_empty(&cs_char_data.dataind_queue)) {
dev_dbg(&cs_char_data.cl->device, "data notification "
"queue overrun (%u entries)\n", cs_char_data.dataind_pending);
cs_pop_entry(&cs_char_data.dataind_queue);
cs_char_data.dataind_pending--;
}
spin_unlock(&cs_char_data.lock);
}
static inline void cs_set_cmd(struct hsi_msg *msg, u32 cmd)
{
u32 *data = sg_virt(msg->sgt.sgl);
*data = cmd;
}
static inline u32 cs_get_cmd(struct hsi_msg *msg)
{
u32 *data = sg_virt(msg->sgt.sgl);
return *data;
}
static void cs_release_cmd(struct hsi_msg *msg)
{
struct cs_hsi_iface *hi = msg->context;
list_add_tail(&msg->link, &hi->cmdqueue);
}
static void cs_cmd_destructor(struct hsi_msg *msg)
{
struct cs_hsi_iface *hi = msg->context;
spin_lock(&hi->lock);
dev_dbg(&cs_char_data.cl->device, "control cmd destructor\n");
if (hi->iface_state != CS_STATE_CLOSED)
dev_err(&hi->cl->device, "Cmd flushed while driver active\n");
if (msg->ttype == HSI_MSG_READ)
hi->control_state &=
~(SSI_CHANNEL_STATE_POLL | SSI_CHANNEL_STATE_READING);
else if (msg->ttype == HSI_MSG_WRITE &&
hi->control_state & SSI_CHANNEL_STATE_WRITING)
hi->control_state &= ~SSI_CHANNEL_STATE_WRITING;
cs_release_cmd(msg);
spin_unlock(&hi->lock);
}
static struct hsi_msg *cs_claim_cmd(struct cs_hsi_iface* ssi)
{
struct hsi_msg *msg;
BUG_ON(list_empty(&ssi->cmdqueue));
msg = list_first_entry(&ssi->cmdqueue, struct hsi_msg, link);
list_del(&msg->link);
msg->destructor = cs_cmd_destructor;
return msg;
}
static void cs_free_cmds(struct cs_hsi_iface *ssi)
{
struct hsi_msg *msg, *tmp;
list_for_each_entry_safe(msg, tmp, &ssi->cmdqueue, link) {
list_del(&msg->link);
msg->destructor = NULL;
kfree(sg_virt(msg->sgt.sgl));
hsi_free_msg(msg);
}
}
static int cs_alloc_cmds(struct cs_hsi_iface *hi)
{
struct hsi_msg *msg;
u32 *buf;
unsigned int i;
INIT_LIST_HEAD(&hi->cmdqueue);
for (i = 0; i < CS_MAX_CMDS; i++) {
msg = hsi_alloc_msg(1, GFP_KERNEL);
if (!msg)
goto out;
buf = kmalloc(sizeof(*buf), GFP_KERNEL);
if (!buf) {
hsi_free_msg(msg);
goto out;
}
sg_init_one(msg->sgt.sgl, buf, sizeof(*buf));
msg->channel = cs_char_data.channel_id_cmd;
msg->context = hi;
list_add_tail(&msg->link, &hi->cmdqueue);
}
return 0;
out:
cs_free_cmds(hi);
return -ENOMEM;
}
static void cs_hsi_data_destructor(struct hsi_msg *msg)
{
struct cs_hsi_iface *hi = msg->context;
const char *dir = (msg->ttype == HSI_MSG_READ) ? "TX" : "RX";
dev_dbg(&cs_char_data.cl->device, "Freeing data %s message\n", dir);
spin_lock(&hi->lock);
if (hi->iface_state != CS_STATE_CLOSED)
dev_err(&cs_char_data.cl->device,
"Data %s flush while device active\n", dir);
if (msg->ttype == HSI_MSG_READ)
hi->data_state &=
~(SSI_CHANNEL_STATE_POLL | SSI_CHANNEL_STATE_READING);
else
hi->data_state &= ~SSI_CHANNEL_STATE_WRITING;
msg->status = HSI_STATUS_COMPLETED;
if (unlikely(waitqueue_active(&hi->datawait)))
wake_up_interruptible(&hi->datawait);
spin_unlock(&hi->lock);
}
static int cs_hsi_alloc_data(struct cs_hsi_iface *hi)
{
struct hsi_msg *txmsg, *rxmsg;
int res = 0;
rxmsg = hsi_alloc_msg(1, GFP_KERNEL);
if (!rxmsg) {
res = -ENOMEM;
goto out1;
}
rxmsg->channel = cs_char_data.channel_id_data;
rxmsg->destructor = cs_hsi_data_destructor;
rxmsg->context = hi;
txmsg = hsi_alloc_msg(1, GFP_KERNEL);
if (!txmsg) {
res = -ENOMEM;
goto out2;
}
txmsg->channel = cs_char_data.channel_id_data;
txmsg->destructor = cs_hsi_data_destructor;
txmsg->context = hi;
hi->data_rx_msg = rxmsg;
hi->data_tx_msg = txmsg;
return 0;
out2:
hsi_free_msg(rxmsg);
out1:
return res;
}
static void cs_hsi_free_data_msg(struct hsi_msg *msg)
{
WARN_ON(msg->status != HSI_STATUS_COMPLETED &&
msg->status != HSI_STATUS_ERROR);
hsi_free_msg(msg);
}
static void cs_hsi_free_data(struct cs_hsi_iface *hi)
{
cs_hsi_free_data_msg(hi->data_rx_msg);
cs_hsi_free_data_msg(hi->data_tx_msg);
}
static inline void __cs_hsi_error_pre(struct cs_hsi_iface *hi,
struct hsi_msg *msg, const char *info,
unsigned int *state)
{
spin_lock(&hi->lock);
dev_err(&hi->cl->device, "HSI %s error, msg %d, state %u\n",
info, msg->status, *state);
}
static inline void __cs_hsi_error_post(struct cs_hsi_iface *hi)
{
spin_unlock(&hi->lock);
}
static inline void __cs_hsi_error_read_bits(unsigned int *state)
{
*state |= SSI_CHANNEL_STATE_ERROR;
*state &= ~(SSI_CHANNEL_STATE_READING | SSI_CHANNEL_STATE_POLL);
}
static inline void __cs_hsi_error_write_bits(unsigned int *state)
{
*state |= SSI_CHANNEL_STATE_ERROR;
*state &= ~SSI_CHANNEL_STATE_WRITING;
}
static void cs_hsi_control_read_error(struct cs_hsi_iface *hi,
struct hsi_msg *msg)
{
__cs_hsi_error_pre(hi, msg, "control read", &hi->control_state);
cs_release_cmd(msg);
__cs_hsi_error_read_bits(&hi->control_state);
__cs_hsi_error_post(hi);
}
static void cs_hsi_control_write_error(struct cs_hsi_iface *hi,
struct hsi_msg *msg)
{
__cs_hsi_error_pre(hi, msg, "control write", &hi->control_state);
cs_release_cmd(msg);
__cs_hsi_error_write_bits(&hi->control_state);
__cs_hsi_error_post(hi);
}
static void cs_hsi_data_read_error(struct cs_hsi_iface *hi, struct hsi_msg *msg)
{
__cs_hsi_error_pre(hi, msg, "data read", &hi->data_state);
__cs_hsi_error_read_bits(&hi->data_state);
__cs_hsi_error_post(hi);
}
static void cs_hsi_data_write_error(struct cs_hsi_iface *hi,
struct hsi_msg *msg)
{
__cs_hsi_error_pre(hi, msg, "data write", &hi->data_state);
__cs_hsi_error_write_bits(&hi->data_state);
__cs_hsi_error_post(hi);
}
static void cs_hsi_read_on_control_complete(struct hsi_msg *msg)
{
u32 cmd = cs_get_cmd(msg);
struct cs_hsi_iface *hi = msg->context;
spin_lock(&hi->lock);
hi->control_state &= ~SSI_CHANNEL_STATE_READING;
if (msg->status == HSI_STATUS_ERROR) {
dev_err(&hi->cl->device, "Control RX error detected\n");
spin_unlock(&hi->lock);
cs_hsi_control_read_error(hi, msg);
goto out;
}
dev_dbg(&hi->cl->device, "Read on control: %08X\n", cmd);
cs_release_cmd(msg);
if (hi->flags & CS_FEAT_TSTAMP_RX_CTRL) {
struct timespec64 tspec;
struct cs_timestamp *tstamp =
&hi->mmap_cfg->tstamp_rx_ctrl;
ktime_get_ts64(&tspec);
tstamp->tv_sec = (__u32) tspec.tv_sec;
tstamp->tv_nsec = (__u32) tspec.tv_nsec;
}
spin_unlock(&hi->lock);
cs_notify_control(cmd);
out:
cs_hsi_read_on_control(hi);
}
static void cs_hsi_peek_on_control_complete(struct hsi_msg *msg)
{
struct cs_hsi_iface *hi = msg->context;
int ret;
if (msg->status == HSI_STATUS_ERROR) {
dev_err(&hi->cl->device, "Control peek RX error detected\n");
cs_hsi_control_read_error(hi, msg);
return;
}
WARN_ON(!(hi->control_state & SSI_CHANNEL_STATE_READING));
dev_dbg(&hi->cl->device, "Peek on control complete, reading\n");
msg->sgt.nents = 1;
msg->complete = cs_hsi_read_on_control_complete;
ret = hsi_async_read(hi->cl, msg);
if (ret)
cs_hsi_control_read_error(hi, msg);
}
static void cs_hsi_read_on_control(struct cs_hsi_iface *hi)
{
struct hsi_msg *msg;
int ret;
spin_lock(&hi->lock);
if (hi->control_state & SSI_CHANNEL_STATE_READING) {
dev_err(&hi->cl->device, "Control read already pending (%d)\n",
hi->control_state);
spin_unlock(&hi->lock);
return;
}
if (hi->control_state & SSI_CHANNEL_STATE_ERROR) {
dev_err(&hi->cl->device, "Control read error (%d)\n",
hi->control_state);
spin_unlock(&hi->lock);
return;
}
hi->control_state |= SSI_CHANNEL_STATE_READING;
dev_dbg(&hi->cl->device, "Issuing RX on control\n");
msg = cs_claim_cmd(hi);
spin_unlock(&hi->lock);
msg->sgt.nents = 0;
msg->complete = cs_hsi_peek_on_control_complete;
ret = hsi_async_read(hi->cl, msg);
if (ret)
cs_hsi_control_read_error(hi, msg);
}
static void cs_hsi_write_on_control_complete(struct hsi_msg *msg)
{
struct cs_hsi_iface *hi = msg->context;
if (msg->status == HSI_STATUS_COMPLETED) {
spin_lock(&hi->lock);
hi->control_state &= ~SSI_CHANNEL_STATE_WRITING;
cs_release_cmd(msg);
spin_unlock(&hi->lock);
} else if (msg->status == HSI_STATUS_ERROR) {
cs_hsi_control_write_error(hi, msg);
} else {
dev_err(&hi->cl->device,
"unexpected status in control write callback %d\n",
msg->status);
}
}
static int cs_hsi_write_on_control(struct cs_hsi_iface *hi, u32 message)
{
struct hsi_msg *msg;
int ret;
spin_lock(&hi->lock);
if (hi->control_state & SSI_CHANNEL_STATE_ERROR) {
spin_unlock(&hi->lock);
return -EIO;
}
if (hi->control_state & SSI_CHANNEL_STATE_WRITING) {
dev_err(&hi->cl->device,
"Write still pending on control channel.\n");
spin_unlock(&hi->lock);
return -EBUSY;
}
hi->control_state |= SSI_CHANNEL_STATE_WRITING;
msg = cs_claim_cmd(hi);
spin_unlock(&hi->lock);
cs_set_cmd(msg, message);
msg->sgt.nents = 1;
msg->complete = cs_hsi_write_on_control_complete;
dev_dbg(&hi->cl->device,
"Sending control message %08X\n", message);
ret = hsi_async_write(hi->cl, msg);
if (ret) {
dev_err(&hi->cl->device,
"async_write failed with %d\n", ret);
cs_hsi_control_write_error(hi, msg);
}
/*
* Make sure control read is always pending when issuing
* new control writes. This is needed as the controller
* may flush our messages if e.g. the peer device reboots
* unexpectedly (and we cannot directly resubmit a new read from
* the message destructor; see cs_cmd_destructor()).
*/
if (!(hi->control_state & SSI_CHANNEL_STATE_READING)) {
dev_err(&hi->cl->device, "Restarting control reads\n");
cs_hsi_read_on_control(hi);
}
return 0;
}
static void cs_hsi_read_on_data_complete(struct hsi_msg *msg)
{
struct cs_hsi_iface *hi = msg->context;
u32 payload;
if (unlikely(msg->status == HSI_STATUS_ERROR)) {
cs_hsi_data_read_error(hi, msg);
return;
}
spin_lock(&hi->lock);
WARN_ON(!(hi->data_state & SSI_CHANNEL_STATE_READING));
hi->data_state &= ~SSI_CHANNEL_STATE_READING;
payload = CS_RX_DATA_RECEIVED;
payload |= hi->rx_slot;
hi->rx_slot++;
hi->rx_slot %= hi->rx_ptr_boundary;
/* expose current rx ptr in mmap area */
hi->mmap_cfg->rx_ptr = hi->rx_slot;
if (unlikely(waitqueue_active(&hi->datawait)))
wake_up_interruptible(&hi->datawait);
spin_unlock(&hi->lock);
cs_notify_data(payload, hi->rx_bufs);
cs_hsi_read_on_data(hi);
}
static void cs_hsi_peek_on_data_complete(struct hsi_msg *msg)
{
struct cs_hsi_iface *hi = msg->context;
u32 *address;
int ret;
if (unlikely(msg->status == HSI_STATUS_ERROR)) {
cs_hsi_data_read_error(hi, msg);
return;
}
if (unlikely(hi->iface_state != CS_STATE_CONFIGURED)) {
dev_err(&hi->cl->device, "Data received in invalid state\n");
cs_hsi_data_read_error(hi, msg);
return;
}
spin_lock(&hi->lock);
WARN_ON(!(hi->data_state & SSI_CHANNEL_STATE_POLL));
hi->data_state &= ~SSI_CHANNEL_STATE_POLL;
hi->data_state |= SSI_CHANNEL_STATE_READING;
spin_unlock(&hi->lock);
address = (u32 *)(hi->mmap_base +
hi->rx_offsets[hi->rx_slot % hi->rx_bufs]);
sg_init_one(msg->sgt.sgl, address, hi->buf_size);
msg->sgt.nents = 1;
msg->complete = cs_hsi_read_on_data_complete;
ret = hsi_async_read(hi->cl, msg);
if (ret)
cs_hsi_data_read_error(hi, msg);
}
/*
* Read/write transaction is ongoing. Returns false if in
* SSI_CHANNEL_STATE_POLL state.
*/
static inline int cs_state_xfer_active(unsigned int state)
{
return (state & SSI_CHANNEL_STATE_WRITING) ||
(state & SSI_CHANNEL_STATE_READING);
}
/*
* No pending read/writes
*/
static inline int cs_state_idle(unsigned int state)
{
return !(state & ~SSI_CHANNEL_STATE_ERROR);
}
static void cs_hsi_read_on_data(struct cs_hsi_iface *hi)
{
struct hsi_msg *rxmsg;
int ret;
spin_lock(&hi->lock);
if (hi->data_state &
(SSI_CHANNEL_STATE_READING | SSI_CHANNEL_STATE_POLL)) {
dev_dbg(&hi->cl->device, "Data read already pending (%u)\n",
hi->data_state);
spin_unlock(&hi->lock);
return;
}
hi->data_state |= SSI_CHANNEL_STATE_POLL;
spin_unlock(&hi->lock);
rxmsg = hi->data_rx_msg;
sg_init_one(rxmsg->sgt.sgl, (void *)hi->mmap_base, 0);
rxmsg->sgt.nents = 0;
rxmsg->complete = cs_hsi_peek_on_data_complete;
ret = hsi_async_read(hi->cl, rxmsg);
if (ret)
cs_hsi_data_read_error(hi, rxmsg);
}
static void cs_hsi_write_on_data_complete(struct hsi_msg *msg)
{
struct cs_hsi_iface *hi = msg->context;
if (msg->status == HSI_STATUS_COMPLETED) {
spin_lock(&hi->lock);
hi->data_state &= ~SSI_CHANNEL_STATE_WRITING;
if (unlikely(waitqueue_active(&hi->datawait)))
wake_up_interruptible(&hi->datawait);
spin_unlock(&hi->lock);
} else {
cs_hsi_data_write_error(hi, msg);
}
}
static int cs_hsi_write_on_data(struct cs_hsi_iface *hi, unsigned int slot)
{
u32 *address;
struct hsi_msg *txmsg;
int ret;
spin_lock(&hi->lock);
if (hi->iface_state != CS_STATE_CONFIGURED) {
dev_err(&hi->cl->device, "Not configured, aborting\n");
ret = -EINVAL;
goto error;
}
if (hi->data_state & SSI_CHANNEL_STATE_ERROR) {
dev_err(&hi->cl->device, "HSI error, aborting\n");
ret = -EIO;
goto error;
}
if (hi->data_state & SSI_CHANNEL_STATE_WRITING) {
dev_err(&hi->cl->device, "Write pending on data channel.\n");
ret = -EBUSY;
goto error;
}
hi->data_state |= SSI_CHANNEL_STATE_WRITING;
spin_unlock(&hi->lock);
hi->tx_slot = slot;
address = (u32 *)(hi->mmap_base + hi->tx_offsets[hi->tx_slot]);
txmsg = hi->data_tx_msg;
sg_init_one(txmsg->sgt.sgl, address, hi->buf_size);
txmsg->complete = cs_hsi_write_on_data_complete;
ret = hsi_async_write(hi->cl, txmsg);
if (ret)
cs_hsi_data_write_error(hi, txmsg);
return ret;
error:
spin_unlock(&hi->lock);
if (ret == -EIO)
cs_hsi_data_write_error(hi, hi->data_tx_msg);
return ret;
}
static unsigned int cs_hsi_get_state(struct cs_hsi_iface *hi)
{
return hi->iface_state;
}
static int cs_hsi_command(struct cs_hsi_iface *hi, u32 cmd)
{
int ret = 0;
local_bh_disable();
switch (cmd & TARGET_MASK) {
case TARGET_REMOTE:
ret = cs_hsi_write_on_control(hi, cmd);
break;
case TARGET_LOCAL:
if ((cmd & CS_CMD_MASK) == CS_TX_DATA_READY)
ret = cs_hsi_write_on_data(hi, cmd & CS_PARAM_MASK);
else
ret = -EINVAL;
break;
default:
ret = -EINVAL;
break;
}
local_bh_enable();
return ret;
}
static void cs_hsi_set_wakeline(struct cs_hsi_iface *hi, bool new_state)
{
int change = 0;
spin_lock_bh(&hi->lock);
if (hi->wakeline_state != new_state) {
hi->wakeline_state = new_state;
change = 1;
dev_dbg(&hi->cl->device, "setting wake line to %d (%p)\n",
new_state, hi->cl);
}
spin_unlock_bh(&hi->lock);
if (change) {
if (new_state)
ssip_slave_start_tx(hi->master);
else
ssip_slave_stop_tx(hi->master);
}
dev_dbg(&hi->cl->device, "wake line set to %d (%p)\n",
new_state, hi->cl);
}
static void set_buffer_sizes(struct cs_hsi_iface *hi, int rx_bufs, int tx_bufs)
{
hi->rx_bufs = rx_bufs;
hi->tx_bufs = tx_bufs;
hi->mmap_cfg->rx_bufs = rx_bufs;
hi->mmap_cfg->tx_bufs = tx_bufs;
if (hi->flags & CS_FEAT_ROLLING_RX_COUNTER) {
/*
* For more robust overrun detection, let the rx
* pointer run in range 0..'boundary-1'. Boundary
* is a multiple of rx_bufs, and limited in max size
* by RX_PTR_MAX_SHIFT to allow for fast ptr-diff
* calculation.
*/
hi->rx_ptr_boundary = (rx_bufs << RX_PTR_BOUNDARY_SHIFT);
hi->mmap_cfg->rx_ptr_boundary = hi->rx_ptr_boundary;
} else {
hi->rx_ptr_boundary = hi->rx_bufs;
}
}
static int check_buf_params(struct cs_hsi_iface *hi,
const struct cs_buffer_config *buf_cfg)
{
size_t buf_size_aligned = L1_CACHE_ALIGN(buf_cfg->buf_size) *
(buf_cfg->rx_bufs + buf_cfg->tx_bufs);
size_t ctrl_size_aligned = L1_CACHE_ALIGN(sizeof(*hi->mmap_cfg));
int r = 0;
if (buf_cfg->rx_bufs > CS_MAX_BUFFERS ||
buf_cfg->tx_bufs > CS_MAX_BUFFERS) {
r = -EINVAL;
} else if ((buf_size_aligned + ctrl_size_aligned) >= hi->mmap_size) {
dev_err(&hi->cl->device, "No space for the requested buffer "
"configuration\n");
r = -ENOBUFS;
}
return r;
}
/*
* Block until pending data transfers have completed.
*/
static int cs_hsi_data_sync(struct cs_hsi_iface *hi)
{
int r = 0;
spin_lock_bh(&hi->lock);
if (!cs_state_xfer_active(hi->data_state)) {
dev_dbg(&hi->cl->device, "hsi_data_sync break, idle\n");
goto out;
}
for (;;) {
int s;
DEFINE_WAIT(wait);
if (!cs_state_xfer_active(hi->data_state))
goto out;
if (signal_pending(current)) {
r = -ERESTARTSYS;
goto out;
}
/*
* prepare_to_wait must be called with hi->lock held
* so that callbacks can check for waitqueue_active()
*/
prepare_to_wait(&hi->datawait, &wait, TASK_INTERRUPTIBLE);
spin_unlock_bh(&hi->lock);
s = schedule_timeout(
msecs_to_jiffies(CS_HSI_TRANSFER_TIMEOUT_MS));
spin_lock_bh(&hi->lock);
finish_wait(&hi->datawait, &wait);
if (!s) {
dev_dbg(&hi->cl->device,
"hsi_data_sync timeout after %d ms\n",
CS_HSI_TRANSFER_TIMEOUT_MS);
r = -EIO;
goto out;
}
}
out:
spin_unlock_bh(&hi->lock);
dev_dbg(&hi->cl->device, "hsi_data_sync done with res %d\n", r);
return r;
}
static void cs_hsi_data_enable(struct cs_hsi_iface *hi,
struct cs_buffer_config *buf_cfg)
{
unsigned int data_start, i;
BUG_ON(hi->buf_size == 0);
set_buffer_sizes(hi, buf_cfg->rx_bufs, buf_cfg->tx_bufs);
hi->slot_size = L1_CACHE_ALIGN(hi->buf_size);
dev_dbg(&hi->cl->device,
"setting slot size to %u, buf size %u, align %u\n",
hi->slot_size, hi->buf_size, L1_CACHE_BYTES);
data_start = L1_CACHE_ALIGN(sizeof(*hi->mmap_cfg));
dev_dbg(&hi->cl->device,
"setting data start at %u, cfg block %u, align %u\n",
data_start, sizeof(*hi->mmap_cfg), L1_CACHE_BYTES);
for (i = 0; i < hi->mmap_cfg->rx_bufs; i++) {
hi->rx_offsets[i] = data_start + i * hi->slot_size;
hi->mmap_cfg->rx_offsets[i] = hi->rx_offsets[i];
dev_dbg(&hi->cl->device, "DL buf #%u at %u\n",
i, hi->rx_offsets[i]);
}
for (i = 0; i < hi->mmap_cfg->tx_bufs; i++) {
hi->tx_offsets[i] = data_start +
(i + hi->mmap_cfg->rx_bufs) * hi->slot_size;
hi->mmap_cfg->tx_offsets[i] = hi->tx_offsets[i];
dev_dbg(&hi->cl->device, "UL buf #%u at %u\n",
i, hi->rx_offsets[i]);
}
hi->iface_state = CS_STATE_CONFIGURED;
}
static void cs_hsi_data_disable(struct cs_hsi_iface *hi, int old_state)
{
if (old_state == CS_STATE_CONFIGURED) {
dev_dbg(&hi->cl->device,
"closing data channel with slot size 0\n");
hi->iface_state = CS_STATE_OPENED;
}
}
static int cs_hsi_buf_config(struct cs_hsi_iface *hi,
struct cs_buffer_config *buf_cfg)
{
int r = 0;
unsigned int old_state = hi->iface_state;
spin_lock_bh(&hi->lock);
/* Prevent new transactions during buffer reconfig */
if (old_state == CS_STATE_CONFIGURED)
hi->iface_state = CS_STATE_OPENED;
spin_unlock_bh(&hi->lock);
/*
* make sure that no non-zero data reads are ongoing before
* proceeding to change the buffer layout
*/
r = cs_hsi_data_sync(hi);
if (r < 0)
return r;
WARN_ON(cs_state_xfer_active(hi->data_state));
spin_lock_bh(&hi->lock);
r = check_buf_params(hi, buf_cfg);
if (r < 0)
goto error;
hi->buf_size = buf_cfg->buf_size;
hi->mmap_cfg->buf_size = hi->buf_size;
hi->flags = buf_cfg->flags;
hi->rx_slot = 0;
hi->tx_slot = 0;
hi->slot_size = 0;
if (hi->buf_size)
cs_hsi_data_enable(hi, buf_cfg);
else
cs_hsi_data_disable(hi, old_state);
spin_unlock_bh(&hi->lock);
if (old_state != hi->iface_state) {
if (hi->iface_state == CS_STATE_CONFIGURED) {
cpu_latency_qos_add_request(&hi->pm_qos_req,
CS_QOS_LATENCY_FOR_DATA_USEC);
local_bh_disable();
cs_hsi_read_on_data(hi);
local_bh_enable();
} else if (old_state == CS_STATE_CONFIGURED) {
cpu_latency_qos_remove_request(&hi->pm_qos_req);
}
}
return r;
error:
spin_unlock_bh(&hi->lock);
return r;
}
static int cs_hsi_start(struct cs_hsi_iface **hi, struct hsi_client *cl,
unsigned long mmap_base, unsigned long mmap_size)
{
int err = 0;
struct cs_hsi_iface *hsi_if = kzalloc(sizeof(*hsi_if), GFP_KERNEL);
dev_dbg(&cl->device, "cs_hsi_start\n");
if (!hsi_if) {
err = -ENOMEM;
goto leave0;
}
spin_lock_init(&hsi_if->lock);
hsi_if->cl = cl;
hsi_if->iface_state = CS_STATE_CLOSED;
hsi_if->mmap_cfg = (struct cs_mmap_config_block *)mmap_base;
hsi_if->mmap_base = mmap_base;
hsi_if->mmap_size = mmap_size;
memset(hsi_if->mmap_cfg, 0, sizeof(*hsi_if->mmap_cfg));
init_waitqueue_head(&hsi_if->datawait);
err = cs_alloc_cmds(hsi_if);
if (err < 0) {
dev_err(&cl->device, "Unable to alloc HSI messages\n");
goto leave1;
}
err = cs_hsi_alloc_data(hsi_if);
if (err < 0) {
dev_err(&cl->device, "Unable to alloc HSI messages for data\n");
goto leave2;
}
err = hsi_claim_port(cl, 1);
if (err < 0) {
dev_err(&cl->device,
"Could not open, HSI port already claimed\n");
goto leave3;
}
hsi_if->master = ssip_slave_get_master(cl);
if (IS_ERR(hsi_if->master)) {
err = PTR_ERR(hsi_if->master);
dev_err(&cl->device, "Could not get HSI master client\n");
goto leave4;
}
if (!ssip_slave_running(hsi_if->master)) {
err = -ENODEV;
dev_err(&cl->device,
"HSI port not initialized\n");
goto leave4;
}
hsi_if->iface_state = CS_STATE_OPENED;
local_bh_disable();
cs_hsi_read_on_control(hsi_if);
local_bh_enable();
dev_dbg(&cl->device, "cs_hsi_start...done\n");
BUG_ON(!hi);
*hi = hsi_if;
return 0;
leave4:
hsi_release_port(cl);
leave3:
cs_hsi_free_data(hsi_if);
leave2:
cs_free_cmds(hsi_if);
leave1:
kfree(hsi_if);
leave0:
dev_dbg(&cl->device, "cs_hsi_start...done/error\n\n");
return err;
}
static void cs_hsi_stop(struct cs_hsi_iface *hi)
{
dev_dbg(&hi->cl->device, "cs_hsi_stop\n");
cs_hsi_set_wakeline(hi, 0);
ssip_slave_put_master(hi->master);
/* hsi_release_port() needs to be called with CS_STATE_CLOSED */
hi->iface_state = CS_STATE_CLOSED;
hsi_release_port(hi->cl);
/*
* hsi_release_port() should flush out all the pending
* messages, so cs_state_idle() should be true for both
* control and data channels.
*/
WARN_ON(!cs_state_idle(hi->control_state));
WARN_ON(!cs_state_idle(hi->data_state));
if (cpu_latency_qos_request_active(&hi->pm_qos_req))
cpu_latency_qos_remove_request(&hi->pm_qos_req);
spin_lock_bh(&hi->lock);
cs_hsi_free_data(hi);
cs_free_cmds(hi);
spin_unlock_bh(&hi->lock);
kfree(hi);
}
static vm_fault_t cs_char_vma_fault(struct vm_fault *vmf)
{
struct cs_char *csdata = vmf->vma->vm_private_data;
struct page *page;
page = virt_to_page((void *)csdata->mmap_base);
get_page(page);
vmf->page = page;
return 0;
}
static const struct vm_operations_struct cs_char_vm_ops = {
.fault = cs_char_vma_fault,
};
static int cs_char_fasync(int fd, struct file *file, int on)
{
struct cs_char *csdata = file->private_data;
if (fasync_helper(fd, file, on, &csdata->async_queue) < 0)
return -EIO;
return 0;
}
static __poll_t cs_char_poll(struct file *file, poll_table *wait)
{
struct cs_char *csdata = file->private_data;
__poll_t ret = 0;
poll_wait(file, &cs_char_data.wait, wait);
spin_lock_bh(&csdata->lock);
if (!list_empty(&csdata->chardev_queue))
ret = EPOLLIN | EPOLLRDNORM;
else if (!list_empty(&csdata->dataind_queue))
ret = EPOLLIN | EPOLLRDNORM;
spin_unlock_bh(&csdata->lock);
return ret;
}
static ssize_t cs_char_read(struct file *file, char __user *buf, size_t count,
loff_t *unused)
{
struct cs_char *csdata = file->private_data;
u32 data;
ssize_t retval;
if (count < sizeof(data))
return -EINVAL;
for (;;) {
DEFINE_WAIT(wait);
spin_lock_bh(&csdata->lock);
if (!list_empty(&csdata->chardev_queue)) {
data = cs_pop_entry(&csdata->chardev_queue);
} else if (!list_empty(&csdata->dataind_queue)) {
data = cs_pop_entry(&csdata->dataind_queue);
csdata->dataind_pending--;
} else {
data = 0;
}
spin_unlock_bh(&csdata->lock);
if (data)
break;
if (file->f_flags & O_NONBLOCK) {
retval = -EAGAIN;
goto out;
} else if (signal_pending(current)) {
retval = -ERESTARTSYS;
goto out;
}
prepare_to_wait_exclusive(&csdata->wait, &wait,
TASK_INTERRUPTIBLE);
schedule();
finish_wait(&csdata->wait, &wait);
}
retval = put_user(data, (u32 __user *)buf);
if (!retval)
retval = sizeof(data);
out:
return retval;
}
static ssize_t cs_char_write(struct file *file, const char __user *buf,
size_t count, loff_t *unused)
{
struct cs_char *csdata = file->private_data;
u32 data;
int err;
ssize_t retval;
if (count < sizeof(data))
return -EINVAL;
if (get_user(data, (u32 __user *)buf))
retval = -EFAULT;
else
retval = count;
err = cs_hsi_command(csdata->hi, data);
if (err < 0)
retval = err;
return retval;
}
static long cs_char_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
struct cs_char *csdata = file->private_data;
int r = 0;
switch (cmd) {
case CS_GET_STATE: {
unsigned int state;
state = cs_hsi_get_state(csdata->hi);
if (copy_to_user((void __user *)arg, &state, sizeof(state)))
r = -EFAULT;
break;
}
case CS_SET_WAKELINE: {
unsigned int state;
if (copy_from_user(&state, (void __user *)arg, sizeof(state))) {
r = -EFAULT;
break;
}
if (state > 1) {
r = -EINVAL;
break;
}
cs_hsi_set_wakeline(csdata->hi, !!state);
break;
}
case CS_GET_IF_VERSION: {
unsigned int ifver = CS_IF_VERSION;
if (copy_to_user((void __user *)arg, &ifver, sizeof(ifver)))
r = -EFAULT;
break;
}
case CS_CONFIG_BUFS: {
struct cs_buffer_config buf_cfg;
if (copy_from_user(&buf_cfg, (void __user *)arg,
sizeof(buf_cfg)))
r = -EFAULT;
else
r = cs_hsi_buf_config(csdata->hi, &buf_cfg);
break;
}
default:
r = -ENOTTY;
break;
}
return r;
}
static int cs_char_mmap(struct file *file, struct vm_area_struct *vma)
{
if (vma->vm_end < vma->vm_start)
return -EINVAL;
if (vma_pages(vma) != 1)
return -EINVAL;
vm_flags_set(vma, VM_IO | VM_DONTDUMP | VM_DONTEXPAND);
vma->vm_ops = &cs_char_vm_ops;
vma->vm_private_data = file->private_data;
return 0;
}
static int cs_char_open(struct inode *unused, struct file *file)
{
int ret = 0;
unsigned long p;
spin_lock_bh(&cs_char_data.lock);
if (cs_char_data.opened) {
ret = -EBUSY;
spin_unlock_bh(&cs_char_data.lock);
goto out1;
}
cs_char_data.opened = 1;
cs_char_data.dataind_pending = 0;
spin_unlock_bh(&cs_char_data.lock);
p = get_zeroed_page(GFP_KERNEL);
if (!p) {
ret = -ENOMEM;
goto out2;
}
ret = cs_hsi_start(&cs_char_data.hi, cs_char_data.cl, p, CS_MMAP_SIZE);
if (ret) {
dev_err(&cs_char_data.cl->device, "Unable to initialize HSI\n");
goto out3;
}
/* these are only used in release so lock not needed */
cs_char_data.mmap_base = p;
cs_char_data.mmap_size = CS_MMAP_SIZE;
file->private_data = &cs_char_data;
return 0;
out3:
free_page(p);
out2:
spin_lock_bh(&cs_char_data.lock);
cs_char_data.opened = 0;
spin_unlock_bh(&cs_char_data.lock);
out1:
return ret;
}
static void cs_free_char_queue(struct list_head *head)
{
struct char_queue *entry;
struct list_head *cursor, *next;
if (!list_empty(head)) {
list_for_each_safe(cursor, next, head) {
entry = list_entry(cursor, struct char_queue, list);
list_del(&entry->list);
kfree(entry);
}
}
}
static int cs_char_release(struct inode *unused, struct file *file)
{
struct cs_char *csdata = file->private_data;
cs_hsi_stop(csdata->hi);
spin_lock_bh(&csdata->lock);
csdata->hi = NULL;
free_page(csdata->mmap_base);
cs_free_char_queue(&csdata->chardev_queue);
cs_free_char_queue(&csdata->dataind_queue);
csdata->opened = 0;
spin_unlock_bh(&csdata->lock);
return 0;
}
static const struct file_operations cs_char_fops = {
.owner = THIS_MODULE,
.read = cs_char_read,
.write = cs_char_write,
.poll = cs_char_poll,
.unlocked_ioctl = cs_char_ioctl,
.mmap = cs_char_mmap,
.open = cs_char_open,
.release = cs_char_release,
.fasync = cs_char_fasync,
};
static struct miscdevice cs_char_miscdev = {
.minor = MISC_DYNAMIC_MINOR,
.name = "cmt_speech",
.fops = &cs_char_fops
};
static int cs_hsi_client_probe(struct device *dev)
{
int err = 0;
struct hsi_client *cl = to_hsi_client(dev);
dev_dbg(dev, "hsi_client_probe\n");
init_waitqueue_head(&cs_char_data.wait);
spin_lock_init(&cs_char_data.lock);
cs_char_data.opened = 0;
cs_char_data.cl = cl;
cs_char_data.hi = NULL;
INIT_LIST_HEAD(&cs_char_data.chardev_queue);
INIT_LIST_HEAD(&cs_char_data.dataind_queue);
cs_char_data.channel_id_cmd = hsi_get_channel_id_by_name(cl,
"speech-control");
if (cs_char_data.channel_id_cmd < 0) {
err = cs_char_data.channel_id_cmd;
dev_err(dev, "Could not get cmd channel (%d)\n", err);
return err;
}
cs_char_data.channel_id_data = hsi_get_channel_id_by_name(cl,
"speech-data");
if (cs_char_data.channel_id_data < 0) {
err = cs_char_data.channel_id_data;
dev_err(dev, "Could not get data channel (%d)\n", err);
return err;
}
err = misc_register(&cs_char_miscdev);
if (err)
dev_err(dev, "Failed to register: %d\n", err);
return err;
}
static int cs_hsi_client_remove(struct device *dev)
{
struct cs_hsi_iface *hi;
dev_dbg(dev, "hsi_client_remove\n");
misc_deregister(&cs_char_miscdev);
spin_lock_bh(&cs_char_data.lock);
hi = cs_char_data.hi;
cs_char_data.hi = NULL;
spin_unlock_bh(&cs_char_data.lock);
if (hi)
cs_hsi_stop(hi);
return 0;
}
static struct hsi_client_driver cs_hsi_driver = {
.driver = {
.name = "cmt-speech",
.owner = THIS_MODULE,
.probe = cs_hsi_client_probe,
.remove = cs_hsi_client_remove,
},
};
static int __init cs_char_init(void)
{
pr_info("CMT speech driver added\n");
return hsi_register_client_driver(&cs_hsi_driver);
}
module_init(cs_char_init);
static void __exit cs_char_exit(void)
{
hsi_unregister_client_driver(&cs_hsi_driver);
pr_info("CMT speech driver removed\n");
}
module_exit(cs_char_exit);
MODULE_ALIAS("hsi:cmt-speech");
MODULE_AUTHOR("Kai Vehmanen <kai.vehmanen@nokia.com>");
MODULE_AUTHOR("Peter Ujfalusi <peter.ujfalusi@nokia.com>");
MODULE_DESCRIPTION("CMT speech driver");
MODULE_LICENSE("GPL v2");